1. Field of the Invention
The present invention relates to vehicle suspension and more specifically to a leaf spring type suspension for use on road vehicles.
2. Description of the Prior Art and Related Information
Whilst coil spring suspension systems are adopted for a number of modern passenger vehicles, leaf spring suspension systems are often preferred for vehicles which are capable of supporting greater loads, such as, for example vans, trucks, buses, trailers and other passenger or commercial vehicles.
A conventional leaf spring arrangement is typically attached at its opposing ends to a chassis member via intermediate links referred to as hangers. The vehicle axle is attached to a central portion of the leaf spring arrangement such that relative movement between the axle and the chassis member is resisted by the restoring force of the leaf spring.
A conventional multi-leaf or parabolic leaf spring suspension systems provides for a fixed vehicle ride height under steady state loading conditions. However there are a number of practical reasons why it may be necessary to raise or lower the vehicle height relative to the axle. Such instances include, for example, the carrying heavy loads, for towing trailers or the like, or the lowering of suspension for improved vehicle handling. These adjustments would generally require a conventional leaf spring suspension system to be removed and modified or replaced with an alternative leaf spring arrangement in order to allow a different height to be achieved.
It will be appreciated by those skilled in the art that the adjustment or replacement of such conventional leaf spring suspension systems requires a considerable amount of work and is not readily undertaken without a specific commercial need. The replacement of a leaf spring suspension system can result in a vehicle being off the road for a number of days, which is particularly undesirable for commercial vehicles.
This problem has been acknowledged and a number of solutions have been proposed in the past. One such solution involves the use of a tensioning arrangement, typically in the form of a hydraulic piston and cylinder, which can raise and lower the height of the chassis relative to the axle against the force of the spring. However this solution significantly increases the cost and complexity of the suspension system and compromises the effectiveness of the leaf spring arrangement by forcing it to operate in a condition which is offset from the natural equilibrium of the spring.
The adjustment of a leaf spring suspension to allow the chassis to be raised or lowered relative to the axle poses a particular design problem since a conventional leaf spring suspension system also serves a secondary function in that it maintains the lateral stability of the chassis relative to the axle.
It is an object of the present invention to provide an improved vehicle suspension system which allows adjustment of the height of chassis relative to the axle without substantially jeopardizing the lateral stability of the vehicle. It is a further object of the present invention to provide a suspension system which is simple to install and adjust.
According to a first aspect of the present invention there is provided a leaf spring suspension system for supporting a vehicle chassis relative to a vehicle axle, wherein the suspension system is arranged to be connected between first and second spaced connection locations of said vehicle chassis and comprises: a first elongate leaf member arranged to be pivotably connected at a first end thereof to the first connection location; a second leaf member pivotably connected at a second end of said first member; and a link member arranged to be connected between the second leaf member and the second connection location of said chassis, wherein the link member is pivotably connected to the second leaf member at a first end thereof and is connected to the chassis at a second end thereof such that the angular orientation of the link member relative to the chassis can be altered in order to accommodate raising or lowering of the chassis relative to the vehicle axle.
The link member may be pivotably connected to the chassis at its second end.
The first leaf member, second leaf member and link member may be pivotable about substantially parallel axes of rotation. The first leaf member, the second leaf member and the link member are typically connected in line. This serves to constrain the freedom of movement of the leaf spring suspension system so as to provide lateral stability. This avoids the need for stabilizing arms, often referred to as pan arms, which are associated with adjustable suspension systems according to the prior art.
Furthermore, a suspension system according to the present invention can be installed on a vehicle at the same points as a conventional leaf spring suspension system. Thus the present invention can be retrofitted to a vehicle simply and at low cost.
The first and second leaf spring members may be formed of spring steel.
