Leaflet grasping and cutting device

Information

  • Patent Grant
  • 12048448
  • Patent Number
    12,048,448
  • Date Filed
    Monday, May 3, 2021
    3 years ago
  • Date Issued
    Tuesday, July 30, 2024
    4 months ago
Abstract
A system configured to cut leaflet tissue at a cardiac valve may comprise a guide catheter and a cutting mechanism routable through the guide catheter. The cutting mechanism includes a cutting arm and a plurality of grasping arms rotatably coupled to the cutting arm. The grasping arms are connected to the cutting arm via a central hinge and are actuatable between a closed position against the cutting arm and an open position where the grasping arms extend laterally away from the cutting arm by rotating about the hinge. Targeted cardiac leaflet tissue may be grasped between the cutting arm and the grasping arms and cut by a cutting element that is attached to or extends through the cutting arm.
Description
BACKGROUND OF THE INVENTION

The mitral valve controls blood flow from the left atrium to the left ventricle of the heart, preventing blood from flowing backwards from the left ventricle into the left atrium so that it is instead forced through the aortic valve for delivery of oxygenated blood throughout the body. A properly functioning mitral valve opens and closes to enable blood flow in one direction. However, in some circumstances the mitral valve is unable to close properly, allowing blood to regurgitate back into the atrium.


Mitral valve regurgitation has several causes. Functional mitral valve regurgitation is characterized by structurally normal mitral valve leaflets that are nevertheless unable to properly coapt with one another to close properly due to other structural deformations of surrounding heart structures. Other causes of mitral valve regurgitation are related to defects of the mitral valve leaflets, mitral valve annulus, or other mitral valve tissues.


The most common treatments for mitral valve regurgitation rely on valve replacement or repair including leaflet and annulus remodeling, the latter generally referred to as valve annuloplasty. One technique for mitral valve repair which relies on suturing adjacent segments of the opposed valve leaflets together is referred to as the “bowtie” or “edge-to-edge” technique. While all these techniques can be effective, they usually rely on open heart surgery where the patient's chest is opened, typically via a sternotomy, and the patient placed on cardiopulmonary bypass. The need to both open the chest and place the patient on bypass is traumatic and has associated high mortality and morbidity. In some patients, a fixation device can be installed into the heart using minimally invasive techniques. The fixation device can hold the adjacent segments of the opposed valve leaflets together and may reduce mitral valve regurgitation. One such device used to clip the anterior and posterior leaflets of the mitral valve together is the MitraClip® fixation device, sold by Abbott Vascular, Santa Clara, California, USA.


However, sometimes after a fixation device is installed, undesirable mitral valve regurgitation can still exist, or can arise again. For these sub-optimally treated patients, the presence of a fixation device in their mitral valves may obstruct additional procedures such as transcatheter mitral valve replacement. These patients may also be considered too frail to tolerate open-heart surgery, so they are often left with no viable options to further improve the function of their mitral valve.


Accordingly, it would be desirable to provide alternative and additional methods, devices, and systems for removing and/or disabling fixation devices that are already installed. At least some of these objectives will be met by the inventions described below.


BRIEF SUMMARY

The present disclosure is directed to systems, methods, and devices configured to effectively cut leaflet tissue at a cardiac valve and thereby enable removal of a cardiac valve fixation device and/or further interventional procedures involving the cardiac valve, such as implantation of a replacement valve.


In one embodiment, a cutting mechanism includes a cutting arm having a length extending along a longitudinal axis, the cutting arm including an actuatable cutting element configured to cut targeted leaflet tissue upon sufficient contact with the targeted leaflet tissue. The cutting mechanism further includes a central hinge disposed at or near a distal end of the cutting arm. One or more grasping arms are connected to the central hinge and each extend therefrom to a respective free end. The one or more grasping arms are rotatable about the central hinge so as to be selectively moveable between a closed position in which the one or more grasping arms are closed substantially against the cutting arm and an open position in which the one or more grasping arms are opened laterally away from the cutting arm. The cutting mechanism is configured to enable grasping of leaflet tissue between the cutting arm and the one or more grasping arms and to enable the cutting of grasped leaflet tissue via actuation of the cutting element.


An embodiment of a system for cutting leaflet tissue at a cardiac valve includes a guide catheter having a proximal end and a distal end, wherein the distal end of the guide catheter is steerable to a position above a cardiac valve, and a cutting mechanism. The cutting mechanism is routable through the guide catheter and configured to extend beyond the distal end of the guide catheter. The cutting mechanism is configured to enable grasping of leaflet tissue between the cutting arm and the one or more grasping arms and to enable the cutting of grasped leaflet tissue via actuation of the cutting element.


An embodiment of a method of cutting leaflet tissue at a cardiac valve within a body includes the steps of providing a system for cutting leaflet tissue, positioning the guide catheter such that the distal end of the guide catheter is positioned near a targeted cardiac valve, extending the cutting mechanism beyond the distal end of the guide catheter, grasping targeted leaflet tissue between the cutting arm and the one or more grasping arms of the cutting mechanism, and actuating the cutting element of the cutting mechanism to cut the grasped leaflet tissue. The targeted cardiac valve may have a fixation device attached to adjacent leaflets of the cardiac valve.


Additional features and advantages of exemplary implementations of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by the practice of such exemplary implementations. The features and advantages of such implementations may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features will become more fully apparent from the following description and appended claims or may be learned by the practice of such exemplary implementations as set forth hereinafter.





BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner in which the above-recited and other advantages and features of the invention can be obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIG. 1 illustrates a cross-sectional view of a human heart from a superior perspective, showing the mitral valve with an implanted clip fixation device for holding anterior and posterior leaflets of the mitral valve together;



FIG. 2 illustrates an exemplary delivery system that may be utilized for guiding and/or delivering a cutting mechanism to a cardiac valve;



FIG. 3 is a perspective view of an exemplary embodiment of a cutting mechanism according to the present disclosure;



FIG. 4 illustrates a cross-sectional view of a human heart from an anterior perspective showing exemplary approaches for positioning a cutting mechanism at a targeted cardiac valve for cutting leaflet tissue therein;



FIGS. 5A-5C are more detailed views of a cutting mechanism according to the present disclosure, showing actuation of grasping arms from an open position to a closed position;



FIGS. 5D-5H illustrate exemplary configurations of the cutting mechanism of FIGS. 5A-5C including different cross bar orientations;



FIGS. 5I and 5J illustrate another embodiment of a cutting mechanism having an auxiliary arm for moving the cutting element in response to actuation of a control rod;



FIG. 5K illustrates another embodiment of a cutting mechanism having an auxiliary arm for moving the cutting element in response to actuation of a control rod;



FIGS. 5L and 5M illustrate alternate cross-sectional views of an auxiliary arm for moving a cutting element of the cutting mechanism;



FIG. 5N illustrates another embodiment of a cutting mechanism having an auxiliary arm for moving the cutting element in response to actuation of a control rod;



FIGS. 6A-6C illustrate the cutting mechanism of FIGS. 5A-5C while grasping leaflet tissue;



FIGS. 7A-7C illustrate a cross-sectional view of the cutting mechanism during grasping and cutting of leaflet tissue; and



FIGS. 8A-8D illustrate delivery of the cutting mechanism to the mitral valve and use of the cutting mechanism to cut targeted leaflet tissue at the mitral valve.





DETAILED DESCRIPTION

Introduction


Embodiments described herein are configured to effectively cut leaflet tissue at a cardiac valve and thereby enable removal of a cardiac valve fixation device and/or enable further interventional procedures involving the cardiac valve, such as implantation of a replacement valve.



FIG. 1 illustrates a cross-sectional view of a human heart from a superior perspective, showing the mitral valve 405, which includes an anterior leaflet 410 and a posterior leaflet 415. A clip fixation device 420 has been positioned in the mitral valve 405 to clip and hold the leaflets 410 and 415 together at the coapting edges. As explained above, such repair devices are often placed with the intent of reducing mitral valve regurgitation. However, if excessive regurgitation remains following placement of the device 420, or if excessive flow obstruction develops (mitral stenosis), and further interventional procedures are necessary or desired, the fixation device 420 may need to be detached from leaflet tissue and/or removed from the mitral valve 405. For example, the fixation device 420 may need to be repositioned or removed prior to the placement of a replacement valve.


Conventional techniques for cutting leaflet tissue to remove fixation devices include using a snare wire segment energized with radiofrequency (RF) energy to cut leaflet tissue surrounding the fixation device. However, such techniques suffer from drawbacks such as difficulty in clearly visualizing the anterior leaflet 410. Typically, cutting of the anterior leaflet 410 and not the posterior leaflet 415 is desired, because cutting of the posterior leaflet 415 can result in the free fixation device 420 and anterior leaflet 410 descending into the left ventricle and obstructing the left ventricular outflow tract (LVOT).


Conventional approaches also risk snaring sub-valvular anatomic structures such as mitral valve chordae tendineae or papillary muscles. Snaring and/or cutting these structures can result in damage to ventricular health and function. Snare wires may also become caught on or in between fixation devices prior to the application of RF energy, which can result in inadvertent transmittance of RF energy to the fixation device(s) (which typically include metal components). This can result in excessive heating in the heart, leading to localized tissue damage, tissue fragmentation and embolization, and excessive coagulation.


Embodiments described herein can provide several benefits to the art. For example, embodiments described herein may allow for the clear visualization of the anterior mitral leaflet during cutting in order to avoid inadvertently cutting the posterior mitral leaflet. Embodiments described herein are also configured to provide effective tissue grasping functionality that can minimize the risk of becoming caught or entangled with sub-valvular structures or the previously implanted fixation device(s). The structures and corresponding functions that enable such benefits are described in more detail below.


Although most of the following description will focus on cutting of the anterior mitral leaflet 410, it will be understood that the same components and features may be utilized, in some applications, to additionally or alternatively target the posterior mitral leaflet 415 for cutting. Further, although most of the examples describe the application of a cut that extends laterally across the anterior leaflet 410 (see FIGS. 8A-8D), the same components and features described herein may be utilized to cut a targeted leaflet radially rather than laterally. For example, in preparation for placement of a prosthetic replacement mitral valve, the anterior leaflet 410 may be cut radially to bisect the leaflet 410 and reduce the chance of outflow tract obstruction after a prosthetic replacement valve is implanted.


Moreover, although the examples described herein are provided in the context of cutting leaflet tissue of a mitral valve, one skilled in the art will appreciate that the embodiments described herein are not necessarily limited to use within the mitral valve 405. In other applications, the targeted cardiac valve could be the tricuspid valve, aortic valve, or pulmonic valve for example. More generally, the embodiments described herein may be utilized in other implementations involving removal of a previously implanted or deployed device from tissue.


In addition, although examples may illustrate routing the guide catheter to the mitral valve via a transfemoral/transseptal or transjugular/transseptal approach, other suitable delivery approaches may be used, including radial or transapical approaches.


Delivery System Overview



FIG. 2 illustrates an exemplary embodiment of a delivery system 100 that may be utilized for guiding and/or delivering a cutting mechanism 130 to a targeted cardiac valve. In at least one embodiment, the delivery system 100 includes a guide catheter 105 having a proximal end and a distal end 115. The delivery system may comprise a handle 110 positioned on the proximal end of the guide catheter 105. The guide catheter 105 may be operatively coupled to a handle 110. The guide catheter 105 may be steerable to enable the guiding and orienting of the guide catheter 105, including the distal end 115 of the guide catheter 105. For example, the handle 110 may include at least one control 120 (e.g., a dial, a switch, a slider, a button, etc.) that can be actuated to control the movement and curvature of the distal end 115 of the guide catheter 105.


As one example of a steering mechanism, the at least one control 120 may be operatively coupled to one or more control lines 125 (e.g., pull wires) extending from the handle 110 through the guide catheter 105 to the distal end 115 of the guide catheter (e.g., through one or more lumens in the guide catheter 105). Actuation of the at least one control 120 may adjust the tensioning of a control line 125 to pull the guide catheter 105 in the corresponding direction. FIG. 2 shows a pair of control lines 125. Alternatively, a handle 110 may comprise more than one control 120 configured for steering and any number of corresponding control lines. For example, the delivery system 100 may be configured to provide bending of the guide catheter 105 in multiple planes and/or at multiple bending points along the length of the guide catheter 105.


The control 120 and/or other controls disposed at the handle 110 may also be utilized to control actuation of various components of the cutting mechanism 130, as explained in more detail below. As shown in FIG. 2, the cutting mechanism 130 is configured in size and shape so as to be routable through the guide catheter 105 and extendable beyond the distal end 115 of the guide catheter 105. The cutting mechanism 130 may also be retracted back into the guide catheter 105. Control(s) 120 may control the cutting mechanism's 130 extension through and retraction back into the guide catheter 105. Additionally, or alternatively, the control(s) 120 may be configured to provide selective actuation of one or more components of the cutting mechanism 130.



FIG. 3 illustrates a cross-sectional view of a patient's heart 10 from an anterior perspective, showing an exemplary approach for delivering the cutting mechanism to the targeted mitral valve 405 using the guide catheter 105. In particular, FIG. 3 illustrates a transfemoral approach via guide catheter 105 (shown for this approach as guide catheter 105a), and an alternative transjugular approach via guide catheter 105 (shown for this approach as guide catheter 105b).


In a transfemoral approach, the delivery catheter 105a is inserted into the patient's vasculature at a femoral vein and directed to the inferior vena cava 20. The catheter 105a is passed through the inferior vena cava 20 and into the right atrium 30. In the transjugular approach, the delivery catheter 105b is inserted into the patient's vasculature at a jugular vein and directed to the superior vena cava 70. The catheter 105b is passed through the superior vena cava 70 and into the right atrium 30. Subsequently, in either approach, the distal end 115 of the catheter is pushed across the septum 40 so as to be positioned in the left atrium 50 superior of the mitral valve 405.


