Leadless pacemaker with radial fixation mechanism

Information

  • Patent Grant
  • 9242102
  • Patent Number
    9,242,102
  • Date Filed
    Tuesday, December 20, 2011
    12 years ago
  • Date Issued
    Tuesday, January 26, 2016
    8 years ago
Abstract
A leadless cardiac pacemaker having a radial fixation mechanism is provided. The cardiac pacemaker can include fixation mechanism separate from a pacing electrode and having a diameter equal to or less than the outer diameter of the pacemaker. The fixation mechanism can allow the pacemaker to be inserted into tissue with less than 2 rotations of the pacemaker to place the pacing electrode in contact with the tissue. In some embodiments, the fixation mechanism can comprise a plurality of hooks or protrusions positioned near a distal portion of the pacemaker. The fixation mechanism(s) can be configured to penetrate the endocardium of the patient and reside mostly within the myocardium. Methods of delivering the leadless cardiac pacemaker into the heart are also provided.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


FIELD

The present disclosure relates to leadless cardiac pacemakers, and more particularly, to features and methods by which they are attached to heart tissue. More specifically, the present disclosure relates to features and methods for attaching a leadless cardiac pacemaker to tissue with a radial fixation mechanism.


BACKGROUND

Cardiac pacing by an artificial pacemaker provides an electrical stimulation of the heart when its own natural pacemaker and/or conduction system fails to provide synchronized atrial and ventricular contractions at rates and intervals sufficient for a patient's health. Such antibradycardial pacing provides relief from symptoms and even life support for hundreds of thousands of patients. Cardiac pacing may also provide electrical overdrive stimulation to suppress or convert tachyarrhythmias, again supplying relief from symptoms and preventing or terminating arrhythmias that could lead to sudden cardiac death.


Cardiac pacing by currently available or conventional pacemakers is usually performed by a pulse generator implanted subcutaneously or sub-muscularly in or near a patient's pectoral region. Pulse generator parameters are usually interrogated and modified by a programming device outside the body, via a loosely-coupled transformer with one inductance within the body and another outside, or via electromagnetic radiation with one antenna within the body and another outside. The generator usually connects to the proximal end of one or more implanted leads, the distal end of which contains one or more electrodes for positioning adjacent to the inside or outside wall of a cardiac chamber. The leads have an insulated electrical conductor or conductors for connecting the pulse generator to electrodes in the heart. Such electrode leads typically have lengths of 50 to 70 centimeters.


Although more than one hundred thousand conventional cardiac pacing systems are implanted annually, various well-known difficulties exist, of which a few will be cited. For example, a pulse generator, when located subcutaneously, presents a bulge in the skin that patients can find unsightly, unpleasant, or irritating, and which patients can subconsciously or obsessively manipulate or “twiddle”. Even without persistent manipulation, subcutaneous pulse generators can exhibit erosion, extrusion, infection, and disconnection, insulation damage, or conductor breakage at the wire leads. Although sub-muscular or abdominal placement can address some concerns, such placement involves a more difficult surgical procedure for implantation and adjustment, which can prolong patient recovery.


A conventional pulse generator, whether pectoral or abdominal, has an interface for connection to and disconnection from the electrode leads that carry signals to and from the heart. Usually at least one male connector molding has at least one terminal pin at the proximal end of the electrode lead. The male connector mates with a corresponding female connector molding and terminal block within the connector molding at the pulse generator. Usually a setscrew is threaded in at least one terminal block per electrode lead to secure the connection electrically and mechanically. One or more O-rings usually are also supplied to help maintain electrical isolation between the connector moldings. A setscrew cap or slotted cover is typically included to provide electrical insulation of the setscrew. This briefly described complex connection between connectors and leads provides multiple opportunities for malfunction.


Other problematic aspects of conventional pacemakers relate to the separately implanted pulse generator and the pacing leads. By way of another example, the pacing leads, in particular, can become a site of infection and morbidity. Many of the issues associated with conventional pacemakers are resolved by the development of a self-contained and self-sustainable pacemaker, or so-called leadless pacemaker, as described in the related applications cited above.


Self-contained or leadless pacemakers or other biostimulators are typically fixed to an intracardial implant site by an actively engaging mechanism such as a screw or helical member that screws into the myocardium.


SUMMARY OF THE DISCLOSURE

A leadless cardiac pacemaker is provided, comprising a hermetic housing, a pacing electrode disposed on a distal portion of the housing, an electronics package disposed in the housing, the electronics package configured to generate and deliver pacing signals to the pacing electrode, and a fixation mechanism separate from the pacing electrode and disposed on the distal portion of the housing, the fixation mechanism having a diameter less than or equal to an outer diameter of the hermetic housing and comprising less than two turns of rotation from a distal end of the fixation mechanism to a proximal end of the fixation mechanism.


In some embodiments, the fixation mechanism comprises less than one and a half turns of rotation from the distal end of the fixation mechanism to the proximal end of the fixation mechanism. In other embodiments, the fixation mechanism comprises less than one and a quarter turns of rotation from the distal end of the fixation mechanism to the proximal end of the fixation mechanism.


In some embodiments, the pacing electrode comprises a dome shape. In additional embodiments, the pacing electrode is attached to the housing via a compliant spring to reduce compression force against the heart tissue. In another embodiment, the pacing electrode is attached to the housing via a silicon adhesive to reduce compression force against the heart tissue.


In one embodiment, the fixation mechanism comprises a helix. In some embodiments, the helix rotates less than or equal to 450 degrees. In other embodiments, the helix at least partially surrounds the pacing electrode.


In some embodiments, the fixation mechanism comprises a constant diameter. In another embodiment, the fixation mechanism has a diameter between 2.5 mm and 5 mm.


In some embodiments, the fixation mechanism comprises a longitudinal length of less than 1.8 mm. In other embodiments, the distal portion of the housing has an outer diameter less than an outer diameter of the hermetic housing. In some embodiments, the fixation mechanism is sized and configured so that it does not perforate a myocardium of a patient when fully screwed into cardiac tissue.


In some embodiments, the fixation mechanism comprises a radial portion substantially aligned with a circumference of the housing and a connecting portion attaching the fixation mechanism to the housing. In one embodiment, the radial portion is substantially perpendicular to the connecting portion. In another embodiment, the connecting portion has a length smaller than a thickness of a myocardium layer of a heart of a patient. In yet another embodiment, the connecting portion has a length less than or equal to 1.8 mm. In additional embodiments, the radial portion of the fixation mechanism is configured to reside within a myocardium layer of a heart of a patient and substantially in contact with an endocardium layer of the heart of the patient. In various embodiments, the fixation mechanisms can further comprise a barb disposed on an interior surface of the radial portion of the fixation mechanism.


In another embodiment, the pacemaker is further configured to receive during retrieval a protective sheath having an inner diameter similar to the outer diameter of the hermetic housing.


A method of affixing a pacemaker to tissue in the heart is also provided, comprising positioning a fixation mechanism of the pacemaker adjacent to an endocardium of the heart, the fixation mechanism having a diameter less than or equal to an outer diameter of the pacemaker, piercing the endocardium with the fixation mechanism, and rotating the fixation mechanism less than one and a quarter turns to insert substantially all of the fixation mechanism into the myocardium of the heart and place a pacing electrode of the pacemaker into contact with heart tissue.


In some embodiments, the fixation mechanism comprises a helix. In some embodiments, the pacemaker comprises a leadless cardiac pacemaker.


In another embodiment, the method further comprises covering the pacemaker and fixation mechanism with a protective sheath and removing the pacemaker from the patient.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1C illustrate a leadless cardiac pacemaker.



FIGS. 2A-2D are various views of a leadless cardiac pacemaker having a radial fixation mechanism.





DETAILED DESCRIPTION OF THE INVENTION

Various embodiments of a leadless cardiac pacemaker having at least one radial fixation mechanism are provided. A leadless cardiac pacemaker can communicate by conducted communication, representing a substantial departure from conventional pacing systems. For example, an illustrative cardiac pacing system can perform cardiac pacing that has many of the advantages of conventional cardiac pacemakers while extending performance, functionality, and operating characteristics with one or more of several improvements.


In some embodiments of a cardiac pacing system, cardiac pacing is provided without a pulse generator located in the pectoral region or abdomen, without an electrode-lead separate from the pulse generator, without a communication coil or antenna, and without an additional requirement on battery power for transmitted communication.