Either or both of the first and second leaf spring members may be shaped to receive a pin or bolt at an end thereof. Typically either or both of the first and second leaf spring members is rolled at least one end thereof so as to form a eye, within which a pin or locking member can be received. In one embodiment, the rolled eye on one of the first or second leaf member is provided with a cut out or recess for receiving the eye of the other of the first or second member. The respective ends of the first and second leaf members may fit together about a common pin. This significantly improves the lateral stability of the leaf spring. In addition this minimizes the number of parts involved in the suspension system and allows a length of spring steel to be machined to provide suitable connection formations at one or both ends thereof with minimal cost.
The respective ends of the first and second leaf members may fit together about a common axis so as to allow a locking member to be inserted therebetween for locking the relative angular orientation of the first and second leaf members.
The link member may comprise a shackle. The link member and the first leaf member may be attached to the chassis via a respective hanger.
In one embodiment, one or more pins within the system take the form of bolts which can be selectively tightened to lock the relative angular orientations of the first and second leaf members and the link member. Thus the system can be raised or lowered to the desired height and locked to maintain the desired ride height of the vehicle.
In one embodiment, one or more locking members within the system take the form of splined members shaped to engage with castellations within the ends of the first and second leaf members. The splined member may be a splined pin. A rolled eye in the end of each of the first and second leaf members may be provided with inwardly facing castellations. The locking member may be trapped between the eyes of the first and second leaf members by way of a nut or the like. Thus the splined member inhibits rotation of the first and second leaf members once inserted such that the system can be raised or lowered to the desired height and locked to maintain the desired ride height of the vehicle. In an additional or alternative embodiment, the suspension system may be used to raised or lower a vehicle chassis to provide access thereto. In such an embodiment, the suspension system may comprise adjustment means connected in the force path between the axle and the chassis. The adjustment means may be pneumatically or hydraulically powered and in one embodiment, the adjustment means comprises an airbag. In such an embodiment, the pins between the suspension system members may not need to be tightened during use since the weight of the vehicle chassis and any additional load may be supported by the adjustment means during use.
According to a further aspect of the present invention there is provided a method of manufacture of a suspension system according to the first aspect of the present invention.
Preferred embodiments of the present invention are described in further detail below with reference to the accompanying drawings, of which:
a shows a plan view of first and second leaf members according to a first embodiment of the present invention;
b shows a plan view of the first leaf member of
c shows a side view of the second leaf member of
d shows details of the gears for connecting the first and second leaf members of
a shows a side view of a suspension system according to a third embodiment of the present invention;
b shows a side view of the suspension system of
Turning firstly to
The leaf spring has opposing ends 14 and 16 which have each been rolled to form eyes 18 and 20. The eye 18 is shaped to receive a pin (not shown) such that the end 14 can be fitted to a chassis via a conventional hanger arrangement (see
The arm 12 has a correspondingly shaped eye 32 formed in the end thereof. The eye 32 is of reduced width such that it can be located within the cut out 24. The eyes 20 and 32 are of substantially the same diameter such that they can be aligned in a coaxial manner so as to allow a pin or bolt 34 to be passed through both eyes so as to form a hinge between the leaf 10 and arm 12.
As can be seen in
d shows a plan view and sectional view of the washers 38 which are ring shaped, having a central bore 40 therein and a series of radially extending teeth formations 42. The washers 36 are similar in form such that the teeth of each washer engage the teeth of the opposing washer in use.
The bolt 34 has a head at one side of the hinge and locking means in the form of a nut on the opposing side of the hinge when formed. Thus the bolt can be tightened so as to force the opposing washers into engagement so as to lock the hinge during use. The bolt 34 can be released to allow adjustment of the relative angular orientations of the leaf 10 and arm 12 and retightened to lock the hinge when the suspension is in use. The leaf 10 can advantageously be formed of a single length of spring steel material. The material can be machined to reduce the width of the leaf for all but the increased width portion 22. The eye 20 is then formed by rolling and/or pressing the end 16 to form a cylindrical profile. The slot 24 is then cut out of the eye 20.
