Lotan et al, “Arabidopsis Leay Cotyledon1is Sufficient to Induce Embryo Development in Vegetative Cells”, Jun. 1998, Cell vol. 93, pp. 1195-1205.* |
Doerks et al, “Protein annotation: detetive work for function prediction”, Jun. 1998, TIG vol. 14 No. 6, pp. 248-250.* |
Lotan et al GenEmbl Accession AF036684 Jul. 1998.* |
Fen et al GenBank Accession AQ251011 Oct. 1998.* |
West, et al., Leafy Coyledon1 Is An Essential Regulator of Late Embryogenesis and Cotyledon Identity in Arabidopsis; The Plant Cell, vol. 6, 1731-1745 (Dec. 1994). |
Meinke, et al., “Leafy Cotyledon Mutants of Arabidopsis”; The Plant Cell, vol. 6, 1049-1064 (Aug. 1994). |
Baumlein, et al., “The FUS3 Gene of Arabidopsis thaliana is a regulator of gene expression during late embryogenesis,”; The Plant Journal, 6(3): 379-387 (1994). |
Becker, et al., “A cDNA encoding a human CCAAT-binding protein cloned by functional complementation in yeast”; Proc. Natl. Acad. Sci. USA, vol. 88:1968-1972 (Mar. 1991). |
Sinha, et al., “Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a protien-DNA complex with CBF-A and CBF-B and with yeast HAP2 and HAP3”; Proc. Natl. Acad. Sci. USA, vol. 92, 1624-1628 (Feb. 1995). |
Li, et al., “Evolutionary variation of the CCAAT-binding transcription factor NF-Y”; Nucleic Acids Res., vol. 20, No. 5, 1087-1091 (Feb. 1992). |
Johnson, et al., “Eukaryotic Transcriptional Regulatory Proteins”; Annu. Rev. Biochem., 58:799-839 (1989). |
Xing, et al. “Mutations in yeast HAP2/HAP3 define a hybrid CCAAT box binding domain”; The EMBO J., vol. 12, No. 12, 4647-4655 (1993). |
McCarty, et al., “The Viviparous-1 Developmental Gene of Maize Encodes a Novel Transcriptional Activator”; Cell, vol. 66, 895-905 (Sep. 1991). |
McCarty, D., “Genetic Control and Integration of Maturation and Germination Pathways in Seed Development”; Annu. Rev. Plant Physiol. Plant Mol. Biol., 46:71-93 (1995). |
Giraudat, J., “Abscisic acid signaling”; Current Opinion in Cell Biology, 7:232-238 (1995). |
Parcy, et al., “Regulation of Gene Expression Programs during Arabidopsis Seed Development: Roles of the AB13 Locus and of Endogenous Abscisic Acid”; The Plant Cell, vol. 6, 1567-1582 (Nov. 1994). |
McCarty, et al., “Molecular Analysis of viviparous-1: An Abscisic Acid-Insensitive Mutant of Maize”; The Plant Cell, vol. 1, 523-532 (May 1989). |
Heck, et al., “AGL15, a MADS Domain Protein Expressed in Developing Embryos”; The Plant Cell, vol. 7, 1271-1282 (Aug. 1995). |
Valvekens, et al., “Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection”; Proc. Natl. Acad. Sci., USA, vol. 85, 5536-5540 (Aug. 1988). |
Ming-Tsair Chan, et al., “Novel Gene Expression System for Plant Cells Based on Induction of α-Amylase Promoter by Carbohydrate Starvation”; The Journal of Biological Chemistry, vol. 269, No. 26, 17635-17641 (Jul. 1994). |
Shimada, et al., “Antisense regulation of the rice waxy gene expression using a PCR-amplified fragment of the rice genome reduces the amylose content in grain starch”; Theorectical and Applied Genetics, vol. 86, 665-672 (Jan. 1993). |
Meinke, David, “A Homoeotic Mutant of Arabidopsis thaliana with Leafy Cotyledones”; Science, vol. 258, 1647-1650, (Dec. 1992). |