An embodiment of a cardiac pacing system configured to attain these characteristics comprises a leadless cardiac pacemaker that is substantially enclosed in a hermetic housing suitable for placement on or attachment to the inside or outside of a cardiac chamber. The pacemaker can have two or more electrodes located within, on, or near the housing, for delivering pacing pulses to muscle of the cardiac chamber and optionally for sensing electrical activity from the muscle, and for bidirectional communication with at least one other device within or outside the body. The housing can contain a primary battery to provide power for pacing, sensing, and communication, for example bidirectional communication. The housing can optionally contain circuits for sensing cardiac activity from the electrodes. The housing contains circuits for receiving information from at least one other device via the electrodes and contains circuits for generating pacing pulses for delivery via the electrodes. The housing can optionally contain circuits for transmitting information to at least one other device via the electrodes and can optionally contain circuits for monitoring device health. The housing contains circuits for controlling these operations in a predetermined manner.


In some embodiments, a cardiac pacemaker can be adapted for delivery and implantation into tissue in the human body. In a particular embodiment, a leadless cardiac pacemaker can be adapted for implantation adjacent to heart tissue on the inside or outside wall of a cardiac chamber, using two or more electrodes located on or within the housing of the pacemaker, for pacing the cardiac chamber upon receiving a triggering signal from at least one other device within the body.


Self-contained or leadless pacemakers or other biostimulators are typically fixed to an intracardial implant site by an actively engaging mechanism or primary fixation mechanism such as a screw or helical member that screws into the myocardium. Examples of such leadless biostimulators are described in the following publications, the disclosures of which are incorporated by reference: (1) U.S. application Ser. No. 11/549,599, filed on Oct. 13, 2006, entitled “Leadless Cardiac Pacemaker System for Usage in Combination with an Implantable Cardioverter-Defibrillator”, and published as US2007/0088394A1 on Apr. 19, 2007; (2) U.S. application Ser. No. 11/549,581 filed on Oct. 13, 2006, entitled “Leadless Cardiac Pacemaker”, and published as US2007/0088396A1 on Apr. 19, 2007; (3) U.S. application Ser. No. 11/549,591, filed on Oct. 13, 2006, entitled “Leadless Cardiac Pacemaker System with Conductive Communication” and published as US2007/0088397A1 on Apr. 19, 2007; (4) U.S. application Ser. No. 11/549,596 filed on Oct. 13, 2006, entitled “Leadless Cardiac Pacemaker Triggered by Conductive Communication” and published as US2007/0088398A1 on Apr. 19, 2007; (5) U.S. application Ser. No. 11/549,603 filed on Oct. 13, 2006, entitled “Rate Responsive Leadless Cardiac Pacemaker” and published as US2007/0088400A1 on Apr. 19, 2007; (6) U.S. application Ser. No. 11/549,605 filed on Oct. 13, 2006, entitled “Programmer for Biostimulator System” and published as US2007/0088405A1 on Apr. 19, 2007; (7) U.S. application Ser. No. 11/549,574, filed on Oct. 13, 2006, entitled “Delivery System for Implantable Biostimulator” and published as US2007/0088418A1 on Apr. 19, 2007; and (8) International Application No. PCT/US2006/040564, filed on Oct. 13, 2006, entitled “Leadless Cardiac Pacemaker and System” and published as WO07047681A2 on Apr. 26, 2007.


In addition to the primary fixation mechanism, such as a helix, some pacemakers may further include a secondary fixation mechanism to provide another feature for keeping the biostimulator in place within the body. Secondary fixation mechanisms can be either active (e.g., the secondary fixation mechanism can actively engage tissue, either within or outside the heart), or can be passive (e.g., the secondary fixation mechanism is not attached to tissue but rather prevents the biostimulator from moving around in the body in the case of accidental detachment). Further details on secondary fixation mechanisms can be found in U.S. application Ser. No. 12/698,969.


Self-contained or leadless pacemakers or other biostimulators are typically fixed to an intracardial implant site by an actively engaging mechanism such as a screw or helical member that screws into the myocardium. In case of malfunction, it is highly desirable to be able to retrieve the leadless pacemaker of biostimulators both acutely (during the implantation procedure) or chronically, after a period of time post implantation minimally invasively.



FIG. 1A shows a leadless cardiac pacemaker 100. The biostimulators can include a hermetic housing 102 with electrodes 104 and 106 disposed thereon. As shown, electrode 106 can be separated from but surrounded partially by a fixation mechanism 105, and the electrode 104 can be disposed on the housing 102. The fixation mechanism 105 can be a fixation helix, a plurality of hooks, barbs, or other attaching features configured to attach the pacemaker to tissue, such as heart tissue.


The housing can also include an electronics compartment 110 within the housing that contains the electronic components necessary for operation of the pacemaker, including, for example, a pulse generator, communication electronics, a battery, and a processor for operation. The hermetic housing 102 can be adapted to be implanted on or in a human heart, and can be cylindrically shaped, rectangular, spherical, or any other appropriate shapes, for example.


The housing can comprise a conductive, biocompatible, inert, and anodically safe material such as titanium, 316L stainless steel, or other similar materials. The housing can further comprise an insulator disposed on the conductive material to separate electrodes 104 and 106. The insulator can be an insulative coating on a portion of the housing between the electrodes, and can comprise materials such as silicone, polyurethane, parylene, or another biocompatible electrical insulator commonly used for implantable medical devices. In the embodiment of FIG. 1A, a single insulator 108 is disposed along the portion of the housing between electrodes 104 and 106. In some embodiments, the housing itself can comprise an insulator instead of a conductor, such as an alumina ceramic or other similar materials, and the electrodes can be disposed upon the housing.


As shown in FIG. 1A, the pacemaker can further include a header assembly 112 to isolate electrode 104 from electrode 106. The header assembly 112 can be made from PEEK, tecothane or another biocompatible plastic, and can contain a ceramic to metal feedthrough, a glass to metal feedthrough, or other appropriate feedthrough insulator as known in the art.


The electrodes 104 and 106 can comprise pace/sense electrodes, or return electrodes. A low-polarization coating can be applied to the electrodes, such as sintered platinum, platinum-iridium, iridium, iridium-oxide, titanium-nitride, carbon, or other materials commonly used to reduce polarization effects, for example. In FIG. 1A, electrode 106 can be a pace/sense electrode and electrode 104 can be a return electrode. The electrode 104 can be a portion of the conductive housing 102 that does not include an insulator 108.


Several techniques and structures can be used for attaching the housing 102 to the interior or exterior wall of the heart. A helical fixation mechanism 105, can enable insertion of the device endocardially or epicardially through a guiding catheter. A torqueable catheter can be used to rotate the housing and force the fixation device into heart tissue, thus affixing the fixation device (and also the electrode 106 in FIG. 1A) into contact with stimulable tissue. Electrode 104 can serve as an indifferent electrode for sensing and pacing. The fixation mechanism may be coated partially or in full for electrical insulation, and a steroid-eluting matrix may be included on or near the device to minimize fibrotic reaction, as is known in conventional pacing electrode-leads.



FIGS. 1B-1C illustrate additional close-up views of the distal portion of pacemaker 100, including fixation mechanism 105 and electrode 106. As shown in FIGS. 1B-1C, the fixation mechanism can comprise a helix that partially surrounds or rotates around the electrode 106. In some embodiments, the fixation device comprises a diameter equal to or less than the outer diameter of the housing of the pacemaker itself. In the helical embodiment, the helix can comprise a constant diameter that is less than or equal to the outer diameter of the pacemaker housing. In one embodiment, the fixation device comprises a diameter of less than 5 mm. In another embodiment, the fixation device comprises a diameter of greater than 2.5 mm and less than 5 mm. In some embodiments, the helical fixation device can have a wire diameter of 0.005″-0.03″ and a pitch of 0.5 mm to 1.5 mm. Utilizing a fixation mechanism having a diameter up to the diameter of the housing can increase the pull force required to remove the fixation mechanism from tissue, thereby decreasing the chances of the device coming dislodged from the heart. Furthermore, the increased diameter of the fixation mechanism can increase the surface area in contact with the endocardium layer of the heart, further improving the ability of the pacemaker to remain implanted in the patient.


The helical fixation mechanism 105 of FIGS. 1A-1C can comprise a coil having less than 2 full rotations from the leading distal edge of the mechanism to the proximal portion of the mechanism that attaches to the housing of the pacemaker. For example, in FIG. 1B, the distal leading edge 114 of the fixation mechanism 105 is approximately one and a quarter turns (approximately 450 degrees) from proximal end 116 of the fixation mechanism. As shown in FIG. 1B, a distal portion of the housing that attaches to the fixation mechanism can have an outer diameter less than the main outer diameter of the housing, so as to facilitate attachment of the fixation mechanism while allowing the fixation mechanism to have a diameter less than the main outer diameter of the housing.