The arm 12 is also formed of a single length of spring steel material. The eye 32 may be rolled and then machined to reduce its width or vice versa. The washes may then be welded to the respective eyes ready for assembly of the hinge by locating the eye 32 within the eye 20 and inserting the bolt 34 through the common bore formed thereby.
This represents a simple and robust method of forming a strong leaf spring hinge which is resilient to lateral forces. It will be appreciated that the slot 24 in this embodiment is substantially U shaped. However other shapes may be provided such as for example a V shaped, rectangular or curved slot. The eye 32 will be correspondingly shaped to fit within the slot. In addition, the cut out may be provided in the arm 12 instead of the leaf 10. In such an embodiment the eye at the end 16 of leaf 10 will be shaped in accordance with the eye 32 shown in
The arm 12 also has a further eye 44 formed in the opposing end thereof for attachment to a link member as will be described in further detail below.
Turning now to
The fixing member 50 may avoid the need for the gear washers shown in
Turning now to
The rolled eye 118 of the leaf 110 is attached to a hanger 102 via a pin 103. The hanger is rigidly attached to the vehicle chassis 104 such that the leaf 110 can pivot relative to the chassis 104 about pin 103. An axle housing 105 is attached towards the end 116 of the leaf 110 adjacent the rolled eye 120. The axle housing 105 may be attached to the leaf member 110 using bolts, metal straps or any other conventional type of leaf spring fastening 106 as would be apparent to the person skilled in the art. The rolled eye 144 at the end of the arm 112 which is spaced from the leaf 110 is connected to a link member 108 by a pin 107. The link member takes the form of a swinging shackle which is in turn attached to a further hanger 109 by a pin joint 111. The hanger 109 is fixedly mounted on the chassis member 104 at a distance from the hanger 102.
An air bag 113 is positioned between the axle housing 105 and the chassis 104 such that the weight of the vehicle chassis is supported on the axle at least in part by the air bag 113 when inflated. In this embodiment the airbag 113 is trapped between the leaf spring 110 and the chassis 104, between the spaced hangers 102 and 109.
During normal operation of the vehicle, the weight of the vehicle chassis and any load is supported on the axle by the inflated airbag 113. The degree of inflation of the air bag 113 thus defines the ride height of the vehicle. In this embodiment, the vehicle weight may also be partially supported by the leaf spring suspension system.
For loading and/or unloading of the vehicle, typically when the vehicle is stationary, it may be beneficial to lower the height of the vehicle chassis relative to the axle. This can be achieved using the suspension system of
In order to achieve the orientation shown in
When any loading or unloading operation of the vehicle has bee completed, the air bag 113 can be inflated to raise the vehicle chassis 104 back to the desired ride height.
Turning now to
An intermediate spring arm 260 is provided between the leaf member 210 and the arm 212. The intermediate spring arm 260 has a rolled eye formation at each end thereof for attachment to the corresponding rolled eye formation on the leaf member 210 and arm 212. Thus the intermediate spring arm provided an additional link in the suspension system.
The axle housing 205 in this embodiment is attached to the intermediate spring arm such that the suspension system is substantially symmetrical about the centre of arm 260. The intermediate spring arm 260 is mounted substantially beneath the raised chassis section 258. This embodiment allows the vehicle chassis member 204 to be raised and lowered such that is substantially parallel with a supporting surface on which the vehicle stands. This avoids the need to tit the chassis when lowering. Thus the entire chassis can be lowered rather than only the rear end 215.
Turning now to
The raising and lowering of the chassis in this embodiment is carried out in a similar manner to that of
By varying the relative dimensions, it would be possible to lower the chassis to ground level in order to greatly simplify loading and unloading from the vehicle. The raised position of the hangers is important in this embodiment since they would otherwise prevent the chassis member contacting the ground. The view of
Turning now to
The first leaf member 410 and second leaf member 412 may be used in any of the embodiments of
The opposing ends of the first leaf member 410 have each been rolled to form eyes 414 and 416. The eye 416 is shaped to receive a locking member in the form of a splined pin or bolt 417 (see
The arm 412 has a correspondingly shaped eye 422 formed in the end thereof. The eye 422 is of reduced width such that it can be located within the cut out 420. The eyes 416 and 422 are of substantially the same diameter such that they can be aligned in a coaxial manner so as to allow locking pin or bolt 417 to be passed through both eyes when eye 422 is aligned with eye 416 within the slot 420.