As explained further below, the cutting mechanism 130 is then directed partially through the mitral valve 405 and partially into the left ventricle 60 so that leaflet tissue can be grasped and cut.


Cutting Mechanism Details



FIG. 4 is an expanded view of the cutting mechanism 130. As shown, the cutting mechanism 130 may comprise a cutting arm 200 surrounded by at least two grasping arms 210a and 210b. The cutting mechanism 130 includes a central hinge 300 disposed at the distal end of the device. The grasping arms 210a and 210b connect to the cutting arm 200 at the central hinge 300 and extend therefrom to respective free ends 215a and 215b.


The grasping arms 210a and 210b may comprise a rigid, semi-rigid, or flexible material. Preferably, at least the tips of the grasping arms 210a and 210b near the free ends 215a and 215b may comprise a flexible material so they are atraumatic if contacted against the ventricular wall or subvalvular structures.


The grasping arms 210a and 210b may have a length of about 4 to about 40 mm, more typically about 6 to about 20 mm, although smaller or longer lengths may be utilized according to particular application needs. In at least one embodiment, the length of the at least two grasping arms 210a and 210b is adjustable.



FIG. 4 further shows that the cutting mechanism 130 may comprise a cutting element 205. The cutting element 205 may be configured to cut a portion of a leaflet grasped by the cutting mechanism 130 when the cutting mechanism 130 is actuated. In at least one embodiment, the cutting element 205 is spring loaded and/or configured to retract into the cutting arm 200 when not in use.


The cutting element 205 may comprise a sharpened edge, such as a mechanical blade, as shown in FIG. 4. Additionally, or alternatively, the cutting element 205 may comprise a tapered needle, an active electrosurgical electrode blade configured to provide radio frequency current energy to the portion of the leaflet, a wire loop, or other suitable structure capable of cutting leaflet tissue grasped by the cutting mechanism 130.


The cutting element 205 may have a length of at least the majority of the length of the cutting arm 200 in order to enable more expedient cutting of the leaflets. In other embodiments, the cutting element may have a length of less than the majority of the length of the cutting arm 200, in order to provide precise cutting and reduce the risk of inadvertent cutting of incorrect tissue.


In some embodiments, the cutting element 205 is disposed within the cutting arm 200. For example, the cutting arm 200 may comprise a slot through which the cutting element passes 205. The slot may have a greater length than the cutting element 205 to allow the cutting element 205 to move proximally/distally relative to the cutting arm 200, such as in a reciprocating motion, to aid in cutting grasped leaflet tissue.


The cutting arm 200 may comprise a gripping element configured to aid in gripping leaflet tissue in contact with the cutting arm 200. For example, the cutting arm 200 may include tines, barbs, one or more coatings, grooves, textured surfaces, and/or other features for increasing the friction of the cutting arm surface to prevent grasped tissue from sliding proximally and/or away from the cutting arm 200.



FIGS. 5A-5C illustrate the exemplary cutting mechanism 130 in greater detail, showing actuation and movement of the grasping arms 210a and 210b between an open position and a closed position. FIG. 5A shows the grasping arms 210a and 210b in an open position, FIG. 5B shows the grasping arms 210a and 210b in an intermediate position, and FIG. 5C shows the grasping arms 210a and 210b in a closed position.



FIGS. 5A-5C show that the grasping arms 210a and 210b may rotate laterally away from the cutting arm 200 by way of the central hinge 300. In a typical tissue grasping maneuver, the grasping arms 210a and 210b are opened to an angle of about 30 to about 60 degrees (such as shown in FIG. 5A), though the grasping arms 210a and 210b may be configured to open to an angle of up to about 90 degrees.


The cutting mechanism 130 may include a control rod 310 that extends through the cutting arm 200 (or runs parallel with it) to mechanically couple to a linkage assembly 320 of the cutting mechanism 130. The linkage assembly 320 is in turn mechanically connected to the grasping arms 210a and 210b. The control rod 310 is able to move in the axial direction relative to the cutting arm 200. A proximal end (not shown) of the control rod 310 can extend to the handle 110 and be operatively connected to one or more controls 120 (see FIG. 2).


Actuation of the control rod 310 moves the control rod 310 axially relative to the cutting arm 200 to thereby mechanically adjust the linkage assembly 320. Because the linkage assembly 320 is connected to the grasping arms 210a and 210b, the axial movement of the control rod 310 thereby controls rotation of the grasping arms 210a and 210b towards and away from the cutting arm 200. For example, the control rod 310 and linkage assembly 320 may be configured to move the grasping arms 210a and 210b toward the cutting arm 200 (and toward the closed position) when the control rod 310 is moved proximally relative to the cutting arm 200, and to move the grasping arms 210a and 210b away from the cutting arm 200 (and toward the open position) when the control rod 310 is moved distally relative to the cutting arm 200.


Other embodiments may additionally or alternatively include other actuation mechanisms for moving the cutting mechanism 130 between an open position and a closed position. For example, the cutting mechanism 130 may be configured to move between open and closed positions based on rotation of the control rod 310 and/or based on controlling tension in one or more control wires extending from the cutting mechanism 310 to one or more controls 120 of the handle 110. In some embodiments, the cutting mechanism 130 may be biased toward a “default” position (either the open position or the closed position), and once moved away from the default, biased position, a button, toggle, switch, or other control mechanism can be actuated to trigger release and rapid movement back to the default, biased position.


The shape and length of the at least two grasping arms 210a and 210b shown in FIGS. 5A-5C are merely exemplary. The at least two grasping arms 210a and 210b may be sized and shape to increase mechanical advantage of the at least two grasping arms 210a and 210b to exert tension on leaflet tissue grasped therebetween. In at least one embodiment the grasping arms 210a and 210b are configured to shield the cutting element 205 from surrounding cardiac structures. For example, a cover, webbing, or other protective structure may be positioned over the space between the grasping arms 210a and 210b to minimize the risk of the cutting element 205 inadvertently contacting anything not grasped between the cutting arm 200 and the grasping arms 210a and 210b.


As shown by the illustrated embodiment, the grasping arms 210a and 210b may have a curved profile to better position grasped tissue for cutting. For example, the free ends 215a and 215b may be curved inward toward the cutting arm 200. The free ends 215a and 215b may curve inwards at an angle of about 5 to about 20 degrees, for example,


As shown in FIG. 5C, the grasping arms 210a and 210b may cross over the longitudinal axis of the cutting arm 200 as the grasping arms 210a and 210b move into the closed position, and this may be aided in part by the curved shape of the free ends 215a and 215b. This allows the cutting mechanism 130 to “over close” and better grasp and stretch leaflet tissue for more effective cutting of the leaflet tissue.


The shape of the cutting element 205 may be customized based on a patient's leaflet anatomy and pathology. Additionally, or alternatively, a cross bar 220 may be included partially connecting the two grasping arms 210a and 210b. The cross bar 220 may function to enhance tissue contact with the cutting arm 200 and/or cutting element 205, for example. As shown, the cross bar 220 may be disposed so as to be distal of the cutting element 205 (i.e., closer to the central hinge 300 than the cutting element 205) when the cutting mechanism 130 is in the closed position.



FIG. 5C illustrates an alternative configuration of cutting element 205, which includes a series of consecutive cutting elements 205 configured on the cutting arm 200. This configuration includes multiple cutting elements 205 can create a “serrated” blade 207, which can improve cutting performance while allowing the user to exert less than normal force during cutting. Normal force may be understood as the force used to make an adequate cut using a single cutting element 205. The dynamics of a beating heart can assist in accomplishing a full and clean cut against blade 207, which can be useful for removing stubborn pieces of leaflet tissue which might remain after an initial cutting attempt. If a strand of tissue remains, the beating of the heart can cause the strand of tissue to move or drag across the blade 27 in a dynamic way once its neighboring tissue is cut, which can subsequently aid in completion of the cut and removal of the strand of tissue. In some embodiments, all exposed cutting element edges 209 can be sharp to ensure bi-directional serrated cutting Alternatively, portions of the exposed cutting element edges 209 can be sharp.


The mitral and tricuspid valve leaflet tissue generally varies in thickness from ˜0.4 mm thick for generally healthy tricuspid leaflet tissue, to ˜3.2 mm for thick healthy mitral valve leaflet tissue. Diseased tissue may be thicker than healthy leaflet tissue as diseased tissue can be thickened to 5.0 mm and greater due to, for example, degenerative valve leaflet tissue or Barlow's disease. In some configurations, the cutting element 205 can be configured to cut to a depth sufficient to adequately cut through diseased tissue. A depth of the cutting element 205 can range from about 0.4 mm to about 10 mm, from about 0.5 mm to about 8 mm, from about 0.6 mm to about 4 mm, from about 0.8 mm to about 3 mm, from about 0.6 mm to about 10 mm, from about 0.8 mm to about 8 mm, from about 1 mm to about 4 mm, from about 1.2 mm to about 3 mm, and any combinations or modifications thereof. The cutting depth can be sufficient to cut through diseased tissue, while also shallow enough to avoid inadvertently cutting through tissue which should not be cut.



FIGS. 5D through 5H illustrate alternative configurations of the cross bar 220, grasping arms 210a, 210b, and the cutting element 205 that may be provided in addition to or as an alternative to the configuration shown in FIGS. 5A-5C. FIG. 5D illustrates that the cross bar 220 may be positioned so as to substantially align with the cutting element 205 when the cutting mechanism 130 is moved to the closed position. That is, the cross bar 220 may be positioned at the same location/height as the cutting element 205 so as to directly press tissue against the cutting element 205 when the cutting mechanism 130 moves into the closed position.



FIG. 5E illustrates that multiple cross bars 220 may be included (shown here as separate cross bars 220a through 220c). It will be appreciated that the cross bar(s) may be disposed at any of the locations along the lengths of the grasping arms 210a, 210b relative to the cutting element 205. For example, one or more cross bars 220a may be positioned above the cutting element 205 (i.e., farther from the central hinge 300 than the cutting element 205), one or more cross bars 220b may be substantially aligned with the cutting element 205, and/or one or more cross bars 220c may be positioned below the cutting element 205 (i.e., closer to the central hinge 200 than the cutting element 205).



FIG. 5F illustrates that cross bars 220 need not necessarily be linearly disposed between the grasping arms 210a, 210b and may have, for example, a curved shape (such as cross bar 220d), angular shape (such as cross bar 220e), shape of variable width, or other non-linear and/or variable shape. FIG. 5G illustrates a configuration that includes a webbing 222 disposed between the grasping arms 210a and 210b. The webbing 222 may comprise a braided material, sheet, and/or film, for example, that extends across the gap between the grasping arms 210a and 210b. The webbing 222 may be formed to be cut-resistant or may be allowed to be cut along with tissue when the cutting element 205 is actuated. FIG. 5H illustrates a configuration where the gap between the grasping arms 210a and 210b is substantially filled so as to form a single, “solid” grasping arm structure. The grasping arm structure may have one or more grooves or indentations for receiving the cutting arm 200 and cutting element 205.



FIGS. 5I and 5J illustrates another embodiment of a cutting mechanism 140. The cutting mechanism 140, like the cutting mechanism 130 described above, may include a cutting arm 500, a cutting element 505, one or more grasping arms 510, a central hinge 600, a control rod 610, and a linkage assembly 620.


The cutting mechanism 140 additionally includes an auxiliary arm 530 disposed opposite the one or more grasping arms 510. The auxiliary arm 530 may be connected to the linkage assembly 620 and be configured to rotate about the central hinge 600 in response to controlled actuation via the control rod 610 in a fashion similar to the grasping arms 510. The auxiliary arm 530 includes a cutting element link 535 that connects to the cutting element 505. For example, the link 535 may extend through the cutting arm 500 to connect to the cutting element 505.


The auxiliary arm 530 can thus function to move the cutting element 505 in response to actuation (via axial movement) of the control rod 610. For example, actuation of the control rod 610 can cause the grasping arms 510 and the auxiliary arm 530 to move toward the closed position. As the auxiliary arm 530 closes and gets closer to the cutting arm 500, the link 535 pushes against the cutting element 505 and causes it to extend out from the cutting arm 500, as shown in FIG. 5E. Similarly, moving the grasping arms 510 and auxiliary arm 530 to the open position causes the cutting blade 505 to retract toward the cutting arm 500.


In use, the illustrated embodiment beneficially enables the cutting element 505 to be housed or substantially housed within the cutting arm 500 when the cutting mechanism 140 is in the open position, and enables the cutting element 505 to automatically extend and be exposed only as the grasping arms 510 are closing and targeted tissue is being brought into the cutting arm 500 to be cut.


As with the cutting element 205, the cutting element 505 can extend out from the cutting arm 500 a distance ranging from about 0.4 mm to about 10 mm, from about 0.5 mm to about 8 mm, from about 0.6 mm to about 4 mm, from about 0.8 mm to about 3 mm, from about 0.6 mm to about 10 mm, from about 0.8 mm to about 8 mm, from about 1 mm to about 4 mm, from about 1.2 mm to about 3 mm, and any combinations or modifications thereof. The cutting depth, or the distance which the cutting element 505 extends from the cutting arm 500 can be sufficient to cut through diseased tissue, while also shallow enough to avoid inadvertently cutting through tissue which should not be cut.



FIG. 5K illustrates another embodiment of a cutting element 150. The cutting mechanism 150, like the cutting mechanism 130 described above, may include a cutting arm 200, a cutting element 205, one or more grasping arms 210, a central hinge 300, a control rod 310, and a linkage assembly 320.


