This disclosure relates to a leaf screen for a vehicle that is formed with an air intake seal and hood bump-stops in a co-molding operation.
Leaf screens are provided between the back edge of a vehicle hood and the lower edge of a windshield frame. Leaf screens include fresh air intake ducts that draw air into heating, ventilation, and air conditioning (HVAC) systems. It is known to assemble a seal to a hood that extends across the full lateral extent of the rear edge of the hood to inhibit air, heated by the engine, from passing from the engine compartment into the fresh air intake and adversely effecting air conditioning performance.
Bump-stops are assembled to parts of the vehicle body forming the rear portion of the engine compartment to prevent hood flutter. Bump-stops are compressed by the rear edge of the hood when the hood is closed and apply pressure against a lower surface of the hood.
Assembling a seal on the rear edge of the hood and bump-stops to the rear portion of the engine compartment increases labor costs because it adds to the number of assembly operations and adds to the number of parts and complexity of assembly operations.
Seals and bump-stops add weight to a vehicle and adversely impact efforts to reduce vehicle weight and improve fuel economy. Seals and bump-stops require mounting portions in addition to the bumpers and seals that are used to attach them to the vehicle.
This disclosure is directed to solving the above problems and other problems as summarized below.
According to one aspect of this disclosure, a leaf screen is disclosed for an air intake of an HVAC system of a vehicle having a hood covering an engine compartment. The leaf screen includes a leaf screen body defining an air inlet opening. A seal is integrally molded on a top surface of the leaf screen body in front of the air inlet opening and at least partially surrounds the air inlet. Alternatively, the seal may extend the full width of the leaf screen but this would add weight compared to partially surrounding the air inlet. Several bump-stops are integrally molded on the top surface that are engaged by an inner panel of the hood when closed.
According to alternative aspects of this disclosure as it relates to a leaf screen, the seal may extend upwardly from the leaf screen body. The seal may be formed of an elastomeric material softer than a polymeric material forming the leaf screen body. The bump-stops may extend upwardly from the leaf screen body. The bump-stops may be formed of an elastomeric material softer than polymeric material forming the leaf screen body. The seal may be formed of an elastomeric material softer than the than the material forming bump-stops and the bump-stops may be formed of an elastomeric material softer than a polymeric material forming the leaf screen body.
According to another aspect of this disclosure, a vehicle is disclosed that comprises a body defining an engine compartment, a hood assembled to the body, and a leaf screen defining an air inlet behind the engine compartment. The leaf screen is integrally formed with a seal provided on a top surface of the leaf screen in front of the air inlet. The seal is engaged by an inner panel of the hood. A plurality of bump-stops are also provided on the top surface of the leaf screen that are engaged by the inner panel when the hood is closed.
According to alternative aspects of this disclosure as it relates to a vehicle, the seal may be integral with the leaf screen and may extend upwardly from a body portion. The seal may be formed of an elastomeric material softer than a polymeric material forming the leaf screen. The bump-stops may be integral with the leaf screen and the bump-stops may extend upwardly from the body portion. The bump-stops may be formed of an elastomeric material softer than polymeric material forming the leaf screen. The seal and the bump-stops may both be integrally formed with the leaf screen. The seal is formed of an elastomeric material softer than the than the material forming bump-stops, and the bump-stops are formed of an elastomeric material softer than a polymeric material forming the leaf screen.
According to another aspect of this disclosure, a method is disclosed for making a leaf screen. The method includes an initial step of injecting a polymeric material into a mold to form a body portion. At least one elastomeric material is injected into the mold on a first side of the body portion to form a seal and a plurality of bump-stops. The polymeric material and the elastomeric material are cooled in the mold to solidify and join the polymeric material and the elastomeric material. The leaf screen is then removed from the mold.
According to alternative aspects of the method, the elastomeric material may include a first elastomeric material for forming the seal and a second elastomeric material for forming the bump-stops. The same type of elastomeric material may be used for forming the seal and the bump-stops. During the cooling step the polymeric material and the elastomeric material bond to each other. The seal is formed along a screen portion of the leaf screen that is disposed above an HVAC air inlet opening. The seal is engaged by the hood of the vehicle when the hood is closed. The bump-stops may be formed at spaced apart locations across the lateral width of the leaf screen.
The above aspects of this disclosure and other aspects will be described below with reference to the attached drawings.