The fixation mechanism 105 can also include a longitudinal length L of less than 1.8 mm, which is considered the safe length for preventing perforation of the myocardium during implantation. Thus, the fixation mechanism is thereby configured to fully screw into cardiac tissue with less than 2 turns (and preferably less than or equal to one and a quarter turns) without perforating the myocardium of the patient. When the fixation mechanism is fully screwed into the cardiac tissue, the electrode 106 of the pacemaker is in solid contact with the tissue. FIG. 1C shows a top down view of the starting and end points of distal leading edge 114 and proximal end 116 of the fixation mechanism, spanning approximately one and a quarter turns or less. In some other embodiments, the fixation mechanism can span less than 2 full turns from the distal end to the proximal end of the mechanism.


Also shown in FIGS. 1A-1C, the fixation mechanism can include anti-rotation features such as barbs or sutures to prevent counter rotation of the device once it has been screwed into tissue.


Referring to the top down view shown in FIG. 1C, the electrode 106 can comprise a “button” or dome shape that protrudes slightly distally from the distal tip of the pacemaker. The dome shaped electrode can include a diameter of 1.5-2.5 mm and can protrude distally from the end of the pacemaker approximately 0.05″ to 0.3″. The electrode 106 is preferably an atraumatic surface, and can protrude from the tip of the pacemaker so as to contact the tissue when fixation mechanism 105 is screwed into tissue.


The electrode 106 may be electrically and mechanically attached to the pacemaker via a compliant spring 118 and/or silicone adhesive (not shown), so as to reduce the tensile or compression force and rubbing motion imparted to the tissue to be stimulated. A reduction in force and/or rubbing motion of the electrode relative to tissue to be stimulated will result in a reduction of the tissue's inflammatory response at the electrode/tissue interface, resulting in a reduction of fibrotic tissue formation. This reduction of fibrosis results in a lower pacing voltage/current required to stimulate viable tissue.


In conventional pacemakers, it is common to integrate the pacing electrode into the fixation device itself. However, this combination can cause additional irritation to tissue since the pacing electrode contacts tissue damaged by the fixation device during insertion. By separating the electrode 106 from the fixation device 105, as shown in FIGS. 1B-1C, pacing functions performed by the electrode 106 do not contact tissues otherwise irritated by the fixation device 105. The forces generated by the weight and motion of the pacemaker are intended to be distributed to the tissue in direct contact with the fixation mechanism, and not by the tissue in contact with the electrode 106 located a short distance away. By decoupling the fixation site from the stimulation site, the resulting fibrosis at the distal tip can be reduced, resulting in a reduction of required voltage and current to stimulate viable tissue. Moreover, since the area to be stimulated does not experience irritation due to fixation trauma, the current of injury can be lowered, and low stimulation thresholds can be achieved upon immediate electrode contact.



FIGS. 2A-2C illustrate various views of a leadless pacemaker 100 having at least one radial fixation mechanism 205 configured to attach the pacemaker to heart tissue. The radial fixation mechanisms (i.e. hooks, protrusions, spears, etc) can extend radially outwards a distance of less than or equal to the maximum outer diameter (OD) of the housing of the leadless cardiac pacemaker 200, and can be located near the distal portion of the pacemaker. In some embodiments, the radial fixation mechanisms can be relied upon as a secure cardiac fixation mechanism when engaged into cardiac tissue through rotation of the pacemaker.


In the embodiment of FIGS. 2A-2C, the fixation mechanisms comprise multiple L-shaped hooks disposed around or near electrode 206. FIG. 2A shows a perspective view of one embodiment of a pacemaker including three L-shaped hooks or fixation mechanisms. FIG. 2B shows a top down view of the pacemaker of FIG. 2A, and FIG. 2C illustrates a side view of the pacemaker of FIG. 2A, showing the position of the fixation mechanisms with respect to electrode 206. The hooks can comprise a tissue piercing distal tip, as shown, for puncturing heart tissue and particularly for piercing the endocardium of the heart.


The fixation mechanisms 205 of FIGS. 2A-2C are configured to affix to tissue with a shortened radial turn or twist. Referring to FIG. 2A, each fixation mechanism can include a radial portion 209, which runs substantially parallel to a circumference of the pacemaker housing, and a connecting portion 211, which is substantially perpendicular to the radial portion and connects the radial portion to the pacemaker. The connecting portion can be, for example, approximately the same length as the average thickness of the myocardium of the heart. In use, the radial portion of the fixation mechanism is the portion that punctures and affixes to tissue. Turning or screwing the fixation mechanism into tissue will cause the radial portion to engage the tissue until reaching the connecting portion of the fixation mechanism. This can also provide a tactile response by “stopping” rotation of the device when the connecting portion contacts the tissue.


In the embodiment shown in FIGS. 2A-2C, the pacemaker 200 includes three L-shaped radial hooks or barbs. Each hook can comprise, for example, approximately 60-90 degrees or one quarter to one sixth of a turn of the pacemaker to deposit the hook within tissue. The larger the number of hooks used, and therefore the smaller the length of the hook, the fewer the number of turns is required to engage tissue with the hook.



FIG. 2D illustrates another embodiment of a pacemaker 200 having a distally curved radial hook 205. As shown in FIG. 2D, the hook can be curved distally towards the electrode 206 at an angle up to and including 45 degrees from horizontal. Curving the hooks distally towards the electrode can aid in bringing the electrode into contact with the hooks during insertion into tissue. In some embodiments, the angle of curvature can be between 30 and 60 degrees in the distal direction.


The fixation mechanisms can be enclosed in a delivery and retrieval catheter's collapsible sheath (not shown) to allow for easy delivery, repositioning, and retrieval of the leadless pacemaker to and from the right atrium or ventricle. Since the fixation mechanisms always have a diameter less than the outer diameter of the pacemaker, retrieval with a sheath is feasible. In contrast, pacemakers having barbs or hooks larger than the outer diameter of the pacemaker are difficult or unable to be retrieved from the patient due to the inability to cover the larger hooks or barbs with a protective sheath. Examples of a suitable retrieval catheter and sheath can be found in co-pending Application Ser. No. 13/324,802.


These fixation mechanisms can also include features to prevent unscrewing of the pacemaker, such a barbs 207 (a backward-facing point or feature on said fixation mechanism intended to grab tissue and increase the amount of force or torque required to remove the mechanism) and/or holes and indentations that allow for tissue adhesion and in-growth. The fixation mechanisms can be electrically isolated (floating) from the indifferent return electrode of the pacemaker. Because more than one fixation mechanism can be integrated onto the pacemaker, the idea provides redundant fixation means.


The innermost layer of tissue that lines the chamber of the heart is the thin but tough endocardium. Beneath it lays the soft myocardium, the cardiac muscle tissue comprising the majority of the thickness of the heart wall. When the fixation mechanism or mechanisms described above are engaged in acute cardiac tissue, the sharpened tip pierces the endocardium and enters the myocardium until the majority of its length resides in the myocardium. It is the thin but strong endocardium that provides the majority of the fixation mechanism's holding force in tissue. The hook design of the fixation mechanisms as shown in FIGS. 2A-2C can provide superior holding force over alternative designs (e.g. small helices) due to the large contact surface between the endocardium and the underlying the hooks. More specifically, the radial portion 209 of the hooks can be angled and aligned to maximize the contact surface between the hook and endocardium, as shown in FIG. 2D.


Moreover, the small barb features (e.g., barbs 207) implemented on each hook are configured to grab the endocardium from within as the hook slides back out of the puncture site as the pacemaker is unscrewed. Barb features may be designed quite small (on the order of 0.01″) to sufficiently grab endocardium upon removal, but would have to be designed unacceptably large to have the same holding force in myocardium alone.


Because the small barbs 207 are designed to hold the endocardium, the number and position of the barbs on each fixation mechanism is another area of design flexibility. Each hook 205 may have one or more barbs positioned distally, proximally, and in-between. In some embodiments, two barbs per fixation mechanism is sufficient—one positioned proximally near the base of each hook, and one positioned distally near each fixation mechanism's sharpened point. When a hook is properly engaged in cardiac tissue, a majority of the hook (e.g., the radial portion of the hook) has punctured the endocardium and is disposed within the myocardium. In this case, the proximal barb would then be positioned directly behind the endocardium; after only a few degrees of angular unscrewing, these proximal barbs would immediately grab the endocardium and prevent further unscrewing. The distal barbs near the ends of the fixation mechanisms are positioned in the case the hooks are not 100% engaged in tissue; as long as a few degrees of engagement have occurred, these distal barbs would be in-tissue and can be relied upon to prevent dislodgement.