The cutting mechanism 150 additionally includes trauma reducing features. The grasping arms 210 which are used to press leaflet tissue into the cutting element 205 might become inadvertently caught on the patient's anatomy, so it may be useful to include trauma reducing features such as atraumatic tips 712 and flexibility-enhancing features, such as slit cuts 714. Other flexibility-enhancing features may include the grasping arms 210 having a tapered cross-section, and/or the grasping arms 210 may comprise multiple materials, with a more flexible material disposed towards the distal ends 716 of the grasping arms 210 to increase flexibility toward the distal ends 716 of the grasping arms 210. The multiple materials can include at least two metallic materials, at least two polymeric materials, at least one metallic material with at least one polymeric material, combinations or modifications thereof. For instance, one material can be over molded with another material. In another configuration, one material is bonded, glued, welded, brazed with or otherwise attached to another material.


The grasping arms 210 may still maintain their stiffness near the cutting element 205 to maintain their effectiveness, though by configuring the distal ends 716 of the grasping arms 210 to bend during use, damage to the leaflet tissue or chords can be minimized. The slit cuts 714 may be equally spaced along the distal ends 716 to impart an equal degree of flexibility along the distal ends 716. The slit cuts 714 may also be arranged in a pattern where the number and density of slit cuts 714 can increase towards the distal ends 716 to provide an increasing degree of flexibility towards the atraumatic tips 712. The pattern can include discrete or overlapping slits that are orientated parallel, perpendicular, and/or transverse to a longitudinal axis of a grasping arm 210.


The grasping arms 210 can comprise a metallic material such as steel, cobalt, chrome, NITINOL®, titanium, or the like, or a polymeric material, such as poly-L-lactide (PLLA), poly(lactic-co-glycolic acid) (PLGA), Polyether block amide (PEBA), such as PEBAX®, biocompatible composite, combinations and/or modifications thereof, or the like, or the grasping arms 210 can be a combination of a metallic material and a polymeric material. FIGS. 5L and 5M illustrate examples of various configurations of materials comprising the grasping arms 210 comprising material A 720 and material B 722. In some examples, material A 720 can comprise a metallic material or a polymeric material, as discussed above. Accordingly, material B 722 can comprise a metallic material or a polymeric material. Material A 720 and material B 722 are different materials and can be configured in a sandwich configuration as shown in FIG. 5L, or they can be arranged next to each other as shown in FIG. 5M. The materials can be arranged in a manner that imparts a desired stiffness and/or flexibility on the grasping arms 210.


All or a portion of each of the grasping arms 210 can also or alternatively have a braided structure 718, as illustrated in FIG. 5N, and may be laser cut from a tube or a sheet, or made from stamped or formed material. The braided structure 718 can have a larger, looser braid at the tips 712 in order to impart a desired degree of flexibility. The braided structure 718 can become progressively tighter woven and stiffer as the braided structure 718 progresses towards the middle of the grasping arms 210. The geometry of the grasping arms 210 as shown in FIGS. 5A-5K and 5N is curved with an inward bias towards the cutting arm 200, however, in some embodiments, the profile of the grasping arms 210 may be curved with an outward bias and flare outward relative to the cutting arm 200 in order to match the curvature of the leaflet tissue being cut.


Tissue Grasping & Cutting



FIGS. 6A-6C illustrate additional views of the cutting mechanism 130 to show use of the cutting mechanism 130 to grasp and cut leaflet tissue (such as the anterior leaflet 410 shown here). Upon routing the cutting mechanism 130 to the appropriate position at the mitral valve, the cutting mechanism 130 may be moved from the closed position to the open position. Typically, the cutting mechanism 130 is positioned so that the grasping arms 210 are on the ventricular side of the valve, and then the cutting mechanism 130 is actuated to move the grasping arms 210 to the open position. As described above, the grasping arms 210 may be actuated by moving the control rod 310 axially relative to the cutting arm 200 to cause the linkage assembly 320 to rotate the grasping arms 210 outward.



FIG. 6A shows the cutting mechanism 130 in the open position (e.g., with the grasping arms 210 open to an angle of about 60 degrees) with the grasping arms 210 on the ventricular side of the leaflet 410. The cutting mechanism 130 may be moved to appropriately position the targeted leaflet 410 between the grasping arms 210 and the cutting arm 200. Then, as shown in FIG. 6B, the grasping arms 210 may be moved toward the closed position by axially moving the control rod 310 relative to the cutting arm 200. Further actuation leads to further closing of the grasping arms 210 until the leaflet 410 is brought into contact with the cutting element 205, as shown in FIG. 6C.


In some embodiments, the cutting element 205 is connected to the control rod 310, and the control rod 310 extends through the cutting arm 200. The cutting element 205 may pass through a slit in the cutting arm 200, for example. In such an embodiment, axial movement of the control rod 310 causes corresponding axial movement of the cutting element 205 relative to the cutting arm 200. This beneficially provides an axial cutting motion of the cutting element 205 while the grasping arms 210 are moving.


For example, moving the control rod 310 proximally may simultaneously close the grasping arms 210 and cause the cutting element 205 to move proximally, allowing for an effective cutting motion that simultaneously brings the leaflet 410 laterally into the cutting element 205 while axially moving the cutting element 205 to cut the leaflet 410. This can also be utilized to perform a “reciprocating cut” procedure where the cutting element 205 reciprocates axially while the grasping arms 210 are successively opened and closed to grasp new areas of leaflet tissue.



FIGS. 7A-7C illustrate the cutting element 130 while grasping and cutting leaflet tissue from a cross-sectional view across the longitudinal axis of the cutting mechanism. FIGS. 7A-7C beneficially illustrate how the cutting element 130 may be utilized to stretch the grasped leaflet tissue (such as the anterior leaflet 410) across the cutting arm 200 for effective cutting of the tissue by the cutting element 205.



FIG. 7A shows the leaflet 410 disposed between the cutting arm 200 and the grasping arms 210a and 210b as the device approaches the closed position. FIG. 7B illustrates further closing of the grasping arms 210a and 210b such that the grasping arms 210a and 210b cross the longitudinal axis of the cutting arm 200 in an “over closed” fashion. This serves to tighten and stretch the grasped tissue across the cutting side of the cutting arm 200 so that it can be effectively cut by contact with the cutting element 205, as shown in FIG. 7C.



FIGS. 7A-7C also illustrate that the grasping arms 210a and 210b may have a curved or flared cross-sectional shape. Such a shape may correspond beneficially with the shape of the cutting arm 200 and may aid in providing the tightening and/or stretching of the grasped leaflet tissue across the cutting arm 200.



FIGS. 8A-8D are perspective views of the exemplary cutting mechanism 130 as used to cut leaflet tissue of the mitral valve 405. An interventional fixation device 420 creates a first and second orifice between the anterior mitral leaflet 410 and the posterior mitral leaflet 415 by approximating the adjacent leaflets 410 and 415. As shown, the distal end 115 of the guide catheter 105 has been extended through the septum 400 of the heart. The cutting mechanism 130 may be routed through the guide catheter 105 so as to extend through an orifice of the mitral valve 405 and be at least partially disposed on a ventricular side of the valve 405.


The grasping arms may then be actuated to move the cutting mechanism 130 to the open position. The cutting mechanism 130 is then positioned so that leaflet tissue, such as tissue of the anterior leaflet 410, resides between the grasping arms and the cutting arm. The cutting mechanism 130 is then moved to the closed position to grasp the leaflet tissue between the cutting arm and the grasping arms. The leaflet tissue may be secured by the grasping arms on a ventricular side of the mitral valve 405 and by the cutting arm on the atrial side of the mitral valve 405. With the application of some clamping force, the grasping arms can stretch the leaflet tissue across the cutting arm thereby reducing the thickness of the secured leaflet tissue at that location, and thereby better enable the cutting element to cut through the entire thickness of the secured leaflet tissue.


As shown in FIG. 4C, the cutting mechanism 130 may be advanced through the anterior mitral leaflet 410 by repeated repositioning of the cutting mechanism 130 and repeated actuation of the grasping arms. Additionally, or alternatively, the cutting mechanism 130 may be advanced through the anterior leaflet 410 by partially actuating the at least two grasping arms (e.g., to an open angle of about 15 to about 45 degrees), dynamically positioning the cutting mechanism 130, and moving or dragging the cutting mechanism 130 along the anterior mitral leaflet 410.


ADDITIONAL EXEMPLARY EMBODIMENTS

Following are some further example embodiments of the invention. These are presented only by way of example and are not intended to limit the scope of the invention in any way.


Embodiment 1. A cutting mechanism for cutting leaflet tissue at a cardiac valve, the cutting mechanism comprising: a cutting arm having a length extending along a longitudinal axis, the cutting arm including an actuatable cutting element configured to cut targeted leaflet tissue upon sufficient contact with the targeted leaflet tissue; a central hinge disposed at or near a distal end of the cutting arm; one or more grasping arms each connected to the central hinge and extending therefrom to a respective free end, the one or more grasping arms being rotatable about the central hinge so as to be selectively moveable between a closed position wherein the one or more grasping arms are closed substantially against the cutting arm, and an open position wherein the one or more grasping arms are opened laterally away from the cutting arm by rotating about the central hinge, wherein the cutting mechanism is configured to enable grasping of leaflet tissue between the cutting arm and the one or more grasping arms and to enable the cutting of grasped leaflet tissue via actuation of the cutting element.


Embodiment 2. The cutting mechanism of claim 1, wherein the cutting mechanism comprises at least two grasping arms disposed such that, when the cutting mechanism is in the closed position, a first grasping arm is disposed on a first side of the cutting arm and a second grasping arm is disposed on a second, opposite side of the cutting arm.


Embodiment 3. The cutting mechanism of Embodiment 2, wherein the cutting element is disposed on a portion of the cutting arm between the first and second grasping arms so as to enable cutting of leaflet tissue disposed between the first and second grasping arms.


Embodiment 4. The cutting mechanism of Embodiment 2 or Embodiment 3, further comprising a cross bar extending between the first and second grasping arms.


Embodiment 5. The cutting mechanism of Embodiment 4, wherein the cross bar is aligned with the cutting element when the cutting mechanism is in the closed position, or is positioned closer to the central hinge than the cutting element when the cutting mechanism is in the closed position.


Embodiment 6. The cutting mechanism of any one of Embodiments 1-5, wherein the one or more grasping arms are openable to an angle of up to about 90 degrees from the cutting arm.


Embodiment 7. The cutting mechanism of any one of Embodiments 1-6, wherein the free ends of the one or more grasping arms curve laterally inward toward the cutting arm.


Embodiment 8. The cutting mechanism of Embodiment 7, wherein the curved free ends of the one or more grasping arms cross over the longitudinal axis of the cutting arm when moving from the open position to the closed position.


Embodiment 9. The cutting mechanism of Embodiment 7 or Embodiment 8, wherein the curved free ends curve laterally inward at an angle of between about 5 degrees and about 20 degrees.


Embodiment 10. The cutting mechanism of any one of Embodiments 1-9, wherein the cutting element is spring-loaded so as to be capable of actuation from a non-deployed to a deployed state via controlled release of spring energy.


Embodiment 11. The cutting mechanism of any one of Embodiments 1-10, wherein the central hinge comprises a linkage mechanism configured to convert axial movement of a control rod along the longitudinal axis of the cutting arm into lateral movement of the grasping arms.


Embodiment 12. The cutting mechanism of Embodiment 11, wherein the cutting element is connected to the control rod and extends through a slot of the cutting arm such that actuation of the control rod moves the cutting element within the slot in an axial direction relative to the cutting arm.


Embodiment 13. The cutting mechanism of any one of Embodiments 1-12, wherein the one or more grasping arms have a length of about 4 mm to about 40 mm.


Embodiment 14. The cutting mechanism of any one of Embodiments 1-13, wherein the cutting element comprises a sharpened edge.


Embodiment 15. The cutting mechanism of any one of Embodiments 1-14, wherein the cutting element comprises a tapered needle.


Embodiment 16. The cutting element of any one of Embodiments 1-15, wherein the cutting element comprises a wire loop configured to provide radio frequency current energy.


Embodiment 17. The cutting element of any one of Embodiments 1-16, wherein the cutting arm includes a gripping element configured to aid in gripping leaflet tissue in contact with the cutting arm.


Embodiment 18. The cutting mechanism of any one of Embodiments 1-17, further comprising an auxiliary arm connected to the central hinge and disposed opposite the one or more grasping arms, the auxiliary arm being mechanically connected to the cutting element such that movement of the auxiliary arm as the cutting mechanism moves between the open position and the closed position causes advancement and retraction of the cutting element relative to the cutting arm.


Embodiment 19. The cutting mechanism of any of the Embodiments 1-18, wherein the cutting element comprises at least two or more cutting elements.


Embodiment 20. The cutting mechanism of any of the Embodiments 1-19, wherein the cutting element has a depth of about 0.4 mm to about 10 mm.


Embodiment 21. A system for cutting leaflet tissue at a cardiac valve, the system comprising: a guide catheter having a proximal end and a distal end, wherein the distal end of the guide catheter is steerable to a position above a cardiac valve; and a cutting mechanism as in any one of Embodiments 1-20 routable through the guide catheter and configured to extend beyond the distal end of the guide catheter.


Embodiment 22. The system of Embodiment 21, further comprising a handle coupled to the proximal end of the guide catheter, the handle comprising at least one control operatively connected to the cutting mechanism to enable actuation of the grasping arms between the closed position and the open position and/or to enable actuation of the cutting element.


Embodiment 23. A method of cutting leaflet tissue at a cardiac valve within a body, the method comprising: providing a system for cutting leaflet tissue as in any of the Embodiment 1-22, positioning the guide catheter such that the distal end of the guide catheter is positioned near a targeted cardiac valve; extending the cutting mechanism beyond the distal end of the guide catheter; grasping targeted leaflet tissue between the cutting arm and the one or more grasping arms of the cutting mechanism; and actuating the cutting element of the cutting mechanism to cut the grasped leaflet tissue.