As can be seen in
During use the eyes 416 and 422 are arranged to be aligned in a coaxial manner such that the splined locking pin or bolt 417 can pass therethrough. The pin or bolt 417 has spline formations 419 which extend at least part way along the bolt 418 from a head end 426 to a free end 428 thereof. The head end 426 typically has a head formation of increased diameter so as to prevent the bolt passing completely through the eyes 416 and 422. Thus when the bolt is fully inserted into either eye 416 or 422, the head end 426 will abut against the side of the adjacent eye and act as a stop. When the bolt is inserted in this manner, the bolt splines 419 engage within the castellations 424 on each of the coaxially aligned eyes 416 and 422 so as to lock the leaf members 410 and 412 in a fixed angular orientation. A washer 430 and nut 432 can be applied to the free end of the bolt 418 so as to lock the bolt in position within the eyes 416 and 422.
This embodiment allows a simple solution for setting the desired ride height of the suspension system according to the present invention by positioning the members 410 and 412 in the desired orientation and then inserting and locking the locking member in eyes 416 and 422. Once the bolt 418 is inserted, the ride height of the vehicle becomes fixed by virtue of the interlocking teeth and spline formations.
In order to adjust the ride height, a user can simply remove the locking bolt 417 from the eyes 416 and 422, raise or lower the vehicle to the desired ride height using a conventional jack device (not shown) and then refit the lock bolt. The angular orientation of the leaf members 410 and 412 can be adjusted to suit a new vehicle ride height and the reinsertion of the bolt 417 fixes the suspension at that height.
This embodiment is particularly advantageous as it will allow vehicle ride height or a vehicle's loading height to be quickly adjusted without the need for a complicated manual procedure or tools and without requiring trained mechanics. The combined connection between the splined bolt 417 and the aligned eyes 416 and 422 forms a rigid connector which provides suspension and damping properties similar to that of a conventional leaf spring during use.
The components of any of the embodiments of
Furthermore any of the leaf member, the arm or the intermediate arm may be made of spring steel and may be of substantially uniform material thickness or else may take the form of a parabolic type spring for which the thickness varies over its length.
In any of the embodiments described above, the eye formation of the leaf spring member may be formed by rolling the leaf spring back upon itself in either an upward or downward orientation. This can be varied dependent on the available space for fitting the suspension system.
Number | Date | Country | Kind |
---|---|---|---|
0717041.8 | Sep 2007 | GB | national |
0724106.0 | Dec 2007 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2008/002960 | 9/1/2008 | WO | 00 | 2/6/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/027710 | 3/5/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4678204 | Hetherington | Jul 1987 | A |
4711465 | Raidel | Dec 1987 | A |
4718693 | Booher | Jan 1988 | A |
4872653 | Chuchua | Oct 1989 | A |
6015158 | Overby | Jan 2000 | A |
6019384 | Finck | Feb 2000 | A |
6328324 | Fenton | Dec 2001 | B1 |
6406007 | Wilson | Jun 2002 | B1 |
6428025 | Suh | Aug 2002 | B1 |
6454283 | Fenton | Sep 2002 | B1 |
6485040 | Dudding | Nov 2002 | B1 |
6527287 | Hedenberg | Mar 2003 | B2 |
7036805 | Renaudot | May 2006 | B2 |
7229088 | Dudding et al. | Jun 2007 | B2 |
Number | Date | Country |
---|---|---|
0413318 | Feb 1991 | EP |
245699 | Jan 1926 | GB |
2006044345 | Aug 2004 | JP |
9729920 | Aug 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20110291380 A1 | Dec 2011 | US |