The fixation mechanisms with barbs can be created by a number of processes known to those with skill in the art. For example, an axisymmetric multiple fixation mechanism with barbs can be cut from a sheet of metal via a laser, wire EDM, or chemical etching. Metal parts can also be manufactured using metal-injection-molding techniques. Certain edges can be rounded or sharpened through electropolishing or tumbling techniques. Plastic parts may also be cut from a sheet or injection-molded.


Barbs 207 can be formed on any face or combination of faces of each individual hook, though the easiest two faces would be the surface facing inwards toward the pacemaker and the face facing outwards towards the tissue. Placing barbs only on the inward-facing surface has the advantage of achieving the anti-unscrewing design objective while leaving the outward-facing surfaces smooth, reducing the risk of snagging or ripping tissue or the catheter's protective sheath during delivery, repositioning, or retrieval.


The mechanical characteristics of the hooks and barbs can be varied through the selection of the hook material and the cross-sectional profile. They may be designed to be axially stiff by increasing their axial thickness (increasing the thickness of the sheet they are cut from) while designed to be radially flexible by reducing their cut profile strut width. The hooks can manufactured out of plastic or metal. They can be made rigid through the use of glass-filled polymers or hard metals such as MP35N, Stainless Steel, or titanium. They can also be designed to be elastic by manufacturing the hooks out of flexible polymers or superelastic nitinol. Moreover, they can be manufactured partially or entirely out of a bioabsorbable polymer so that they provide secure acute fixation but allow for easier chronic retrieval. The fixation hooks can be made porous or coated with a high-microscopic-surface-area coating to promote chronic tissue in-growth and/or adhesion. The hooks may also be coated with a steroid similar to that used for electrodes to reduce the resulting fibrotic response.


The angle of the hooks may also be adjusted to tailor the fixation performance. When the pacemaker is positioned at the apex of a ventricle and is rotated to engage tissue, the angle of the hooks can determine whether the pacemaker is pulled or pushed in the distal or proximal direction as the hooks follow their trajectory into the cardiac tissue. If the hooks are angled down (such that the sharpened tips of the hooks are more distal than the base of the hooks), then the pacemaker will move in the distal direction as the pacemaker is rotated. This additional distal motion of the pacemaker can ensure that its distal electrode is drawn closer to the distal endocardial stimulable tissue and will remain in contact with that tissue.


This configuration allows for the positioning of a conventional steroid endocardial pacing electrode along the central axis at the distal tip. This electrode can be used as the primary pacing/sensing tip electrode, located a few millimeters away from this disclosed fixation mechanism.


As for additional details pertinent to the present invention, materials and manufacturing techniques may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the subject specification, but rather only by the plain meaning of the claim terms employed.

Claims
  • 1. A leadless cardiac pacemaker, comprising: a hermetic housing;a pacing electrode disposed on a distal portion of the housing, the electrode comprising an atraumatic surface not configured to penetrate heart tissue;an electronics package disposed in the housing; anda fixation mechanism located a distance from the pacing electrode and disposed on the distal portion of the housing, the fixation mechanism comprising a helix having a longitudinal length,wherein the helix is configured to pierce an endocardium layer of the patient's heart and to rotate into a myocardium layer of the patient's heart, the helix remaining in contact with the endocardium layer of the heart and the pacing electrode being placed into contact with the patient's heart tissue when the helix is fully rotated into the heart tissue, andwherein the helix comprises a constant diameter and is positioned about the pacing electrode to at least partially surround the pacing electrode so that the electrode does not contact tissue of the patient's heart that is irritated due to fixation trauma.
  • 2. A leadless cardiac pacemaker, comprising: a hermetic housing;a pacing electrode disposed on a distal portion of the housing, the electrode comprising an atraumatic surface;an electronics package disposed in the housing; anda fixation mechanism separated from the pacing electrode and disposed on the distal portion of the housing, the fixation mechanism comprising a helix having a longitudinal length,wherein the helix is configured to pierce an endocardium layer of the patient's heart and to screw into a myocardium layer of the patient's heart, the helix remaining in contact with the endocardium layer of the heart and the pacing electrode being placed into contact with the patient's heart tissue at a stimulation site when the fixation mechanism is fully screwed into a fixation site, andwherein the helix comprises a constant diameter and is positioned about the pacing electrode to at least partially surround the pacing electrode so that the electrode does not contact tissue of the patient's heart that is irritated due to the fixation mechanism when the fixation mechanism is fully screwed into the fixation site.
  • 3. The leadless cardiac pacemaker of claim 2, wherein the fixation site of the leadless pacemaker is decoupled from the stimulation site so that the stimulation site does not experience irritation due to fixation trauma during implantation of the leadless cardiac pacemaker.
  • 4. The leadless cardiac pacemaker of claim 2, wherein the constant diameter of the fixation mechanism is equal to a diameter of the hermetic housing.
  • 5. The pacemaker of claim 2 wherein the constant diameter of the fixation mechanism is between 2.5 mm and 5 mm, and wherein the fixation mechanism has a pitch of 0.5 mm to 1.5 mm.
  • 6. The pacemaker of claim 2 wherein the longitudinal length of the helix is less than 1.8 mm.
  • 7. The pacemaker of claim 2 wherein the electrode is configured not to penetrate the patient's heart.
  • 8. A leadless cardiac pacemaker, comprising: a hermetic housing;a pacing electrode disposed on a distal portion of the housing;an electronics package disposed in the housing; anda fixation mechanism separate from the pacing electrode and disposed on the distal portion of the housing, the fixation mechanism comprising a helix having a longitudinal length, wherein the helix is configured to penetrate the endocardium layer of the patient's heart and rotate into a myocardium layer of the patient's heart, the helix configured to remain in contact with the endocardium layer of the heart when the helix is fully screwed into cardiac tissue, wherein the helix comprises a constant diameter and is positioned about the pacing electrode to at least partially surround the pacing electrode so that that the helix secures to the cardiac tissue at a fixation site that is separate and decoupled from a stimulation site contacted by the pacing electrode, wherein the pacing electrode comprises a dome shape having an atraumatic surface.
  • 9. The pacemaker of claim 8 wherein the pacing electrode is attached to the housing via a compliant spring to reduce compression force against the heart tissue.
  • 10. The pacemaker of claim 8 wherein the pacing electrode is attached to the housing via a silicone adhesive to reduce compression force against the heart tissue.
  • 11. The pacemaker of claim 8 wherein the constant diameter of the fixation mechanism is between 2.5 mm and 5 mm.
  • 12. The pacemaker of claim 8 wherein the longitudinal length of the helix is less than 1.8 mm.
  • 13. The pacemaker of claim 8 wherein the constant diameter of the fixation mechanism is less than a diameter of the hermetic housing.
  • 14. The pacemaker of claim 8 wherein the fixation mechanism is sized and configured so that it does not perforate the myocardium layer when fully screwed into the cardiac tissue.
  • 15. The pacemaker of claim 8 wherein the fixation mechanism comprises a barb to resist counter rotation of the fixation mechanism when the fixation mechanism is screwed into the cardiac tissue.
  • 16. The pacemaker of claim 8 being further configured to receive during retrieval a protective sheath having an inner diameter similar to an outer diameter of the hermetic housing.
  • 17. The pacemaker of claim 8, wherein the constant diameter of the fixation mechanism is equal to a diameter of the hermetic housing.
  • 18. The pacemaker of claim 8, wherein the pacing electrode protrudes approximately 0.05 to 0.3 inches from the distal portion of the housing.
  • 19. The pacemaker of claim 8, wherein the pacing electrode is configured not to penetrate the patient's heart.
  • 20. A leadless cardiac pacemaker, comprising: a hermetic housing;a pacing electrode disposed on a distal portion of the housing, the pacing electrode comprising a dome shape having an atraumatic surface;an electronics package disposed in the housing; anda fixation mechanism separate from the pacing electrode and disposed on the distal portion of the housing, the fixation mechanism comprising a helix configured to penetrate the endocardium layer of the patient's heart and rotate into a myocardium layer of the patient's heart, the helix configured to remain in contact with the endocardium layer of the heart when the helix is fully screwed into cardiac tissue, wherein a smallest diameter of the helix is greater than a diameter of the pacing electrode, and wherein the helix is positioned about the pacing electrode to at least partially surround the pacing electrode so that that the helix secures to the cardiac tissue at a fixation site that is separate and decoupled from a stimulation site contacted by the pacing electrode.
  • 21. The pacemaker of claim 20 wherein the smallest diameter of the helix is greater than twice the diameter of the pacing electrode.
  • 22. The pacemaker of claim 20 wherein the helix comprises a constant diameter.
  • 23. A leadless cardiac pacemaker, comprising: a hermetic housing;a pacing electrode disposed on a distal portion of the housing, the electrode comprising an atraumatic surface not configured to penetrate heart tissue;an electronics package disposed in the housing; anda fixation mechanism located a distance from the pacing electrode and disposed on the distal portion of the housing, the fixation mechanism comprising a helix,wherein the helix is configured to pierce an endocardium layer of the patient's heart and to rotate into a myocardium layer of the patient's heart, the helix remaining in contact with the endocardium layer of the heart and the pacing electrode being placed into contact with the patient's heart tissue when the helix is fully rotated into the heart tissue, andwherein the helix comprises a constant diameter equal to a constant diameter of the distal portion of the housing, and is positioned about the pacing electrode to at least partially surround the pacing electrode so that the electrode does not contact tissue of the patient's heart that is irritated due to fixation trauma.
  • 24. The pacemaker of claim 23 wherein a proximal portion of the housing comprises a constant diameter greater than the constant diameter of the distal portion of the housing.
  • 25. The pacemaker of claim 24 wherein the housing further comprises an intermediate portion coupling the proximal portion to the distal portion, the intermediate portion having a diameter that transitions linearly from the constant diameter of the proximal portion to the constant diameter of the distal portion.
  • 26. A leadless cardiac pacemaker, comprising: a hermetic housing;a pacing electrode disposed on a distal portion of the housing, the electrode comprising an atraumatic surface, the distal portion of the housing comprising a flat surface adjoining and surrounding the pacing electrode, and the distal portion of the housing further comprising a rounded edge adjoining and surrounding the flat surface;an electronics package disposed in the housing; anda fixation mechanism separated from the pacing electrode and disposed on the distal portion of the housing, the fixation mechanism comprising a helix,wherein the helix is configured to pierce an endocardium layer of the patient's heart and to screw into a myocardium layer of the patient's heart, the helix remaining in contact with the endocardium layer of the heart and the pacing electrode being placed into contact with the patient's heart tissue at a stimulation site when the fixation mechanism is fully screwed into a fixation site, andwherein the helix comprises a constant diameter and is positioned about the pacing electrode to at least partially surround the pacing electrode so that the electrode does not contact tissue of the patient's heart that is irritated due to the fixation mechanism when the fixation mechanism is fully screwed into the fixation site.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application No. 61/425,064, filed Dec. 20, 2010, titled “LEADLESS PACEMAKER WITH RADIAL FIXATION MECHANISM”, which application is incorporated herein by reference in its entirety.