Embodiment 24. The method of Embodiment 23, wherein the one or more grasping arms are positioned on a ventricular side of the targeted leaflet tissue and the cutting arm is positioned on an atrial side of the targeted leaflet tissue when the leaflet tissue is grasped by the cutting mechanism.


Embodiment 25. The method of Embodiment 23 or Embodiment 24, wherein the cutting mechanism is advanced through the leaflet by repeated actuation of the one or more grasping arms between the open and closed positions so as to grasp and cut successive portions of leaflet tissue.


Embodiment 26. The method of any one of Embodiments 23-25, wherein the cutting mechanism is advanced through the leaflet tissue by positioning the one or more grasping arms to a position between a fully closed and fully open position, and moving the cutting mechanism through the leaflet tissue.


The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims
  • 1. A cutting mechanism configured for cutting leaflet tissue at a cardiac valve, the cutting mechanism comprising: a cutting arm having a length extending along a longitudinal axis, the cutting arm including an actuatable cutting element configured to cut targeted leaflet tissue upon sufficient contact with the targeted leaflet tissue;a central hinge disposed at or near a distal end of the cutting arm;one or more grasping arms each connected to the central hinge and extending therefrom to a respective free end, the one or more grasping arms being rotatable about the central hinge so as to be selectively moveable between a closed position wherein the one or more grasping arms are closed substantially against the cutting arm, andan open position wherein the one or more grasping arms are opened laterally away from the cutting arm by rotating about the central hinge,wherein the cutting mechanism is configured to enable grasping of leaflet tissue between the cutting arm and the one or more grasping arms and to enable the cutting of grasped leaflet tissue via actuation of the cutting element; andan auxiliary arm connected to the central hinge and disposed opposite the one or more grasping arms, the auxiliary arm being mechanically connected to the cutting element such that movement of the auxiliary arm as the cutting mechanism moves between the open position and the closed position causes advancement and retraction of the cutting element relative to the cutting arm.
  • 2. The cutting mechanism of claim 1, wherein the cutting mechanism comprises at least a first grasping arm and a second grasping arm in the one or more grasping arms disposed such that, when the cutting mechanism is in the closed position, the first grasping arm is disposed on a first side of the cutting arm and the second grasping arm is disposed on a second, opposite side of the cutting arm.
  • 3. The cutting mechanism of claim 2, wherein the cutting element is disposed on a portion of the cutting arm between the first and second grasping arms so as to enable cutting of leaflet tissue disposed between the first and second grasping arms.
  • 4. The cutting mechanism of claim 2, further comprising a cross bar extending between the first and second grasping arms.
  • 5. The cutting mechanism of claim 4, wherein the cross bar is aligned with the cutting element when the cutting mechanism is in the closed position, or is positioned closer to the central hinge than the cutting element when the cutting mechanism is in the closed position.
  • 6. The cutting mechanism of claim 1, wherein the one or more grasping arms are openable to an angle of up to about 90 degrees from the cutting arm.
  • 7. The cutting mechanism of claim 1, wherein the free ends of the one or more grasping arms curve laterally inward toward the cutting arm.
  • 8. The cutting mechanism of claim 7, wherein the curved free ends of the one or more grasping arms cross over the longitudinal axis of the cutting arm when moving from the open position to the closed position.
  • 9. The cutting mechanism of claim 7, wherein the curved free ends curve laterally inward at an angle of between about 5 degrees and about 20 degrees.
  • 10. The cutting mechanism of claim 1, wherein the cutting element is spring-loaded so as to be capable of actuation from a non-deployed to a deployed state via controlled release of spring energy.
  • 11. The cutting mechanism of claim 1, wherein the central hinge comprises a linkage mechanism configured to convert axial movement of a control rod along the longitudinal axis of the cutting arm into lateral movement of the grasping arms.
  • 12. The cutting mechanism of claim 11, wherein the cutting element is connected to the control rod and extends through a slot of the cutting arm such that actuation of the control rod moves the cutting element within the slot in an axial direction relative to the cutting arm.
  • 13. The cutting mechanism of claim 1, wherein the one or more grasping arms have a length of about 4 mm to about 40 mm.
  • 14. The cutting mechanism of claim 1, wherein the cutting element comprises a sharpened edge.
  • 15. The cutting mechanism of claim 1, wherein the cutting element comprises a tapered needle.
  • 16. The cutting mechanism of claim 1, wherein the cutting element comprises a wire loop configured to provide radio frequency current energy.
  • 17. The cutting mechanism of claim 1, wherein the cutting arm includes a gripping element configured to aid in gripping leaflet tissue in contact with the cutting arm.
  • 18. The cutting mechanism of claim 1, wherein the cutting element comprises at least two or more cutting elements.
  • 19. The cutting mechanism of claim 1, wherein the cutting element has a depth of about 0.4 mm to about 10 mm.
  • 20. A system for cutting leaflet tissue at a cardiac valve, the system comprising: a guide catheter having a proximal end and a distal end, wherein the distal end of the guide catheter is steerable to a position above a cardiac valve; anda cutting mechanism routable through the guide catheter and configured to extend beyond the distal end of the guide catheter, the cutting mechanism comprising: a cutting arm having a length extending along a longitudinal axis, the cutting arm including an actuatable cutting element configured to cut targeted leaflet tissue upon sufficient contact with the targeted leaflet tissue;a central hinge disposed at or near a distal end of the cutting arm;one or more grasping arms each connected to the central hinge and extending therefrom to a respective free end, the one or more grasping arms being rotatable about the central hinge so as to be selectively moveable between a closed position wherein the one or more grasping arms are closed substantially against the cutting arm, and an open position wherein the one or more grasping arms are opened laterally away from the cutting arm by rotating about the central hinge; andan auxiliary arm connected to the central hinge and disposed opposite the one or more grasping arms, the auxiliary arm being mechanically connected to the cutting element such that movement of the auxiliary arm as the cutting mechanism moves between the open position and the closed position causes advancement and retraction of the cutting element relative to the cutting arm;wherein the cutting mechanism is configured to enable grasping of leaflet tissue between the cutting arm and the one or more grasping arms and to enable the cutting of grasped leaflet tissue via actuation of the cutting element.
  • 21. The system of claim 20, further comprising a handle coupled to the proximal end of the guide catheter, the handle comprising at least one control operatively connected to the cutting mechanism to enable actuation of the grasping arms between the closed position and the open position and/or to enable actuation of the cutting element.
  • 22. A cutting mechanism configured for cutting leaflet tissue at a cardiac valve, the cutting mechanism comprising: a cutting arm having a length extending along a longitudinal axis, the cutting arm including an actuatable cutting element configured to cut targeted leaflet tissue upon sufficient contact with the targeted leaflet tissue;a central hinge disposed at or near a distal end of the cutting arm;one or more grasping arms each connected to the central hinge and extending therefrom to a respective free end, the one or more grasping arms being rotatable about the central hinge so as to be selectively moveable betweena closed position wherein the one or more grasping arms are closed substantially against the cutting arm, andan open position wherein the one or more grasping arms are opened laterally away from the cutting arm by rotating about the central hinge,wherein the cutting mechanism is configured to enable grasping of leaflet tissue between the cutting arm and the one or more grasping arms and to enable the cutting of grasped leaflet tissue via actuation of the cutting element,the central hinge comprises a linkage mechanism configured to convert axial movement of a control rod along the longitudinal axis of the cutting arm into lateral movement of the grasping arms, andthe cutting element is connected to the control rod and extends through a slot of the cutting arm such that actuation of the control rod moves the cutting element within the slot in an axial direction relative to the cutting arm.
  • 23. The cutting mechanism of claim 22, wherein the cutting element is spring-loaded so as to be capable of actuation from a non-deployed to a deployed state via controlled release of spring energy.
  • 24. The cutting mechanism of claim 22, wherein the cutting element comprises a sharpened edge.
  • 25. The cutting mechanism of claim 22, wherein the cutting element comprises a tapered needle.
  • 26. The cutting mechanism of claim 22, wherein the cutting element comprises a wire loop configured to provide radio frequency current energy.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 63/020,662, filed May 6, 2020, the entire contents of which are incorporated by reference herein.