The illustrated embodiments are disclosed with reference to the drawings. However, it is to be understood that the disclosed embodiments are intended to be merely examples that may be embodied in various and alternative forms. The figures are not necessarily to scale and some features may be exaggerated or minimized to show details of particular components. The specific structural and functional details disclosed are not to be interpreted as limiting, but as a representative basis for teaching one skilled in the art how to practice the disclosed concepts.
Referring to
Referring to
A seal 30 is co-molded onto the leaf screen and is assembled to the vehicle 10 with the leaf screen 24 between the hood 16 covering the engine compartment 14 and the screen 28 to inhibit the flow of air heated by the engine through the screen 28. The seal 30 is formed of a thermoplastic elastomer having a hardness of between Shore A 10 and 65. The thermoplastic elastomer may be thermoplastic vulcanizate (TPV), ethylene propylene diene monomer (EPDM), nitrile, or rubber. The seal 30 is co-molded onto the body 26 of the leaf screen 24 in an injection molding process.
A plurality of bump-stops 32 are co-molded onto the body 26 of the leaf screen and are assembled to the vehicle 10 along with the leaf screen 24 between the hood 16 covering the engine compartment 14 and the windshield 20. The bump-stops 32 are provided to dampen any tendency of the hood 16 to flutter, or vibrate, when the vehicle 10 is driven at higher speeds. The bump-stops 32 are formed of a thermoplastic elastomer having a hardness of between Shore A 30 and 100. The thermoplastic elastomer may be TPV, EPDM, nitrile, or rubber. The bump-stops are co-molded onto the body 26 of the leaf screen 24 in an injection molding process.
The leaf screen 24 is relatively harder than the bump-stops 32 and the bump-stops 32 are relatively harder than the seal 30.
Referring to
Referring to
Referring to
In the co-molding process, the materials injected into the mold 48 are injected during a single mold injection step. The injections may be substantially simultaneous (within a single molding operation process window) causing the materials to mix while molten thereby bonding the dissimilar materials together. It is also possible that the materials may be sequentially injected depending upon the properties of the materials or injection molding machine limitations and constraints.
The embodiments described above are specific examples that do not describe all possible forms of the disclosure. The features of the illustrated embodiments may be combined to form further embodiments of the disclosed concepts. The words used in the specification are words of description rather than limitation. The scope of the following claims is broader than the specifically disclosed embodiments and also includes modifications of the illustrated embodiments.
Number | Name | Date | Kind |
---|---|---|---|
4819550 | Ioka | Apr 1989 | A |
5251954 | Vande Kopple | Oct 1993 | A |
5553912 | Kubina | Sep 1996 | A |
6026852 | Barton | Feb 2000 | A |
6033300 | Schneider | Mar 2000 | A |
6565148 | Teramoto | May 2003 | B1 |
RE38157 | Schneider | Jun 2003 | E |
6830288 | Eynon et al. | Dec 2004 | B2 |
7316447 | Kelly | Jan 2008 | B2 |
7740307 | Benvenuto | Jun 2010 | B2 |
7988223 | Nakajima | Aug 2011 | B2 |
8573682 | Oomen | Nov 2013 | B2 |
8702155 | Suzuki | Apr 2014 | B2 |
8955896 | Baxter | Feb 2015 | B2 |
8985678 | Sugishima | Mar 2015 | B2 |
9889890 | Manginen | Feb 2018 | B1 |
9919464 | Bland | Mar 2018 | B2 |
10583708 | Pain | Mar 2020 | B2 |
20060087155 | Koyama | Apr 2006 | A1 |
20060202516 | Mori | Sep 2006 | A1 |
20100120346 | Jansen | May 2010 | A1 |
20120091756 | Suzuki | Apr 2012 | A1 |
20130192801 | Leonard | Aug 2013 | A1 |
20140062117 | Baxter | Mar 2014 | A1 |
20140097579 | Bland | Apr 2014 | A1 |
20140318308 | Puskar, Jr. | Oct 2014 | A1 |
20150004897 | Ishikawa | Jan 2015 | A1 |
20150068128 | Baxter | Mar 2015 | A1 |
20150336620 | Kurihara | Nov 2015 | A1 |
20190270362 | Barnes | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
1800999 | Jun 2007 | EP |
Entry |
---|
Society of Plastics Engineers, Automotive Design, Innovation Awards, Nov. 9, 2018, 56 pages, US. |
Number | Date | Country | |
---|---|---|---|
20190315199 A1 | Oct 2019 | US |