US Referenced Citations (556)
Number Name Date Kind
3199508 Roth Aug 1965 A
3212496 Preston Oct 1965 A
3218638 Honig Nov 1965 A
3241556 Zacouto Mar 1966 A
3478746 Greatbatch Nov 1969 A
3603881 Thornton Sep 1971 A
3727616 Lenzkes Apr 1973 A
3757778 Graham Sep 1973 A
3823708 Lawhorn Jul 1974 A
3830228 Foner Aug 1974 A
3835864 Rasor et al. Sep 1974 A
3836798 Greatbatch Sep 1974 A
3870051 Brindley Mar 1975 A
3872251 Auerbach et al. Mar 1975 A
3905364 Cudahy et al. Sep 1975 A
3940692 Neilson et al. Feb 1976 A
3943926 Barragan Mar 1976 A
3946744 Auerbach Mar 1976 A
3952750 Mirowski et al. Apr 1976 A
4027663 Fischler et al. Jun 1977 A
4072154 Anderson et al. Feb 1978 A
4083366 Gombrich et al. Apr 1978 A
4102344 Conway et al. Jul 1978 A
4146029 Ellinwood, Jr. Mar 1979 A
4151513 Menken et al. Apr 1979 A
4151540 Sander et al. Apr 1979 A
4152540 Duncan et al. May 1979 A
4173221 McLaughlin et al. Nov 1979 A
4187854 Hepp et al. Feb 1980 A
4210149 Heilman et al. Jul 1980 A
RE30366 Rasor et al. Aug 1980 E
4223678 Langer et al. Sep 1980 A
4250888 Grosskopf Feb 1981 A
4256115 Bilitch Mar 1981 A
4296756 Dunning et al. Oct 1981 A
4310000 Lindemans Jan 1982 A
4318412 Stanly et al. Mar 1982 A
4336810 Anderson et al. Jun 1982 A
4350169 Dutcher et al. Sep 1982 A
4374382 Markowitz Feb 1983 A
4406288 Horwinski et al. Sep 1983 A
4411271 Markowitz Oct 1983 A
4418695 Buffet Dec 1983 A
4424551 Stevenson et al. Jan 1984 A
4428378 Anderson et al. Jan 1984 A
4440173 Hudziak et al. Apr 1984 A
4442840 Wojciechowicz, Jr. Apr 1984 A
4453162 Money et al. Jun 1984 A
4458692 Simson Jul 1984 A
4481950 Duggan Nov 1984 A
4513743 van Arragon et al. Apr 1985 A
4516579 Irnich May 1985 A
4522208 Buffet Jun 1985 A
4524774 Hildebrandt Jun 1985 A
4531527 Reinhold, Jr. et al. Jul 1985 A
4543955 Schroeppel Oct 1985 A
4550370 Baker Oct 1985 A
4552127 Schiff Nov 1985 A
4552154 Hartlaub Nov 1985 A
4562846 Cox et al. Jan 1986 A
4586508 Batina et al. May 1986 A
4606352 Geddes et al. Aug 1986 A
4607639 Tanagho et al. Aug 1986 A
4612934 Borkan Sep 1986 A
4625730 Fountain et al. Dec 1986 A
4649938 McArthur Mar 1987 A
4679144 Cox et al. Jul 1987 A
4681111 Silvian Jul 1987 A
4681117 Brodman et al. Jul 1987 A
4702253 Nappholz et al. Oct 1987 A
4706682 Stypulkowski et al. Nov 1987 A
4719920 Alt et al. Jan 1988 A
4722342 Amundson Feb 1988 A
4750495 Moore et al. Jun 1988 A
4763340 Yoneda et al. Aug 1988 A
4763655 Wirtzfeld et al. Aug 1988 A
4787389 Tarjan Nov 1988 A
4791931 Slate Dec 1988 A
4793353 Borkan Dec 1988 A
4794532 Leckband et al. Dec 1988 A
4802481 Schroeppel Feb 1989 A
4809697 Causey, III et al. Mar 1989 A
4827940 Mayer et al. May 1989 A
4830006 Haluska et al. May 1989 A
4844076 Lesho et al. Jul 1989 A
4846195 Alt Jul 1989 A
4858610 Callaghan et al. Aug 1989 A
4860750 Frey et al. Aug 1989 A
4875483 Vollmann et al. Oct 1989 A
4880004 Baker, Jr. et al. Nov 1989 A
4883064 Olson et al. Nov 1989 A
4886064 Strandberg Dec 1989 A
4896068 Nilsson Jan 1990 A
4903701 Moore et al. Feb 1990 A
4905708 Davies Mar 1990 A
4926863 Alt May 1990 A
4974589 Sholder Dec 1990 A
4987897 Funke Jan 1991 A
4995390 Cook et al. Feb 1991 A
5010887 Thornander Apr 1991 A
5012806 De Bellis May 1991 A
5014701 Pless et al. May 1991 A
5040533 Fearnot Aug 1991 A
5040534 Mann et al. Aug 1991 A
5040536 Riff Aug 1991 A
5042497 Shapland Aug 1991 A
5052399 Olive et al. Oct 1991 A
5058581 Silvian Oct 1991 A
5065759 Begemann Nov 1991 A
5076270 Stutz, Jr. Dec 1991 A
5076272 Ferek-Petric Dec 1991 A
5085224 Galen et al. Feb 1992 A
5086772 Larnard et al. Feb 1992 A
5088488 Markowitz et al. Feb 1992 A
5095903 DeBellis Mar 1992 A
5109845 Yuuchi et al. May 1992 A
5111816 Pless et al. May 1992 A
5113859 Funke May 1992 A
5113869 Nappholz et al. May 1992 A
5133350 Duffin Jul 1992 A
5135004 Adams et al. Aug 1992 A
5170784 Ramon et al. Dec 1992 A
5170802 Mehra Dec 1992 A
5179947 Meyerson et al. Jan 1993 A
5184616 Weiss Feb 1993 A
5193539 Schulman et al. Mar 1993 A
5193540 Schulman et al. Mar 1993 A
5193550 Duffin Mar 1993 A
5217010 Tsitlik et al. Jun 1993 A
5247945 Heinze et al. Sep 1993 A
5259394 Bens Nov 1993 A
5267150 Wilkinson Nov 1993 A
5282841 Szyszkowski Feb 1994 A
5284136 Hauck et al. Feb 1994 A
5291902 Carman Mar 1994 A
5300093 Koestner et al. Apr 1994 A
5304206 Baker, Jr. et al. Apr 1994 A
5304209 Adams et al. Apr 1994 A
5313953 Yomtov et al. May 1994 A
5318596 Barreras et al. Jun 1994 A
5331966 Bennett et al. Jul 1994 A
5333095 Stevenson et al. Jul 1994 A
5336244 Weijand Aug 1994 A
5342401 Spano et al. Aug 1994 A
5354317 Alt Oct 1994 A
5358514 Schulman et al. Oct 1994 A
5373852 Harrison et al. Dec 1994 A
5383912 Cox et al. Jan 1995 A
5383915 Adams Jan 1995 A
5404877 Nolan et al. Apr 1995 A
5405367 Schulman et al. Apr 1995 A
5406444 Selfried et al. Apr 1995 A
5411532 Mortazavi May 1995 A
5411535 Fujii May 1995 A
5411537 Munshi et al. May 1995 A
5417222 Dempsey et al. May 1995 A
5419337 Dempsey et al. May 1995 A
5431171 Harrison et al. Jul 1995 A
5446447 Carney et al. Aug 1995 A
5456261 Luczyk Oct 1995 A
5466246 Silvian Nov 1995 A
5469857 Laurent et al. Nov 1995 A
5480415 Cox et al. Jan 1996 A
5481262 Urbas et al. Jan 1996 A
5522876 Rusink Jun 1996 A
5531779 Dahl et al. Jul 1996 A
5531781 Alferness et al. Jul 1996 A
5531783 Giele et al. Jul 1996 A
5539775 Tuttle et al. Jul 1996 A
5549654 Powell Aug 1996 A
5549659 Johansen et al. Aug 1996 A
5551427 Altman Sep 1996 A
5556421 Prutchi et al. Sep 1996 A
5562717 Tippey et al. Oct 1996 A
5571143 Hoegnelid et al. Nov 1996 A
5571148 Loeb et al. Nov 1996 A
5579775 Dempsey et al. Dec 1996 A
5586556 Spivey et al. Dec 1996 A
5591217 Barreras Jan 1997 A
5598848 Swanson et al. Feb 1997 A