US Referenced Citations (701)
Number Name Date Kind
1996261 Storz Apr 1935 A
2097018 Chamberlin Oct 1937 A
2108206 Mecker Feb 1938 A
3296668 Aiken Jan 1967 A
3378010 Codling et al. Apr 1968 A
3470875 Johnson Oct 1969 A
3557780 Sato Jan 1971 A
3671979 Moulopoulos Jun 1972 A
3675639 Cimber Jul 1972 A
3776237 Hill et al. Dec 1973 A
3874338 Happel Apr 1975 A
3874388 King et al. Apr 1975 A
4007743 Blake Feb 1977 A
4056854 Boretos et al. Nov 1977 A
4064881 Meredith Dec 1977 A
4091815 Larsen May 1978 A
4112951 Hulka et al. Sep 1978 A
4235238 Ogiu et al. Nov 1980 A
4297749 Davis et al. Nov 1981 A
4312337 Donohue Jan 1982 A
4425908 Simon Jan 1984 A
4458682 Cerwin Jul 1984 A
4484579 Meno et al. Nov 1984 A
4487205 Di et al. Dec 1984 A
4498476 Cerwin et al. Feb 1985 A
4510934 Batra Apr 1985 A
4531522 Bedi et al. Jul 1985 A
4578061 Lemelson Mar 1986 A
4641366 Yokoyama et al. Feb 1987 A
4686965 Bonnet et al. Aug 1987 A
4777951 Cribier et al. Oct 1988 A
4809695 Gwathmey et al. Mar 1989 A
4872455 Pinchuk et al. Oct 1989 A
4878495 Grayzel Nov 1989 A
4917089 Sideris Apr 1990 A
4944295 Gwathmey et al. Jul 1990 A
4969890 Sugita et al. Nov 1990 A
4994077 Dobben Feb 1991 A
5015249 Nakao et al. May 1991 A
5019096 Fox et al. May 1991 A
5042707 Taheri Aug 1991 A
5047041 Samuels Sep 1991 A
5049153 Nakao et al. Sep 1991 A
5053043 Gottesman et al. Oct 1991 A
5061277 Carpentier et al. Oct 1991 A
5069679 Taheri Dec 1991 A
5071428 Chin et al. Dec 1991 A
5078722 Stevens Jan 1992 A
5078723 Dance et al. Jan 1992 A
5108368 Hammerslag et al. Apr 1992 A
5125758 Dewan Jun 1992 A
5171252 Friedland Dec 1992 A
5171259 Inoue Dec 1992 A
5190554 Coddington et al. Mar 1993 A
5195968 Lundquist et al. Mar 1993 A
5209756 Seedhom et al. May 1993 A
5217460 Knoepfler Jun 1993 A
5226429 Kuzmak Jul 1993 A
5226911 Chee et al. Jul 1993 A
5234437 Sepetka Aug 1993 A
5242456 Nash et al. Sep 1993 A
5250071 Palermo Oct 1993 A
5251611 Zehel et al. Oct 1993 A
5254130 Poncet et al. Oct 1993 A
5261916 Engelson Nov 1993 A
5271381 Ailinger et al. Dec 1993 A
5275578 Adams Jan 1994 A
5282845 Bush et al. Feb 1994 A
5304131 Paskar Apr 1994 A
5306283 Conners Apr 1994 A
5306286 Stack et al. Apr 1994 A
5312415 Palermo May 1994 A
5314424 Nicholas May 1994 A
5318525 West et al. Jun 1994 A
5320632 Heidmueller Jun 1994 A
5325845 Adair Jul 1994 A
5330442 Green et al. Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5336227 Nakao et al. Aug 1994 A
5342393 Stack Aug 1994 A
5350397 Palermo et al. Sep 1994 A
5350399 Erlebacher et al. Sep 1994 A
5359994 Krauter et al. Nov 1994 A
5368564 Savage Nov 1994 A
5368601 Sauer et al. Nov 1994 A
5373854 Kolozsi Dec 1994 A
5383886 Kensey et al. Jan 1995 A
5387219 Rappe Feb 1995 A
5391182 Chin Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5403326 Harrison et al. Apr 1995 A
5411552 Andersen et al. May 1995 A
5417684 Jackson et al. May 1995 A
5417699 Klein et al. May 1995 A
5417700 Egan May 1995 A
5423830 Schneebaum et al. Jun 1995 A
5423857 Rosenman et al. Jun 1995 A
5423858 Bolanos et al. Jun 1995 A
5423882 Jackman et al. Jun 1995 A
5431666 Sauer et al. Jul 1995 A
5437551 Chalifoux Aug 1995 A
5437681 Meade et al. Aug 1995 A
5447966 Hermes et al. Sep 1995 A
5450860 O'Connor Sep 1995 A
5456400 Shichman et al. Oct 1995 A
5456684 Schmidt et al. Oct 1995 A
5462527 Stevens-Wright et al. Oct 1995 A
5472044 Hall et al. Dec 1995 A
5472423 Gronauer Dec 1995 A
5476470 Fitzgibbons, Jr. Dec 1995 A
5477856 Lundquist Dec 1995 A
5478309 Sweezer et al. Dec 1995 A
5478353 Yoon Dec 1995 A
5487746 Yu et al. Jan 1996 A
5496332 Sierra et al. Mar 1996 A
5507725 Savage et al. Apr 1996 A
5507755 Gresl et al. Apr 1996 A
5507757 Sauer et al. Apr 1996 A
5520701 Karl-Dieter May 1996 A
5522873 Jackman et al. Jun 1996 A
5527313 Scott et al. Jun 1996 A
5527321 Hinchliffe Jun 1996 A
5527322 Klein et al. Jun 1996 A
5536251 Evard et al. Jul 1996 A
5540705 Meade et al. Jul 1996 A
5542949 Yoon Aug 1996 A
5554185 Block et al. Sep 1996 A
5562678 Booker Oct 1996 A
5569274 Rapacki et al. Oct 1996 A
5571085 Accisano, III Nov 1996 A
5571137 Marlow et al. Nov 1996 A
5571215 Sterman et al. Nov 1996 A
5575802 McQuilkin et al. Nov 1996 A
5582611 Tsuruta et al. Dec 1996 A
5584803 Stevens et al. Dec 1996 A
5593424 Northrup, III Jan 1997 A
5593435 Carpentier et al. Jan 1997 A
5609598 Laufer et al. Mar 1997 A
5617854 Munsif Apr 1997 A
5618306 Roth et al. Apr 1997 A
5620452 Yoon Apr 1997 A
5620461 Muijs et al. Apr 1997 A
5626588 Sauer et al. May 1997 A
5634932 Schmidt Jun 1997 A
5636634 Kordis et al. Jun 1997 A
5639277 Mariant et al. Jun 1997 A
5640955 Ockuly et al. Jun 1997 A
5649937 Bito et al. Jul 1997 A
5662681 Nash et al. Sep 1997 A
5669917 Sauer et al. Sep 1997 A
5669919 Sanders et al. Sep 1997 A
5690671 McGurk et al. Nov 1997 A
5695504 Gifford et al. Dec 1997 A
5695505 Yoon Dec 1997 A
5702825 Keita et al. Dec 1997 A
5706824 Whittier Jan 1998 A
5709707 Lock et al. Jan 1998 A
5713910 Gordon et al. Feb 1998 A
5713911 Racenet et al. Feb 1998 A
5715817 Stevens-Wright et al. Feb 1998 A
5716367 Koike et al. Feb 1998 A
5718725 Sterman et al. Feb 1998 A
5719725 Nakao Feb 1998 A
5722421 Francese et al. Mar 1998 A
5725542 Yoon Mar 1998 A
5725556 Moser et al. Mar 1998 A
5738649 Macoviak Apr 1998 A
5741271 Nakao et al. Apr 1998 A
5741280 Fleenor Apr 1998 A
5746747 McKeating May 1998 A
5749828 Yeung May 1998 A
5759193 Burbank et al. Jun 1998 A
5769812 Stevens et al. Jun 1998 A
5769863 Garrison Jun 1998 A
5772578 Heimberger et al. Jun 1998 A
5782845 Shewchuk Jul 1998 A
5797927 Yoon Aug 1998 A
5797960 Stevens et al. Aug 1998 A
5810847 Laufer et al. Sep 1998 A
5810849 Kontos Sep 1998 A
5810853 Yoon Sep 1998 A
5810876 Kelleher Sep 1998 A
5814029 Hassett Sep 1998 A
5820591 Thompson et al. Oct 1998 A
5820592 Hammerslag Oct 1998 A
5820630 Lind Oct 1998 A
5820631 Nobles Oct 1998 A
5823955 Kuck et al. Oct 1998 A
5823956 Roth et al. Oct 1998 A
5824065 Gross Oct 1998 A
5827237 Macoviak et al. Oct 1998 A
5829447 Stevens et al. Nov 1998 A
5833671 Macoviak et al. Nov 1998 A
5836955 Buelna et al. Nov 1998 A
5840081 Andersen et al. Nov 1998 A
5843031 Hermann et al. Dec 1998 A
5843103 Wulfman Dec 1998 A
5849019 Yoon Dec 1998 A
5853422 Huebsch et al. Dec 1998 A
5855271 Eubanks et al. Jan 1999 A
5855590 Malecki et al. Jan 1999 A
5855614 Stevens et al. Jan 1999 A
5860990 Nobles et al. Jan 1999 A
5861003 Latson et al. Jan 1999 A
5868733 Ockuly et al. Feb 1999 A
5876399 Chia et al. Mar 1999 A
5879307 Chio et al. Mar 1999 A
5885271 Hamilton et al. Mar 1999 A
5891160 Williamson et al. Apr 1999 A
5895404 Ruiz Apr 1999 A
5895417 Pomeranz et al. Apr 1999 A
5906620 Nakao et al. May 1999 A
5908420 Parins et al. Jun 1999 A
5916147 Boury Jun 1999 A
5928224 Laufer Jul 1999 A
5944733 Engelson Aug 1999 A
5947363 Bolduc et al. Sep 1999 A
5954732 Hart et al. Sep 1999 A
5957949 Leonhardt et al. Sep 1999 A
5957973 Quiachon et al. Sep 1999 A
5972020 Carpentier et al. Oct 1999 A
5972030 Garrison et al. Oct 1999 A
5980455 Daniel et al. Nov 1999 A
5989284 Laufer Nov 1999 A
5997547 Nakao et al. Dec 1999 A
6007546 Snow et al. Dec 1999 A
6015417 Reynolds, Jr. Jan 2000 A
6019722 Spence et al. Feb 2000 A
6022360 Reimels et al. Feb 2000 A
6033378 Lundquist et al. Mar 2000 A
6033419 Hamblin et al. Mar 2000 A
6036699 Andreas et al. Mar 2000 A
6048351 Gordon et al. Apr 2000 A
6053933 Balazs et al. Apr 2000 A
6056769 Epstein et al. May 2000 A
6059757 Macoviak et al. May 2000 A
6060628 Aoyama et al. May 2000 A
6060629 Pham et al. May 2000 A
6063106 Gibson May 2000 A
6066146 Carroll et al. May 2000 A
6068628 Fanton et al. May 2000 A
6068629 Haissaguerre et al. May 2000 A
6077214 Mortier et al. Jun 2000 A
6086600 Kortenbach Jul 2000 A
6088889 Luther et al. Jul 2000 A
6090118 McGuckin, Jr. Jul 2000 A
6099505 Ryan et al. Aug 2000 A
6099553 Hart et al. Aug 2000 A
6110145 Macoviak Aug 2000 A
6117144 Nobles et al. Sep 2000 A
6117159 Huebsch et al. Sep 2000 A
6123665 Kawano Sep 2000 A
6123699 Webster, Jr. Sep 2000 A
6126658 Baker Oct 2000 A
6132447 Dorsey Oct 2000 A
6136010 Modesitt et al. Oct 2000 A
6139508 Simpson et al. Oct 2000 A
6143024 Campbell et al. Nov 2000 A
6159240 Sparer et al. Dec 2000 A
6162233 Williamson et al. Dec 2000 A
6165164 Hill et al. Dec 2000 A
6165183 Kuehn et al. Dec 2000 A
6165204 Levinson et al. Dec 2000 A
6168614 Andersen et al. Jan 2001 B1
6171320 Monassevitch Jan 2001 B1
6174322 Schneidt Jan 2001 B1
6180059 Divino et al. Jan 2001 B1
6182664 Cosgrove Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190408 Melvin Feb 2001 B1
6197043 Davidson Mar 2001 B1
6203531 Ockuly et al. Mar 2001 B1
6203553 Robertson et al. Mar 2001 B1
6206893 Klein et al. Mar 2001 B1
6206907 Marino et al. Mar 2001 B1
6210419 Mayenberger et al. Apr 2001 B1
6210432 Solem et al. Apr 2001 B1
6245079 Nobles et al. Jun 2001 B1
6264617 Bales Jul 2001 B1
6267746 Bumbalough Jul 2001 B1
6267781 Tu Jul 2001 B1
6269819 Oz et al. Aug 2001 B1
6277555 Duran et al. Aug 2001 B1
6283127 Sterman et al. Sep 2001 B1
6283962 Tu et al. Sep 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6306133 Tu et al. Oct 2001 B1
6312447 Grimes Nov 2001 B1
6319250 Falwell et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6332893 Mortier et al. Dec 2001 B1
6334860 Dorn Jan 2002 B1
6352708 Duran et al. Mar 2002 B1
6355030 Aldrich et al. Mar 2002 B1
6358277 Duran Mar 2002 B1
6368326 Dakin et al. Apr 2002 B1
6387104 Pugsley et al. May 2002 B1
6402780 Williamson et al. Jun 2002 B2
6402781 Langberg et al. Jun 2002 B1
6406420 McCarthy et al. Jun 2002 B1
6419640 Taylor Jul 2002 B1
6419669 Frazier et al. Jul 2002 B1
6461366 Seguin Oct 2002 B1
6464707 Bjerken Oct 2002 B1
6482224 Michler et al. Nov 2002 B1
6485489 Teirstein et al. Nov 2002 B2
6494881 Bales et al. Dec 2002 B1
6508828 Akerfeldt et al. Jan 2003 B1
6517550 Konya et al. Feb 2003 B1
6533796 Sauer et al. Mar 2003 B1
6537314 Langberg et al. Mar 2003 B2
6540755 Ockuly et al. Apr 2003 B2
6551331 Nobles et al. Apr 2003 B2
6562037 Paton et al. May 2003 B2
6562052 Nobles et al. May 2003 B2
6575971 Hauck et al. Jun 2003 B2
6585761 Taheri Jul 2003 B2
6599311 Biggs et al. Jul 2003 B1
6616684 Vidlund et al. Sep 2003 B1
6619291 Hlavka et al. Sep 2003 B2
6626899 Houser et al. Sep 2003 B2
6626921 Blatter et al. Sep 2003 B2
6626930 Allen et al. Sep 2003 B1
6629534 St et al. Oct 2003 B1
6641592 Sauer et al. Nov 2003 B1
6656221 Taylor et al. Dec 2003 B2
6669687 Saadat Dec 2003 B1
6685648 Flaherty et al. Feb 2004 B2
6689164 Seguin Feb 2004 B1
6695866 Kuehn et al. Feb 2004 B1
6701929 Hussein Mar 2004 B2
6702825 Frazier et al. Mar 2004 B2
6702826 Liddicoat et al. Mar 2004 B2
6709382 Horner Mar 2004 B1
6709456 Langberg et al. Mar 2004 B2
6718985 Hlavka et al. Apr 2004 B2
6719767 Kimblad Apr 2004 B1
6723038 Schroeder et al. Apr 2004 B1
6726716 Marquez Apr 2004 B2
6740107 Loeb et al. May 2004 B2
6746471 Mortier et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6755777 Schweich et al. Jun 2004 B2
6764510 Vidlund et al. Jul 2004 B2
6767349 Ouchi Jul 2004 B2
6770083 Seguin Aug 2004 B2
6797001 Mathis et al. Sep 2004 B2
6797002 Spence et al. Sep 2004 B2
6860179 Hopper et al. Mar 2005 B2
6875224 Grimes Apr 2005 B2
6926715 Hauck et al. Aug 2005 B1
6932810 Ryan Aug 2005 B2
6945978 Hyde Sep 2005 B1
6949122 Adams et al. Sep 2005 B2