5649952 Lam Jul 1997 A
5650759 Hittman et al. Jul 1997 A
5654984 Hershbarger et al. Aug 1997 A
5662689 Elsberry et al. Sep 1997 A
5669391 Williams Sep 1997 A
5674259 Gray Oct 1997 A
5676153 Smith et al. Oct 1997 A
5693076 Kaemmerer Dec 1997 A
5694940 Unger et al. Dec 1997 A
5694952 Lidman et al. Dec 1997 A
5697958 Paul et al. Dec 1997 A
5702427 Ecker et al. Dec 1997 A
5725559 Alt et al. Mar 1998 A
5728154 Crossett et al. Mar 1998 A
5730143 Schwarzberg Mar 1998 A
5735880 Prutchi et al. Apr 1998 A
5738102 Lemelson Apr 1998 A
5740811 Hedberg et al. Apr 1998 A
5741314 Daly et al. Apr 1998 A
5766231 Erickson et al. Jun 1998 A
5792205 Alt et al. Aug 1998 A
5810735 Halperin et al. Sep 1998 A
5814076 Brownlee Sep 1998 A
5814087 Renirie Sep 1998 A
5814089 Stokes et al. Sep 1998 A
5824016 Ekwall Oct 1998 A
5871451 Unger et al. Feb 1999 A
5876353 Riff Mar 1999 A
5876425 Gord et al. Mar 1999 A
5891178 Mann et al. Apr 1999 A
5899928 Sholder et al. May 1999 A
5935079 Swanson et al. Aug 1999 A
5954761 Machek et al. Sep 1999 A
5957861 Combs et al. Sep 1999 A
5984861 Crowley Nov 1999 A
5987352 Klein et al. Nov 1999 A
5995876 Kruse et al. Nov 1999 A
5999857 Weijand et al. Dec 1999 A
6002969 Machek et al. Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6061596 Richmond et al. May 2000 A
6076016 Feierbach Jun 2000 A
6080187 Alt et al. Jun 2000 A
6093146 Filangeri Jul 2000 A
6096065 Crowley Aug 2000 A
6102874 Stone et al. Aug 2000 A
6112116 Fischell et al. Aug 2000 A
6115628 Stadler et al. Sep 2000 A
6115630 Stadler et al. Sep 2000 A
6115636 Ryan Sep 2000 A
6119031 Crowley Sep 2000 A
6125290 Miesel Sep 2000 A
6125291 Miesel et al. Sep 2000 A
6128526 Stadler et al. Oct 2000 A
6129751 Lucchesi et al. Oct 2000 A
6132390 Cookston et al. Oct 2000 A
6132456 Sommer et al. Oct 2000 A
6134459 Roberts et al. Oct 2000 A
6134470 Hartlaub Oct 2000 A
6139510 Palermo Oct 2000 A
6141584 Rockwell et al. Oct 2000 A
6141588 Cox et al. Oct 2000 A
6141592 Pauly Oct 2000 A
6144866 Miesel et al. Nov 2000 A
6148230 KenKnight Nov 2000 A
6152882 Prutchi Nov 2000 A
6163723 Roberts et al. Dec 2000 A
6164284 Schulman et al. Dec 2000 A
6167310 Grevious Dec 2000 A
6178349 Kieval Jan 2001 B1
6178356 Chastain et al. Jan 2001 B1
6185443 Crowley Feb 2001 B1
6185452 Schulman et al. Feb 2001 B1
6185464 Bonner et al. Feb 2001 B1
6188932 Lindegren Feb 2001 B1
6190324 Kieval et al. Feb 2001 B1
6198952 Miesel Mar 2001 B1
6201993 Kruse et al. Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6208900 Ecker et al. Mar 2001 B1
6223081 Kerver Apr 2001 B1
6230059 Duffin May 2001 B1
6236882 Lee et al. May 2001 B1
6240321 Janke et al. May 2001 B1
6243608 Pauly et al. Jun 2001 B1
6248080 Miesel et al. Jun 2001 B1
6263245 Snell Jul 2001 B1
6265100 Saaski et al. Jul 2001 B1
6266554 Hsu et al. Jul 2001 B1
6266564 Hill et al. Jul 2001 B1
6272379 Fischell et al. Aug 2001 B1
6280409 Stone et al. Aug 2001 B1
6289229 Crowley Sep 2001 B1
6306088 Krausman et al. Oct 2001 B1
6310960 Saaski et al. Oct 2001 B1
6315721 Schulman et al. Nov 2001 B2
6324418 Crowley et al. Nov 2001 B1
6324421 Stadler et al. Nov 2001 B1
RE37463 Altman Dec 2001 E
6343227 Crowley Jan 2002 B1
6343233 Werner et al. Jan 2002 B1
6347245 Lee et al. Feb 2002 B1
6358202 Arent Mar 2002 B1
6361522 Scheiner et al. Mar 2002 B1
6363282 Nichols et al. Mar 2002 B1
6364831 Crowley Apr 2002 B1
6370434 Zhang et al. Apr 2002 B1
6381492 Rockwell et al. Apr 2002 B1
6381493 Stadler et al. Apr 2002 B1
6381494 Gilkerson et al. Apr 2002 B1
6383209 Crowley May 2002 B1
6385593 Linberg May 2002 B2
6386882 Linberg May 2002 B1
6397100 Stadler et al. May 2002 B2
6402689 Scarantino et al. Jun 2002 B1
6405073 Crowley et al. Jun 2002 B1
6405083 Rockwell et al. Jun 2002 B1
6409674 Brockway et al. Jun 2002 B1
6409675 Turcott Jun 2002 B1
6412490 Lee Jul 2002 B1
6418346 Nelson et al. Jul 2002 B1
6423056 Ishikawa et al. Jul 2002 B1
6424866 Mika et al. Jul 2002 B2
6428484 Battmer et al. Aug 2002 B1
6434429 Kraus et al. Aug 2002 B1
6438410 Hsu et al. Aug 2002 B2
6438417 Rockwell et al. Aug 2002 B1
6442433 Linberg Aug 2002 B1
6444970 Barbato Sep 2002 B1
6445953 Bulkes et al. Sep 2002 B1
6458145 Ravenscroft et al. Oct 2002 B1
6459928 Mika et al. Oct 2002 B2
6459937 Morgan et al. Oct 2002 B1
6466820 Juran et al. Oct 2002 B1
6468263 Fischell et al. Oct 2002 B1
6470215 Kraus et al. Oct 2002 B1
6471645 Warkentin et al. Oct 2002 B1
6472991 Schulman et al. Oct 2002 B1
6477424 Thompson et al. Nov 2002 B1
6480733 Turcott Nov 2002 B1
6482154 Haubrich et al. Nov 2002 B1
6484055 Marcovecchio Nov 2002 B1
6484057 Ideker et al. Nov 2002 B2
6490487 Kraus et al. Dec 2002 B1
6496715 Lee et al. Dec 2002 B1
6498951 Larson et al. Dec 2002 B1
6500168 Jellie Dec 2002 B1
6501983 Natarajan et al. Dec 2002 B1
6512949 Combs et al. Jan 2003 B1
6512959 Gomperz et al. Jan 2003 B1
6522926 Kieval et al. Feb 2003 B1
6522928 Whitehurst et al. Feb 2003 B2
6539257 KenKnight Mar 2003 B1
6542781 Koblish et al. Apr 2003 B1
6556860 Groenewegen Apr 2003 B1
6558321 Burd et al. May 2003 B1
6564807 Schulman et al. May 2003 B1
6567680 Swetlik et al. May 2003 B2
6571120 Hutten May 2003 B2
6574509 Kraus et al. Jun 2003 B1
6574511 Lee Jun 2003 B2
6580946 Struble Jun 2003 B2
6580948 Haupert et al. Jun 2003 B2
6584351 Ekwall Jun 2003 B1
6584352 Combs et al. Jun 2003 B2
6589187 Dirnberger et al. Jul 2003 B1
6592518 Denker et al. Jul 2003 B2
6594523 Levine Jul 2003 B1
6597948 Rockwell et al. Jul 2003 B1
6597952 Mika et al. Jul 2003 B1
6609023 Fischell et al. Aug 2003 B1
6611710 Gomperz et al. Aug 2003 B2
6615075 Mlynash et al. Sep 2003 B2
6622043 Kraus et al. Sep 2003 B1
6647292 Bardy et al. Nov 2003 B1