6966914 Abe Nov 2005 B2
6986775 Morales et al. Jan 2006 B2
7004970 Cauthen et al. Feb 2006 B2
7011669 Kimblad Mar 2006 B2
7033390 Johnson et al. Apr 2006 B2
7048754 Martin et al. May 2006 B2
7056294 Khairkhahan et al. Jun 2006 B2
7112207 Allen et al. Sep 2006 B2
7226467 Lucatero et al. Jun 2007 B2
7258694 Choi et al. Aug 2007 B1
7288097 Seguin Oct 2007 B2
7291168 Macoviak et al. Nov 2007 B2
7338467 Lutter Mar 2008 B2
7381210 Zarbatany et al. Jun 2008 B2
7435257 Lashinski et al. Oct 2008 B2
7464712 Oz et al. Dec 2008 B2
7497822 Kugler et al. Mar 2009 B1
7533790 Knodel et al. May 2009 B1
7563267 Goldfarb et al. Jul 2009 B2
7563273 Goldfarb et al. Jul 2009 B2
7604646 Goldfarb et al. Oct 2009 B2
7608091 Goldfarb et al. Oct 2009 B2
7635329 Goldfarb et al. Dec 2009 B2
7651502 Jackson Jan 2010 B2
7655015 Goldfarb et al. Feb 2010 B2
7666204 Thornton et al. Feb 2010 B2
7955340 Michlitsch et al. Jun 2011 B2
8216234 Long Jul 2012 B2
8257356 Bleich et al. Sep 2012 B2
8398708 Meiri et al. Mar 2013 B2
8435237 Bahney May 2013 B2
8496655 Epp et al. Jul 2013 B2
8500768 Cohen Aug 2013 B2
8523881 Cabiri et al. Sep 2013 B2
8623077 Cohn Jan 2014 B2
8690858 Machold et al. Apr 2014 B2
8821518 Saliman et al. Sep 2014 B2
8926588 Berthiaume et al. Jan 2015 B2
9126032 Khairkhahan et al. Sep 2015 B2
9211119 Hendricksen et al. Dec 2015 B2
9370341 Ceniccola et al. Jun 2016 B2
9498331 Chang et al. Nov 2016 B2
9572666 Basude et al. Feb 2017 B2
9770256 Cohen et al. Sep 2017 B2
9949833 McCleary et al. Apr 2018 B2
10238493 Metchik et al. Mar 2019 B1
10667804 Basude et al. Jun 2020 B2
11013554 Coates May 2021 B2
11406250 Saadat et al. Aug 2022 B2
20010002445 Vesely May 2001 A1
20010004715 Duran et al. Jun 2001 A1
20010005787 Oz et al. Jun 2001 A1
20010010005 Kammerer et al. Jul 2001 A1
20010018611 Solem et al. Aug 2001 A1
20010022872 Marui Sep 2001 A1
20010037084 Nardeo Nov 2001 A1
20010039411 Johansson et al. Nov 2001 A1
20010044568 Langberg et al. Nov 2001 A1
20010044635 Niizeki et al. Nov 2001 A1
20020013547 Paskar Jan 2002 A1
20020013571 Goldfarb et al. Jan 2002 A1
20020022848 Garrison et al. Feb 2002 A1
20020026233 Shaknovich Feb 2002 A1
20020035361 Houser et al. Mar 2002 A1
20020035381 Bardy et al. Mar 2002 A1
20020042651 Liddicoat et al. Apr 2002 A1
20020055767 Forde et al. May 2002 A1
20020055774 Liddicoat May 2002 A1
20020055775 Carpentier et al. May 2002 A1
20020058910 Hermann et al. May 2002 A1
20020058995 Stevens May 2002 A1
20020077687 Ahn Jun 2002 A1
20020087148 Brock et al. Jul 2002 A1
20020087169 Brock et al. Jul 2002 A1
20020087173 Alferness et al. Jul 2002 A1
20020103532 Langberg et al. Aug 2002 A1
20020107534 Schaefer et al. Aug 2002 A1
20020147456 Diduch et al. Oct 2002 A1
20020156526 Hlavka et al. Oct 2002 A1
20020158528 Tsuzaki et al. Oct 2002 A1
20020161378 Downing Oct 2002 A1
20020169360 Taylor et al. Nov 2002 A1
20020173811 Tu et al. Nov 2002 A1
20020173841 Ortiz et al. Nov 2002 A1
20020183766 Seguin Dec 2002 A1
20020183787 Wahr et al. Dec 2002 A1
20020183835 Taylor et al. Dec 2002 A1
20030005797 Hopper et al. Jan 2003 A1
20030045778 Ohline et al. Mar 2003 A1
20030050693 Quijano et al. Mar 2003 A1
20030069570 Witzel et al. Apr 2003 A1
20030069593 Tremulis et al. Apr 2003 A1
20030069636 Solem et al. Apr 2003 A1
20030074012 Nguyen et al. Apr 2003 A1
20030078654 Taylor et al. Apr 2003 A1
20030083742 Spence et al. May 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030105520 Alferness et al. Jun 2003 A1
20030120340 Liska et al. Jun 2003 A1
20030120341 Shennib et al. Jun 2003 A1
20030130669 Damarati Jul 2003 A1
20030130730 Cohn et al. Jul 2003 A1
20030144697 Mathis et al. Jul 2003 A1
20030167071 Martin et al. Sep 2003 A1
20030171776 Adams et al. Sep 2003 A1
20030187467 Schreck Oct 2003 A1
20030195562 Collier et al. Oct 2003 A1
20030208231 Williamson et al. Nov 2003 A1
20030229395 Cox Dec 2003 A1
20030233038 Hassett Dec 2003 A1
20040002719 Oz et al. Jan 2004 A1
20040003819 St et al. Jan 2004 A1
20040015232 Shu et al. Jan 2004 A1
20040019377 Taylor et al. Jan 2004 A1
20040019378 Hlavka et al. Jan 2004 A1
20040024414 Downing Feb 2004 A1
20040030319 Korkor et al. Feb 2004 A1
20040030382 St et al. Feb 2004 A1
20040034380 Woolfson et al. Feb 2004 A1
20040039442 St et al. Feb 2004 A1
20040039443 Solem et al. Feb 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040044365 Bachman Mar 2004 A1
20040049207 Goldfarb et al. Mar 2004 A1
20040049211 Tremulis et al. Mar 2004 A1
20040059345 Nakao et al. Mar 2004 A1
20040073302 Rourke et al. Apr 2004 A1
20040078053 Berg et al. Apr 2004 A1
20040087975 Lucatero et al. May 2004 A1
20040088047 Spence et al. May 2004 A1
20040092858 Wilson et al. May 2004 A1
20040092962 Thornton et al. May 2004 A1
20040097878 Anderson et al. May 2004 A1
20040097979 Svanidze et al. May 2004 A1
20040106989 Wilson et al. Jun 2004 A1
20040111099 Nguyen et al. Jun 2004 A1
20040116848 Gardeski et al. Jun 2004 A1
20040116951 Rosengart Jun 2004 A1
20040122448 Levine Jun 2004 A1
20040127849 Kantor Jul 2004 A1
20040127981 Rahdert et al. Jul 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040127983 Mortier et al. Jul 2004 A1
20040133062 Pai et al. Jul 2004 A1
20040133063 McCarthy et al. Jul 2004 A1
20040133082 Abraham-Fuchs et al. Jul 2004 A1
20040133192 Houser et al. Jul 2004 A1
20040133220 Lashinski et al. Jul 2004 A1
20040133232 Rosenbluth et al. Jul 2004 A1
20040133240 Adams et al. Jul 2004 A1
20040133273 Cox Jul 2004 A1
20040138744 Lashinski et al. Jul 2004 A1
20040138745 Macoviak et al. Jul 2004 A1
20040147826 Peterson Jul 2004 A1
20040148021 Cartledge et al. Jul 2004 A1
20040152847 Emri et al. Aug 2004 A1
20040152947 Schroeder et al. Aug 2004 A1
20040153144 Seguin Aug 2004 A1
20040158123 Jayaraman Aug 2004 A1
20040162610 Liska et al. Aug 2004 A1
20040167539 Kuehn et al. Aug 2004 A1
20040186486 Roue et al. Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040193191 Starksen et al. Sep 2004 A1
20040215339 Drasler et al. Oct 2004 A1
20040220593 Greenhalgh Nov 2004 A1
20040220657 Nieminen et al. Nov 2004 A1
20040225233 Frankowski et al. Nov 2004 A1
20040225300 Goldfarb et al. Nov 2004 A1
20040225305 Ewers et al. Nov 2004 A1
20040225353 McGuckin et al. Nov 2004 A1
20040236354 Seguin Nov 2004 A1
20040242960 Orban Dec 2004 A1
20040243229 Vidlund et al. Dec 2004 A1
20040249452 Adams et al. Dec 2004 A1
20040249453 Cartledge et al. Dec 2004 A1
20040260393 Rahdert et al. Dec 2004 A1
20050004583 Oz et al. Jan 2005 A1
20050004665 Aklog Jan 2005 A1
20050004668 Aklog et al. Jan 2005 A1
20050021056 St et al. Jan 2005 A1
20050021057 St et al. Jan 2005 A1
20050021058 Negro Jan 2005 A1
20050033446 Deem et al. Feb 2005 A1
20050038383 Kelley et al. Feb 2005 A1
20050038508 Gabbay Feb 2005 A1
20050049698 Bolling et al. Mar 2005 A1
20050055089 Macoviak et al. Mar 2005 A1
20050059351 Cauwels et al. Mar 2005 A1
20050065453 Shabaz et al. Mar 2005 A1
20050085903 Lau Apr 2005 A1
20050119735 Spence et al. Jun 2005 A1
20050131438 Cohn Jun 2005 A1
20050143809 Salahieh et al. Jun 2005 A1
20050149014 Hauck et al. Jul 2005 A1
20050159763 Mollenauer et al. Jul 2005 A1
20050159810 Filsoufi Jul 2005 A1
20050192633 Montpetit Sep 2005 A1
20050197694 Pai et al. Sep 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050216039 Lederman Sep 2005 A1
20050228422 Machold et al. Oct 2005 A1
20050228495 Macoviak Oct 2005 A1
20050251001 Hassett Nov 2005 A1
20050256452 Demarchi et al. Nov 2005 A1
20050267493 Schreck et al. Dec 2005 A1
20050273160 Lashinski et al. Dec 2005 A1
20050277876 Hayden Dec 2005 A1
20050287493 Novak et al. Dec 2005 A1
20060004247 Kute et al. Jan 2006 A1
20060009759 Chrisitian et al. Jan 2006 A1
20060015003 Moaddes et al. Jan 2006 A1
20060015179 Bulman-Fleming et al. Jan 2006 A1
20060020275 Goldfarb et al. Jan 2006 A1
20060020327 Lashinski et al. Jan 2006 A1
20060020334 Lashinski et al. Jan 2006 A1
20060030866 Schreck Feb 2006 A1
20060030867 Zadno Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060058871 Zakay et al. Mar 2006 A1
20060064115 Allen et al. Mar 2006 A1
20060064116 Allen et al. Mar 2006 A1
20060064118 Kimblad Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060089671 Goldfarb et al. Apr 2006 A1
20060089711 Dolan Apr 2006 A1
20060135961 Rosenman et al. Jun 2006 A1
20060135993 Seguin Jun 2006 A1
20060184198 Bales et al. Aug 2006 A1
20060184203 Martin et al. Aug 2006 A1
20060195012 Mortier et al. Aug 2006 A1
20060229708 Powell et al. Oct 2006 A1
20060252984 Rahdert et al. Nov 2006 A1
20060276890 Solem et al. Dec 2006 A1
20070016225 Nakao Jan 2007 A1
20070038293 St et al. Feb 2007 A1
20070060997 De Boer Mar 2007 A1
20070073185 Nakao Mar 2007 A1
20070100356 Lucatero et al. May 2007 A1
20070118155 Goldfarb et al. May 2007 A1
20070129737 Goldfarb et al. Jun 2007 A1
20070173757 Levine et al. Jul 2007 A1
20070197858 Goldfarb et al. Aug 2007 A1
20070198082 Kapadia et al. Aug 2007 A1
20070260225 Sakakine et al. Nov 2007 A1
20070287884 Schena Dec 2007 A1
20080009858 Rizvi Jan 2008 A1
20080039935 Buch et al. Feb 2008 A1
20080045936 Vaska et al. Feb 2008 A1
20080051703 Thornton et al. Feb 2008 A1
20080051807 St et al. Feb 2008 A1
20080097467 Gruber et al. Apr 2008 A1
20080097489 Goldfarb et al. Apr 2008 A1
20080167714 St et al. Jul 2008 A1
20080183194 Goldfarb et al. Jul 2008 A1
20080188850 Mody et al. Aug 2008 A1
20080195126 Solem Aug 2008 A1
20080243249 Kohm et al. Oct 2008 A1
20080294175 Bardsley et al. Nov 2008 A1
20080312496 Zwolinski Dec 2008 A1
20090012538 Saliman et al. Jan 2009 A1
20090036768 Seehusen et al. Feb 2009 A1
20090156995 Martin et al. Jun 2009 A1
20090163934 Raschdorf et al. Jun 2009 A1
20090177266 Powell et al. Jul 2009 A1
20090192510 Bahney Jul 2009 A1
20090198322 Deem et al. Aug 2009 A1
20090204005 Keast et al. Aug 2009 A1
20090209955 Forster et al. Aug 2009 A1
20090209991 Hinchliffe et al. Aug 2009 A1
20090270858 Hauck et al. Oct 2009 A1
20090276039 Meretei Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090326567 Goldfarb et al. Dec 2009 A1
20100016958 St et al. Jan 2010 A1
20100022823 Goldfarb et al. Jan 2010 A1
20100044410 Argentine et al. Feb 2010 A1
20100121437 Subramanian et al. May 2010 A1
20100152612 Headley et al. Jun 2010 A1
20100217261 Watson Aug 2010 A1
20100262231 Tuval et al. Oct 2010 A1
20100268226 Epp et al. Oct 2010 A1
20100298929 Thornton et al. Nov 2010 A1
20110009864 Bucciaglia et al. Jan 2011 A1
20110184405 Mueller Jul 2011 A1
20110224710 Bleich Sep 2011 A1
20110238052 Robinson Sep 2011 A1
20120022527 Woodruff et al. Jan 2012 A1
20120022640 Gross et al. Jan 2012 A1
20120065464 Ellis et al. Mar 2012 A1
20120150194 Odermatt et al. Jun 2012 A1
20120157765 Mitelberg Jun 2012 A1
20120172915 Fifer et al. Jul 2012 A1
20120179184 Orlov Jul 2012 A1
20120265222 Gordin et al. Oct 2012 A1
20120310330 Buchbinder et al. Dec 2012 A1
20120316639 Kleinschrodt Dec 2012 A1
20120330348 Strauss et al. Dec 2012 A1
20130041314 Dillon Feb 2013 A1
20130066341 Ketai et al. Mar 2013 A1
20130066342 Dell et al. Mar 2013 A1
20130109910 Alexander et al. May 2013 A1
20130172828 Kappel et al. Jul 2013 A1
20130317515 Kuroda et al. Nov 2013 A1
20140039511 Morris et al. Feb 2014 A1
20140135799 Henderson May 2014 A1
20140228871 Cohen et al. Aug 2014 A1
20140276913 Tah et al. Sep 2014 A1