6648823 Thompson Nov 2003 B2
6649078 Yu Nov 2003 B2
6654638 Sweeney Nov 2003 B1
6658285 Potse et al. Dec 2003 B2
6658297 Loeb Dec 2003 B2
6658301 Loeb et al. Dec 2003 B2
6659959 Brockway et al. Dec 2003 B2
6669631 Norris et al. Dec 2003 B2
6681135 Davis et al. Jan 2004 B1
6684100 Sweeney et al. Jan 2004 B1
6687540 Marcovecchio Feb 2004 B2
6687546 Lebel et al. Feb 2004 B2
6689117 Sweeney et al. Feb 2004 B2
6690959 Thompson Feb 2004 B2
6694191 Starkweather et al. Feb 2004 B2
6695885 Schulman et al. Feb 2004 B2
6697672 Andersson Feb 2004 B2
6697677 Dahl et al. Feb 2004 B2
6699200 Cao et al. Mar 2004 B2
6702857 Brauker et al. Mar 2004 B2
6704602 Berg et al. Mar 2004 B2
6711440 Deal et al. Mar 2004 B2
6716238 Elliott Apr 2004 B2
6721597 Bardy et al. Apr 2004 B1
6728572 Hsu et al. Apr 2004 B2
6728574 Ujhelyi et al. Apr 2004 B2
6728576 Thompson et al. Apr 2004 B2
6731976 Penn et al. May 2004 B2
6731979 MacDonald May 2004 B2
6733485 Whitehurst et al. May 2004 B1
6735474 Loeb et al. May 2004 B1
6735475 Whitehurst et al. May 2004 B1
6738670 Almendinger et al. May 2004 B1
6741877 Shults et al. May 2004 B1
6741886 Yonce May 2004 B2
6746404 Schwartz Jun 2004 B2
6754538 Linberg Jun 2004 B2
6760620 Sippens Groenewegen Jul 2004 B2
6764446 Wolinsky et al. Jul 2004 B2
6768923 Ding et al. Jul 2004 B2
6783499 Schwartz Aug 2004 B2
6785576 Verness Aug 2004 B2
6786860 Maltan et al. Sep 2004 B2
6792314 Byers et al. Sep 2004 B2
6799069 Weiner et al. Sep 2004 B2
6804559 Kraus et al. Oct 2004 B1
6804561 Stover Oct 2004 B2
6809507 Morgan et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6821154 Canfield et al. Nov 2004 B1
6823217 Rutten et al. Nov 2004 B2
6824512 Warkentin et al. Nov 2004 B2
6829508 Schulman et al. Dec 2004 B2
6839596 Nelson et al. Jan 2005 B2
6848052 Hamid et al. Jan 2005 B2
6850801 Kieval et al. Feb 2005 B2
6856835 Bardy et al. Feb 2005 B2
6862465 Shults et al. Mar 2005 B2
6862480 Cohen et al. Mar 2005 B2
6865420 Kroll Mar 2005 B1
6869404 Schulhauser et al. Mar 2005 B2
6871099 Whitehurst et al. Mar 2005 B1
6878112 Linberg et al. Apr 2005 B2
6879695 Maltan et al. Apr 2005 B2
6879855 Schulman et al. Apr 2005 B2
6882875 Crowley Apr 2005 B1
6889081 Hsu May 2005 B2
6893395 Kraus et al. May 2005 B1
6895279 Loeb et al. May 2005 B2
6895281 Amundson et al. May 2005 B1
6896651 Gross et al. May 2005 B2
6897788 Khair et al. May 2005 B2
6901294 Whitehurst et al. May 2005 B1
6901296 Whitehurst et al. May 2005 B1
6907285 Denker et al. Jun 2005 B2
6907293 Grill et al. Jun 2005 B2
6912420 Scheiner et al. Jun 2005 B2
6917833 Denker et al. Jul 2005 B2
6925328 Foster et al. Aug 2005 B2
6931327 Goode, Jr. et al. Aug 2005 B2
6999821 Jenney et al. Feb 2006 B2
7001372 Richter Feb 2006 B2
7023359 Goetz et al. Apr 2006 B2
7027876 Casavant et al. Apr 2006 B2
7146222 Boling Dec 2006 B2
7146225 Guenst et al. Dec 2006 B2
7164950 Kroll et al. Jan 2007 B2
7181505 Haller et al. Feb 2007 B2
7187971 Sommer et al. Mar 2007 B2
7200437 Nabutovsky et al. Apr 2007 B1
7212870 Helland May 2007 B1
7277754 McCabe et al. Oct 2007 B2
7289853 Campbell et al. Oct 2007 B1
7363090 Halperin et al. Apr 2008 B2
7558631 Cowan et al. Jul 2009 B2
7565195 Kroll et al. Jul 2009 B1
7599747 Feldmann et al. Oct 2009 B2
7616991 Mann et al. Nov 2009 B2
7630767 Poore et al. Dec 2009 B1
7634313 Kroll et al. Dec 2009 B1
7848823 Drasler et al. Dec 2010 B2
7937148 Jacobson May 2011 B2
7945333 Jacobson May 2011 B2
8010209 Jacobson Aug 2011 B2
20010031999 Carter et al. Oct 2001 A1
20020032467 Shemer et al. Mar 2002 A1
20020077686 Westlund et al. Jun 2002 A1
20020116028 Greatbatch et al. Aug 2002 A1
20020147488 Doan et al. Oct 2002 A1
20030141995 Lin Jul 2003 A1
20030158584 Cates et al. Aug 2003 A1
20030163184 Scheiner et al. Aug 2003 A1
20030199941 Nielsen et al. Oct 2003 A1
20030204233 Laske et al. Oct 2003 A1
20040011366 Schulman et al. Jan 2004 A1
20040059392 Parramon et al. Mar 2004 A1
20040116939 Goode Jun 2004 A1
20040133242 Chapman et al. Jul 2004 A1
20040143262 Visram et al. Jul 2004 A1
20040147973 Hauser Jul 2004 A1
20040167587 Thompson Aug 2004 A1
20040172116 Seifert et al. Sep 2004 A1
20040193223 Kramer et al. Sep 2004 A1
20040249417 Ransbury et al. Dec 2004 A1
20040260349 Stroebel Dec 2004 A1
20050038474 Wool Feb 2005 A1
20050038491 Haack Feb 2005 A1
20050043765 Williams et al. Feb 2005 A1
20050075682 Schulman et al. Apr 2005 A1
20050096702 Denker et al. May 2005 A1
20050131478 Kim et al. Jun 2005 A1
20050149138 Min et al. Jul 2005 A1
20050165465 Pianca et al. Jul 2005 A1
20050267555 Marnfeldt et al. Dec 2005 A1
20050288722 Eigler et al. Dec 2005 A1
20060064149 Belacazar et al. Mar 2006 A1
20060085039 Hastings et al. Apr 2006 A1
20060085041 Hastings et al. Apr 2006 A1
20060085042 Hastings et al. Apr 2006 A1
20060105613 Carroll May 2006 A1
20060108335 Zhao et al. May 2006 A1
20060121475 Davids et al. Jun 2006 A1
20060135999 Bodner et al. Jun 2006 A1
20060136004 Cowan et al. Jun 2006 A1
20060161222 Haubrich et al. Jul 2006 A1
20060241705 Neumann et al. Oct 2006 A1
20060247750 Seifert et al. Nov 2006 A1
20060282150 Olson et al. Dec 2006 A1
20070016263 Armstrong et al. Jan 2007 A1
20070043414 Fifer et al. Feb 2007 A1
20070055184 Echt et al. Mar 2007 A1
20070088394 Jacobson Apr 2007 A1
20070088396 Jacobson Apr 2007 A1
20070088397 Jacobson Apr 2007 A1
20070088398 Jacobson Apr 2007 A1
20070088418 Jacobson Apr 2007 A1
20070123923 Lindstrom et al. May 2007 A1
20070142709 Martone et al. Jun 2007 A1
20070179552 Dennis et al. Aug 2007 A1
20070270675 Kane et al. Nov 2007 A1
20070276004 Hirsch et al. Nov 2007 A1
20070276444 Gelbart et al. Nov 2007 A1
20070293904 Gelbart et al. Dec 2007 A1