20140309670 Bakos et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140350662 Vaturi Nov 2014 A1
20140358224 Tegels et al. Dec 2014 A1
20140364866 Dryden et al. Dec 2014 A1
20140379074 Spence et al. Dec 2014 A1
20150005704 Heisel et al. Jan 2015 A1
20150005801 Marquis et al. Jan 2015 A1
20150051698 Ruyra et al. Feb 2015 A1
20150094800 Chawla Apr 2015 A1
20150112430 Creaven et al. Apr 2015 A1
20150211946 Pons et al. Jul 2015 A1
20150230947 Krieger et al. Aug 2015 A1
20150257877 Hernandez Sep 2015 A1
20150257883 Basude et al. Sep 2015 A1
20150306806 Dando et al. Oct 2015 A1
20150313581 Wolfe Nov 2015 A1
20160015410 Asirvatham et al. Jan 2016 A1
20160074165 Spence et al. Mar 2016 A1
20160174979 Wei Jun 2016 A1
20160317174 Dake Nov 2016 A1
20170042678 Ganesan et al. Feb 2017 A1
20170100183 Iaizzo et al. Apr 2017 A1
20170143330 Basude et al. May 2017 A1
20170202559 Taha Jul 2017 A1
20170232238 Biller et al. Aug 2017 A1
20180008268 Khairkhahan Jan 2018 A1
20180028215 Cohen Feb 2018 A1
20180092661 Prabhu Apr 2018 A1
20180133010 Kizuka May 2018 A1
20180161159 Lee et al. Jun 2018 A1
20180360457 Ellis et al. Dec 2018 A1
20190029790 Bak-Boychuk et al. Jan 2019 A1
20190183571 De Marchena Jun 2019 A1
20190298517 Sanchez et al. Oct 2019 A1
20190307458 Mathis et al. Oct 2019 A1
20200121460 Dale et al. Apr 2020 A1
20210145574 Childs et al. May 2021 A1
Foreign Referenced Citations (163)
Number Date Country
1469724 Jan 2004 CN
102770080 Nov 2012 CN
103841899 Jun 2014 CN
104244841 Dec 2014 CN
3504292 Jul 1986 DE
9100873 Apr 1991 DE
10116168 Nov 2001 DE
0179562 Apr 1986 EP
0558031 Sep 1993 EP
0684012 Nov 1995 EP
0727239 Aug 1996 EP
0782836 Jul 1997 EP
1230899 Aug 2002 EP
1674040 Jun 2006 EP
1980288 Oct 2008 EP
2005912 Dec 2008 EP
2537487 Dec 2012 EP
2641570 Sep 2013 EP
2702965 Mar 2014 EP
2740419 Jun 2014 EP
3009103 Apr 2016 EP
2705556 Dec 1994 FR
2768324 Mar 1999 FR
2903292 Jan 2008 FR
1598111 Sep 1981 GB
2151142 Jul 1985 GB
09-253030 Sep 1997 JP
11-089937 Apr 1999 JP
2000-283130 Oct 2000 JP
2001-517529 Oct 2001 JP
2006-528911 Dec 2006 JP
2013-516244 May 2013 JP
2014-523274 Sep 2014 JP
2015-502548 Jan 2015 JP
2018-030008 Mar 2018 JP
8100668 Mar 1981 WO
9101689 Feb 1991 WO
9118881 Dec 1991 WO
9212690 Aug 1992 WO
9418881 Sep 1994 WO
9418893 Sep 1994 WO
9508292 Mar 1995 WO
9511620 May 1995 WO
9515715 Jun 1995 WO
9614032 May 1996 WO
9620655 Jul 1996 WO
9622735 Aug 1996 WO
9630072 Oct 1996 WO
9718746 May 1997 WO
9725927 Jul 1997 WO
9726034 Jul 1997 WO
9738748 Oct 1997 WO
9739688 Oct 1997 WO
9748436 Dec 1997 WO
9807375 Feb 1998 WO
9824372 Jun 1998 WO
9830153 Jul 1998 WO
9832382 Jul 1998 WO
9835638 Aug 1998 WO
9900059 Jan 1999 WO
9901377 Jan 1999 WO
9907295 Feb 1999 WO
9907354 Feb 1999 WO
9913777 Mar 1999 WO
9944524 Sep 1999 WO
9966967 Dec 1999 WO
0002489 Jan 2000 WO
0003651 Jan 2000 WO
0003759 Jan 2000 WO
0012168 Mar 2000 WO
0044313 Aug 2000 WO
0059382 Oct 2000 WO
0060995 Oct 2000 WO
0100111 Jan 2001 WO
0100114 Jan 2001 WO
0103651 Jan 2001 WO
0126557 Apr 2001 WO
0126586 Apr 2001 WO
0126587 Apr 2001 WO
0126588 Apr 2001 WO
0126703 Apr 2001 WO
0128432 Apr 2001 WO
0128455 Apr 2001 WO
0147438 Jul 2001 WO
0149213 Jul 2001 WO
0150985 Jul 2001 WO
0154618 Aug 2001 WO
0156512 Aug 2001 WO
0166001 Sep 2001 WO
0170320 Sep 2001 WO
0189440 Nov 2001 WO
0195831 Dec 2001 WO
0195832 Dec 2001 WO
0197741 Dec 2001 WO
0200099 Jan 2002 WO
0201999 Jan 2002 WO
0203892 Jan 2002 WO
0234167 May 2002 WO
0260352 Aug 2002 WO
0262263 Aug 2002 WO
0262270 Aug 2002 WO
0262408 Aug 2002 WO
0301893 Jan 2003 WO
0303930 Jan 2003 WO
0320179 Mar 2003 WO
0328558 Apr 2003 WO
0337171 May 2003 WO
0347467 Jun 2003 WO
0349619 Jun 2003 WO
0373910 Sep 2003 WO
0373913 Sep 2003 WO
0382129 Oct 2003 WO
0388809 Oct 2003 WO
2003105667 Dec 2003 WO
2004004607 Jan 2004 WO
2004006810 Jan 2004 WO
2004012583 Feb 2004 WO
2004012789 Feb 2004 WO
2004014282 Feb 2004 WO
2004019811 Mar 2004 WO
2004030570 Apr 2004 WO
2004037317 May 2004 WO
2004045370 Jun 2004 WO
2004045378 Jun 2004 WO
2004045463 Jun 2004 WO
2004047679 Jun 2004 WO
2004062725 Jul 2004 WO
2004082523 Sep 2004 WO
2004082538 Sep 2004 WO
2004093730 Nov 2004 WO
2004103162 Dec 2004 WO
2004112585 Dec 2004 WO
2004112651 Dec 2004 WO
2005002424 Jan 2005 WO
2005018507 Mar 2005 WO
2005027797 Mar 2005 WO
2005032421 Apr 2005 WO
2005062931 Jul 2005 WO
2005112792 Dec 2005 WO
2006037073 Apr 2006 WO
2006105008 Oct 2006 WO
2006105009 Oct 2006 WO
2006113906 Oct 2006 WO
2006115875 Nov 2006 WO
2006115876 Nov 2006 WO
2007136829 Nov 2007 WO
2008103722 Aug 2008 WO
2010024801 Mar 2010 WO
2010121076 Oct 2010 WO
2012020521 Feb 2012 WO
2013049734 Apr 2013 WO
2013103934 Jul 2013 WO
2014064694 May 2014 WO
2014121280 Aug 2014 WO
2016022797 Feb 2016 WO
2016144708 Sep 2016 WO
2016150806 Sep 2016 WO
2017223073 Dec 2017 WO
2018009718 Jan 2018 WO
2018106482 Jun 2018 WO
2018236766 Dec 2018 WO
2019040943 Feb 2019 WO
2019195336 Oct 2019 WO
Non-Patent Literature Citations (125)
Entry
Nishimura, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. Jun. 10, 2014; 63(22):2438-88.
Abe et al, “De Vega's Annuloplasty for Acquired Tricuspid Disease: Early and Late Results in 110 Patients”, Ann. Thorac. Surg., pp. 670-676, vol. 48 (Jan. 1989).
Abe et al., “Updated in 1996—De Vega's Annuloplasty for Acquired Tricuspid Disease: Early and Late Results in 110 Patients”, Ann. Thorac. Surg., pp. 1876-1877, vol. 62 (1996).
Agricola et al., “Mitral Valve Reserve in Double Orifice Technique: an Exercise Echocardiographic Study,” Journal of Heart Valve Disease, 11(5):637-643 (2002).
Alfieri et al., “An Effective Technique to Correct Anterior Mitral Leaflet Prolapse,” J. Card Surg., 14:468-470 (1999).
Alfieri et al., “Novel Suture Device for Beating Heart Mitral Leaflet Approximation,” Annals of Thoracic Surgery, 74:1488-1493 (2002).
Alfieri et al., “The double orifice technique in mitral valve repair: a simple solution for complex problems,” Journal of Thoracic and Cardiovascular Surgery, 122:674-681 (2001).
Alfieri et al., “The Edge to Edge Technique,” The European Association for Cardio-Thoracic Surgery, 14th Annual Meeting, Frankfurt/ Germany, Oct. 7-11, 2000, Post Graduate Courses, Book of Proceedings.
Alfieri, “The Edge-to-Edge Repair of the Mitral Valve,” [Abstract] 6th Annual New Era Cardiac Care: Innovation & Technology, Heart Surgery Forum, (Jan. 2003) pp. 103.
Ali Khan et al, Blade Atrial Septostomy: Experience with the First 50 Procedures, Cathet. Cardiovasc. Diagn., Aug. 1991, pp. 257-262, vol. 23.
Alvarez et al, Repairing the Degenerative Mitral Valve: Ten to Fifteen-year Follow-up, Journal Thoracic of Cardiovascular Surgery, Aug. 1996, pp. 238-247, vol. 112, No. 2.
Arisi et al., “Mitral Valve Repair with Alfieri Technique in Mitral Regurgitation of Diverse Etiology: Early Echocardiographic Results,” Circulation Supplement II, 104(17):3240 (2001).
Bach et al, Early Improvement in Congestive Heart Failure After Correction of Secondary Mitral Regurgitation in End-stage Cardiomyopathy, American Heart Journal, Jun. 1995, pp. 1165-1170, vol. 129, No. 6.
Bach et al, Improvement Following Correction of Secondary Mitral Regurgitation in End-stage Cardiomyopathy With Mitral Annuloplasty, Am. J. Cardiol., Oct. 15, 1996, pp. 966-969, vol. 78.
Bailey, “Mitral Regurgitation” in Surgery of the Heart, Chapter 20, pp. 686-737 (1955).
Bernal et al., “The Valve Racket: a new and different concept of atrioventricular valve repair,” Eur. J. Cardio-thoracic Surgery 29:1026-1029 (2006).
Bhudia et al., “Edge-to-Edge (Alfieri) Mitral Repair: Results in Diverse Clinical Settings,” Ann Thorac Surg, 77:1598-1606 (2004).
Bhudia, #58 Edge-to-edge mitral repair: a versatile mitral repair technique, 2003 STS Presentation, [Abstract Only], 2004.
Bolling et al, Surgery for Acquired Heart Disease: Early Outcome of Mitral Valve Reconstruction in Patients with End-stage Cardiomyopathy, Journal of Thoracic and Cariovascular Surgery, Apr. 1995, pp. 676-683, vol. 109, No. 4.
Borghetti et al., “Preliminary observations on haemodynamics during physiological stress conditions following ‘double-orifice’ mitral valve repair,” European Journal of Cardio-thoracic Surgery, 20:262-269 (2001).
Castedo, “Edge-to-Edge Tricuspid Repair for Redeveloped Valve Incompetence after DeVega's Annuloplasty,” Ann Thora Surg., 75:605-606 (2003).
Chinese Office Action issued in Chinese Application No. 200980158707.2 dated Sep. 9, 2013.
Communication dated Apr. 16, 2018 from the European Patent Office in counterpart European application No. 04752603.3.
Communication dated Apr. 28, 2017 issued by the European Patent Office in counterpart application No. 16196023.2.
Communication dated Jan. 26, 2017, from the European Patent Office in counterpart European application No. 16196023.2.
Communication dated May 8, 2017, from the European Patent Office in counterpart European Application No. 04752714.8.
Dang N C et al., “Surgical Revision After Percutaneous Mitral Valve Repair with a Clip: Initial Multicenter Experience”, The Annals of Thracic Surgery,Elsevier, United States, vol. 80, No. 6, pp. 2338-2342, (Dec. 1, 2005), XP027732951, ISSN:0003-4975 [retrieved on Dec. 1, 2005].
Dec et al, Idiopathic Dilated Cardiomyopathy, The New England Journal of Medicine, Dec. 8, 1994, pp. 1564-1575, vol. 331, No. 23.
Dottori et al., “Echocardiographic imaging of the Alfieri type mitral valve repair,” Ital. Heart J., 2(4):319-320 (2001).
Downing et al., “Beating heart mitral valve surgery: Preliminary model and methodology,” Journal of Thoracic and Cardiovascular Surgery, 123(6):1141-1146 (2002).
Extended European Search Report, dated Oct. 17, 2014, issued in European Patent Application No. 06751584.1.
Falk et al., “Computer-Enhanced Mitral Valve Surgery: Toward a Total Endoscopic Procedure,” Seminars in Thoracic and Cardiovascular Surgery, 11(3):244-249 (1999).
Feldman, et al. Randomized Comparison of Percutaneous Repair and Surgery for Mitral Regurgitation: 5-Year Results of Everest II. J Am Coll Cardiol. Dec. 29, 2015;66(25):2844-2854.
Filsoufi et al., “Restoring Optimal Surface of Coaptation With a Mini Leaflet Prosthesis: A New Surgical Concept for the Correction of Mitral Valve Prolapse,” Intl. Soc. for Minimally Invasive Cardiothoracic Surgery 1(4):186-87 (2006).
Frazier et al., #62 Early Clinical Experience with an Implantable, Intracardiac Circulatory Support Device: Operative Considerations and Physiologic Implications, 2003 STS Presentation, 1 page total. [Abstract Only].
Fucci et al, Improved Results with Mitral Valve Repair Using New Surgical Techniques, Eur. J. Cardiothorac. Surg., Nov. 1995, pp. 621-627, vol. 9.
Fundaro et al., “Chordal Plication and Free Edge Remodeling for Mitral Anterior Leaflet Prolapse Repair: 8-Year Follow-up,” Annals of Thoracic Surgery, 72:1515-1519 (2001).
Garcia-Rinaldi et al., “Left Ventricular Volume Reduction and Reconstruction is Ischemic Cardiomyopathy,” Journal of Cardiac Surgery, 14:199-210 (1999).
Gateliene, “Early and postoperative results results of metal and tricuspid valve insufficiency surgical treatment using edge-to-edge central coaptation procedure,” (Oct. 2002) 38 (Suppl 2):172 175.
Gatti et al., “The edge to edge technique as a trick to rescue an imperfect mitral valve repair,” Eur. J. Cardiothorac Surg, 22:817-820 (2002).
Gundry, “Facile mitral valve repair utilizing leaflet edge approximation: midterm results of the Alfieri figure of eight repair,” Presented at the Meeting of the Western Thoracic Surgical Association, (1999).
Gupta et al., #61 Influence of Older Donor Grafts on Heart Transplant Survival: Lack of Recipient Effects, 2003 STS Presentation, [Abstract Only].
Ikeda et al., “Batista's Operation with Coronary Artery Bypass Grafting and Mitral Valve Plasty for Ischemic Dilated Cardiomyopathy,” The Japanese Journal of Thoracic and Cardiovascular Surgery, 48:746-749 (2000).
Izzat et al., “Early Experience with Partial Left Ventriculectomy in the Asia-Pacific Region,” Annuals of Thoracic Surgery, 67:1703-1707 (1999).
Kallner et al., “Transaortic Approach for the Alfieri Stitch,” Ann Thorac Surg, 71:378-380 (2001).
Kameda et al, Annuloplasty for Severe Mitral Regurgitation Due to Dilated Cardiomyopathy, Ann. Thorac. Surg., 1996, pp. 1829-1832, vol. 61.
Kavarana et al., “Transaortic Repair of Mitral Regurgitation,” The Heart Surgery Forum, #2000-2389, 3(1):24-28 (2000).
Kaza et al., “Ventricular Reconstruction Results in Improved Left Ventricular Function and Amelioration of Mitral Insufficiency,” Annals of Surgery, 235(6):828-832 (2002).
Khan et al., “Blade Atrial Septostomy; Experience with the First 50 Procedures”, Catheterization and Cardiovascular Diagnosis, 23:257-262 (1991).
Kherani et al., “The Edge-To-Edge Mitral Valve Repair: The Columbia Presbyterian Experience,” Ann. Thorac. Surg., 78:73-76 (2004).
Kron et al., “Surgical Relocation of the Posterior Papillary Muscle in Chronic Ischemic Mitral Regurgitation,” Annals. of Thoracic Surgery, 74:600-601 (2002).
Park et al, Clinical Use of Blade Atrial Septostomy, Circulation, 1978, pp. 600-608, vol. 58.
Patel et al., #57 Epicardial Atrial Defibrillation: Novel Treatment of Postoperative Atrial Fibrillation, 2003 STS Presentation, [Abstract Only].
Privitera et al., “Alfieri Mitral Valve Repair: Clinical Outcome and Pathology,” Circulation, 106:e173-e174 (2002).
Redaelli et al., “A Computational Study of the Hemodynamics After ‘Edge-To-Edge’ Mitral Valve Repair,” Journal of Biomechanical Engineering, 123:565-570 (2001).
Reul et al., “Mitral Valve Reconstruction for Mitral Insufficiency,” Progress in Cardiovascular Diseases, XXXIX(6):567-599 (1997).
Ricchi et al, Linear Segmental Annuloplasty for Mitral Valve Repair, Ann. Thorac. Surg., Jan. 7, 1997, pp. 1805-1806, vol. 63.
Robicsek et al., #60 the Bicuspid Aortic Valve: How Does It Function? Why Does It Fail? 2003 STS Presentation, [Abstract Only].
Rose et al., “Late MitraClip Failure: Removal Technique for Leaflet-Sparing Mitral Valve Repair”, Journal of Cardiac Surgery, (Jul. 4, 2012), XP055047339, DOI: 10.1111/j. 1540-8191.2012.01483.x [retrieved on Dec. 11, 2012].
Supplemental European Search Report of EP Application No. 02746781, dated May 13, 2008, 3 pages total.
Supplementary European Search Report issued in European Application No. 05753261.6 dated Jun. 9, 2011, 3 pages total.
Tager et al, Long-Term Follow-Up of Rheumatic Patients Undergoing Left-Sided Valve Replacement With Tricuspid Annuloplasty—Validity of Preoperative Echocardiographic Criteria in the Decision to Perform Tricuspid Annuloplasty, Am. J. Cardiol., Apr. 15, 1998, pp. 1013-1016, vol. 81.
Takizawa H et al: Development of a microfine active bending catheter equipped with MIF tactile sensors“, Micro Electro Mechanical Systems, 1999. MEMS '99. Twelfth IEEE Interna Tional Conference on Orlando, FL, USA Jan. 17-21, 1999, Piscataway, NJ, USA,IEEE, US, Jan. 17, 1999 (Jan. 17, 1999), pp. 412-417, XP010321677, ISBN: 978-0-7803-5194-3 figures 1-3.”
Tamura et al., “Edge to Edge Repair for Mitral Regurgitation in a Patient with Chronic Hemodialysis: Report of a Case,” Kyobu Geka. The Japanese Journal of Thoracic Surgery, 54(9):788-790 (2001).
Tibayan et al., #59 Annular Geometric Remodeling in Chronic Ischemic Mitral Regurgitation, 2003 STS Presentation, [Abstract Only].
Timek et al., “Edge-to-edge mitral repair: gradients and three-dimensional annular dynamics in vivo during inotropic stimulation,” Eur J. of Cardiothoracic Surg., 19:431-437 (2001).
Timek, “Edge-to-Edge Mitral Valve Repair without Annuloplasty Ring in Acute Ischemic Mitral Regurgitation,” [Abstract] Clinical Science, Abstracts from Scientific Sessions, 106(19):2281 (2002).
Totaro, “Mitral valve repair for isolated prolapse of the anterior leaflet: an 11-year follow-up,” European Journal of Cardio-thoracic Surgery, 15:119-126 (1999).
U.S. Provisional Application filed Jul. 6, 2016, by Khairkhahan., U.S. Appl. No. 62/359,121.
U.S. Provisional Application filed Nov. 7, 2016, by Khairkhahan., U.S. Appl. No. 62/418,571.
U.S. Provisional Application filed Oct. 22, 2018, by Dale et al., U.S. Appl. No. 62/748,947.
Uchida et al, Percutaneous Cardiomyotomy and Valvulotomy with Angioscopic Guidance, Am. Heart J., Apr. 1991, pp. 1221-1224, vol. 121.
Umana et al, ‘Bow-Tie’ Mitral Valve Repair: An Adjuvant Technique for Ischemic Mitral Regurgitation, Ann. Thorac. Surg., May 12, 1998, pp. 1640-1646, vol. 66.
Umana et al., “‘Bow-tie’ Mitral Valve Repair Successfully Addresses Subvalvular Dysfunction in Ischemic Mitral Regurgitation,” Surgical Forum, XLVIII:279-280 (1997).
U.S. Appl. No. 14/216,813, filed Mar. 17, 2014, Hernandez.
Votta et al., “3-D Computational Analysis of the Stress Distribution on the Leaflets after Edge-to-Edge Repair of Mitral Regurgitation,” Journal of Heart Valve Disease, 11:810-822 (2002).
Kruger et al., “P73—Edge to Edge Technique in Complex Mitral Valve Repair,” Thorac Cardiovasc Surg., 48(Suppl. 1):106 (2000).
Langer et al., “Posterier mitral leaflet extensions: An adjunctive repair option for ischemic mitral regurgitation?” J Thorac Cardiovasc Surg, 131:868-877 (2006).
Lorusso et al., “The double-orifice technique for mitral valve reconstruction: predictors of postoperative outcome,” Eur J. Cardiothorac Surg, 20:583-589 (2001).
Maisano et al, The Edge-to-edge Technique: A Simplified Method to Correct Mitral Insufficiency, Eur. J. Cardiothorac. Surg., Jan. 14, 1998, pp. 240-246, vol. 13.
Maisano et al, The future of transcatheter mitral valve interventions: competitive or complementary role of repair vs. replacement? Eur Heart J. Jul. 7, 2015; 36(26):1651-1659.
Maisano et al., “The double orifice repair for Barlow Disease: a simple solution for a complex repair,” Supplement I Circulation, (Nov. 1999); 100(18):1-94.
Maisano et al., “The double orifice technique as a standardized approach to treat mitral regurgitation due to severe myxomatous disease: surgical technique,” European Journal of Cardio-thoracic Surgery, 17:201-205 (2000).
Maisano et al., “The Future of Transcatheter Mitral Valve Interventions: Competitive or Complementary Role of Repair vs. Replacement?”, Eur Heart J.36(26):1651-1659 ( Jul. 7, 2015 ).
Maisano et al., “The hemodynamic effects of double-orifice valve repair for mitral regurgitation: a 3D computational model,” European Journal of Cardio-thoracic Surgery, 15:419-425 (1999).
Maisano et al., “Valve repair for traumatic tricuspid regurgitation,” Eur. J. Cardio-thorac Surg, (1996) 10:867-873.
Mantovani et al., “Edge-to-edge Repair of Congenital Familiar Tricuspid Regurgitation: Case Report,” J. Heart Valve Dis., 9:641-643 (2000).
McCarthy et al, “Tricuspid Valve Repair With the Cosgrove-Edwards Annuloplasty System”, Ann. Thorac. Surg., 64:267-8 ( Jan. 16, 1997).
McCarthy et al., “Partial left ventriculectomy and mitral valve repair for end-stage congestive heart failure,” European Journal of Cardio-thoracic Surgery, 13:337-343 (1998).
McCarthy et al., “Tricuspid Valve Repair With the Cosgrove-Edwards Annuloplasty System”, Ann. Throac Surg. 64:267-8 (Jan. 16, 1997).
Moainie et al., “Correction of Traumatic Tricuspid Regurgitation Using the Double Orifice Technique,” Annals of Thoracic Surgery, 73:963-965 (2002).
Morales et al., “Development of an Off Bypass Mitral Valve Repair,” The Heart Surgery Forum #1999-4693, 2(2):115-120 (1999).
Nakanishi et al., “Early Outcome with the Alfieri Mitral Valve Repair,” J. Cardiol., 37: 263-266 (2001) [Abstract in English; Article in Japanese].
Nielsen et al., “Edge-to-Edge Mitral Repair: Tension of the Approximating Suture and Leaflet Deformation During Acute Ischemic Mitral Regurgitation in the Ovine Heart,” Circulation, 104(Suppl. 1):1-29-1-35 (2001).
Noera et al., “Tricuspid Valve Incompetence Caused by Nonpenetrating Thoracic Trauma”, Annals of Thoracic Surgery, 51:320-322 (1991).
Notice of Allowance received for U.S. Appl. No. 14/216,787, filed Nov. 7, 2016.
Notice of Allowance received for U.S. Appl. No. 14/216,787, mailed on Nov. 7, 2016.
Notice of Allowance received for U.S. Appl. No. 14/577,852, filed Apr. 25, 2018.
Notice of Allowance received for U.S. Appl. No. 14/577,852, mailed on Apr. 25, 2018.
Notice of Allowance received for U.S. Appl. No. 15/642,245, mailed on Jan. 29, 2020.
Notice of Allowance received for U.S. Appl. No. 15/642,245, mailed on Mar. 27, 2020.
Notice of Allowance received for U.S. Appl. No. 15/642,245, mailed on Nov. 6, 2019.
Notice of Allowance received for U.S. Appl. No. 15/423,060, mailed on Jan. 27, 2020.
Office Action received for U.S. Appl. No. 14/216,787, filed Apr. 8, 2016.
Office Action received for U.S. Appl. No. 14/216,787, mailed on Apr. 8, 2016.
Office Action received for U.S. Appl. No. 14/216,813, filed Apr. 6, 2018.
Office Action received for U.S. Appl. No. 14/216,813, filed Dec. 15, 2017.
Office Action received for U.S. Appl. No. 14/216,813, filed Mar. 9, 2017.
Office Action received for U.S. Appl. No. 14/216,813, mailed on Apr. 6, 2018.
Office Action received for U.S. Appl. No. 14/216,813, mailed on Dec. 15, 2017.
Office Action received for U.S. Appl. No. 14/216,813, mailed on Mar. 9, 2017.
Office Action received for U.S. Appl. No. 14/577,852, filed May 16, 2017.
Office Action received for U.S. Appl. No. 14/577,852, filed Oct. 20, 2016.
Office Action received for U.S. Appl. No. 14/577,852, filed Sep. 7, 2017.
Office Action received for U.S. Appl. No. 14/577,852, mailed on May 16, 2017.
Office Action received for U.S. Appl. No. 14/577,852, mailed on Oct. 20, 2016.
Office Action received for U.S. Appl. No. 14/577,852, mailed on Sep. 7, 2017.
Office Action received for U.S. Appl. No. 15/423,060, mailed on Apr. 25, 2019.
Office Action received for U.S. Appl. No. 15/423,060, mailed on Aug. 19, 2019.
Office Action received for U.S. Appl. No. 15/423,060, mailed on Oct. 28, 2019.
Office Action received for U.S. Appl. No. 15/642,245, mailed on Aug. 9, 2019.
Office Action received for U.S. Appl. No. 15/724,545, filed Dec. 27, 2019.
Office Action received for U.S. Appl. No. 15/724,545, mailed on Dec. 27, 2019.
Office Action received for U.S. Appl. No. 15/724,545, mailed on May 1, 2020.
Osawa et al., “Partial Left Ventriculectomy in a 3-Year Old Boy with Dilated Cardiomyopathy,” Japanese Journal of Thoracic and Cardiovascular Surg, 48:590-593 (2000).
Related Publications (1)
Number Date Country
20210346045 A1 Nov 2021 US
Provisional Applications (1)
Number Date Country
63020662 May 2020 US