20080004535 Smits Jan 2008 A1
20080021532 Kveen et al. Jan 2008 A1
20080039738 Dinsmoor et al. Feb 2008 A1
20080086168 Cahill Apr 2008 A1
20080091255 Caparso et al. Apr 2008 A1
20080109042 Bodner et al. May 2008 A1
20080119911 Rosero May 2008 A1
20080243218 Bottomley et al. Oct 2008 A1
20080269591 Halperin et al. Oct 2008 A1
20090018599 Hastings et al. Jan 2009 A1
20090082827 Kveen et al. Mar 2009 A1
20090082828 Ostroff Mar 2009 A1
20090149902 Kumar et al. Jun 2009 A1
20090171408 Solem Jul 2009 A1
20090204170 Hastings et al. Aug 2009 A1
20100069983 Peacock et al. Mar 2010 A1
20100198288 Ostroff Aug 2010 A1
20100211149 Morgan et al. Aug 2010 A1
20100249828 Mavani et al. Sep 2010 A1
20100274129 Hooven Oct 2010 A1
20100292541 Hashiba et al. Nov 2010 A1
20100305653 Lund et al. Dec 2010 A1
20100305656 Imran et al. Dec 2010 A1
20100312332 Forster et al. Dec 2010 A1
20110004117 Neville et al. Jan 2011 A1
20110071586 Jacobson Mar 2011 A1
20110077708 Ostroff Mar 2011 A1
20110118735 Abou-Marie et al. May 2011 A1
20110208260 Jacobson Aug 2011 A1
20110218587 Jacobson Sep 2011 A1
20110282423 Jacobson Nov 2011 A1
20120245665 Friedman et al. Sep 2012 A1
20130041422 Jacobson Feb 2013 A1
20130103109 Jacobson Apr 2013 A1
20130123875 Varady et al. May 2013 A1
20130231710 Jacobson Sep 2013 A1
20130261597 Pertijs et al. Oct 2013 A1
Foreign Referenced Citations (17)
Number Date Country
33 00 050 Jul 1984 DE
33 00050 Jul 1984 DE
1741465 Jan 2007 EP
H04-506167 Oct 1992 JP
05-245215 Sep 1993 JP
06507096 Mar 2006 JP
06516449 Jul 2006 JP
2006-526483 Nov 2006 JP
WO 9312714 Jul 1993 WO
WO0234333 May 2002 WO
WO2004012811 Feb 2004 WO
WO 2006065394 Jun 2006 WO
WO 2007047681 Apr 2007 WO
WO 2007059386 May 2007 WO
WO 2008058265 May 2008 WO
2009006531 Jan 2009 WO
WO2010088116 Aug 2010 WO
Non-Patent Literature Citations (26)
Entry
U.S. Appl. No. 10/891,747 entitled “System and method for synchronizing supplemental pacing pulses generated by a satellite pacing device with primary pulses delivered by a separate pacing device,” filed Jul. 14, 2004 (abandoned prior to pub.: CIP of this app. is U.S. Pat. No. 7,630,767).
Beeby et al.; Micromachined silicon generator for harvesting power from vibrations; (Proceedings) PowerMEMS 2004; Kyoto, Japan; pp. 104-107; Nov. 28-30, 2004.
Bordacher et al.; Impact and prevention of far-field sensing in fallback mode switches; PACE; vol. 26 (pt. II); pp. 206-209; Jan. 2003.
Brandt et al.; Far-field QRS complex sensing: prevalence and timing with bipolar atrial leads; PACE; vol. 23; pp. 315-320; Mar. 2000.
Brown, Eric S.; The atomic battery; Technology Review: Published by MIT; 4 pgs.; Jun. 16, 2005.
Irnich et al.; Do we need pacemakers resistant to magnetic resonance imaging; Europace; vol. 7; pp. 353-365; Feb. 2005.
Irnich; Electronic security systems and active implantable medical devices; Journal of PACE; vol. 25; No. 8; pp. 1235-1258; Aug. 2002.
Luechinger et al.; Force and torque effects of a 1.5-tesla MRI scanner of cardiac pacemakers and ICDs; Journal of PACE; vol. 24; No. 2; pp. 199-205; Feb. 2001.
Luechinger et al.; In vivo heating of pacemaker leads during magnetic resonance imaging; European Heart Journal; vol. 26; pp. 376-383; Feb. 2005.
Lüchinger ; Safety aspects of cardiac pacemakers in magnetic resonance imaging; Dissertation submitted to the Swiss Federal Institute of Technology Zurich; 137 pages; 2002 (month unavailable).
Nyenhuis et al.; MRI and Implanted Medical Devices: Basic Interactions with an emphasis on heating; vol. 5; No. 3; pp. 467-480; Sep. 2005.
Shellock et al.; Cardiac pacemaker: In vitro assessment at 1.5 T; Am Heart J; vol. 151; No. 2; pp. 436-443; Feb. 2006.
Khairkhahan et al.; U.S. Appl. No. 13/272,074 entitled “Delivery catheter systems and methods,” filed Oct. 12, 2011.
Khairkhahan et al.; U.S. Appl. No. 13/272,082 entitled “Leadless cardiac pacemaker with anti-unscrewing feature,” filed Oct. 12, 2011.
Ostroff, Alan; U.S. Appl. No. 13/272,092 entitled “Temperature sensor for a leadless cardiac pacemaker,” filed Oct. 12, 2011.
Khairkhahan et al.; U.S. Appl. No. 13/324,781 entitled “Delivery Catheter Systems and Methods,” filed Dec. 13, 2011.
Jacobson et al.; U.S. Appl. No. 13/277,151 entitled “Leadless cardiac pacemaker with conducted communication,” filed Oct. 19, 2011.
Khairkhahan et al.; U.S. Appl. No. 13/324,802 entitled “Pacemaker Retrieval Systems and Methods ,” filed Dec. 13, 2011.
Ostroff et al.; U.S. Appl. No. 13/910,896 entitled “Leadless Pacemaker with Multiple Electrodes,” filed Jun. 5, 2013.
Ostroff, Alan; U.S. Appl. No. 13/915,560 entitled “MRI Compatible Leadless Cardiac Pacemaker,” filed Jun. 11, 2013.
Carroll et al.; U.S. Appl. No. 13/956,946 entitled “Biostimulator Circuit with Flying Cell,” filed Aug. 1, 2013.
Ostroff, Alan; U.S. Appl. No. 13/967,180 entitled “Leadless Cardiac Pacemaker with Secondary Fixation Capability” filed Aug. 14, 2013.
Ostroff et al; U.S. Appl. No. 13/972,828 entitled “X-Ray Identification for Active Implantable Medical Device” filed Aug. 21, 2013.
International Searching Authority, “Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration,” International Application No. PCT/US2011/066168, Apr. 16, 2012, 9 pages.
International Searching Authority, “International Search Report,” International Application No. PCT/US2011/066168, Apr. 16, 2012, 2 pages.
State Intellectual Property Office of the People's Republic of China. “The Second Office Action,” Chinese Application No. 201180061312.8, Feb. 27, 2015, 13 pages.
Related Publications (1)
Number Date Country
20120158111 A1 Jun 2012 US
Provisional Applications (1)
Number Date Country
61425064 Dec 2010 US