Leak-compensated proportional assist ventilation

Information

  • Patent Grant
  • 8978650
  • Patent Number
    8,978,650
  • Date Filed
    Friday, April 26, 2013
    11 years ago
  • Date Issued
    Tuesday, March 17, 2015
    9 years ago
Abstract
This disclosure describes systems and methods for compensating for leakage when during delivery of gas from a medical ventilator in a proportional assist mode to a patient. The technology described herein includes systems and methods to compensate the delivery of PA ventilation for leakage in the patient circuit by using leak-compensated lung flows as well as leak-compensated respiratory mechanics parameters (lung compliance and lung resistance) estimated in a manner that compensates for elastic and inelastic leaks from the ventilation system.
Description
INTRODUCTION

In mechanical ventilation, proportional assist (PA) refers to a type of ventilation in which the ventilator acts as an inspiratory amplifier that provides pressure support based on the patient's effort. The degree of amplification (the “support setting”) is set by an operator, for example as a percentage based on the patient's effort. In one implementation of PA ventilation, the ventilator may continuously monitor the patient's instantaneous inspiratory flow and instantaneous net lung volume, which are indicators of the patient's inspiratory effort. These signals, together with ongoing estimates of the patient's lung compliance and lung resistance, allow the ventilator to compute the instantaneous pressure at a point in the ventilation circuit that assists the patient's inspiratory muscles to the degree selected by the operator as the support setting.


PA ventilation relies on certain physiological principles. The act of inspiration requires the patient's inspiratory muscles to develop a pressure gradient between the mouth and the alveoli sufficient to draw in breathing gas and inflate the lungs. Some of this pressure gradient is dissipated as gas travels through the artificial airway and the patient's conducting airways, and some of the pressure gradient is dissipated in the inflation of the lungs and thorax. Each element of pressure dissipation is characterized by a measurable property: the resistance of the artificial and patient airways, and the compliance (or elastance) of the lung and thorax.


The ventilator providing PA ventilation uses specific information, including resistance of the artificial airway, resistance of the patient's airways, lung compliance, instantaneous inspiratory flow and net lung volume, and the support setting to compute the instantaneous pressure to be applied at the wye. The ventilator may estimate patient lung resistance and lung compliance, for example approximately every four to ten breaths. In one implementation, every computational cycle (e.g., 5 milliseconds), the ventilator estimates lung flow, based on an estimate of circuit flow, and lung volume, based on the integral value of estimated circuit flow.


PA ventilation begins inspiratory assist when flow (generated by the patient's inspiratory muscles) is detected. If the patient ceases inspiration, the assist also ceases. Once inspiratory flow begins, the ventilator monitors instantaneous flow and volume and applies the pressure calculated to deliver a proportion (determined by the support setting) of the total demand as determined by the patient's inspiratory effort. In Tube Compensation (TC) ventilation, the ventilator monitors instantaneous flow and volume and applies the pressure calculated to overcome a proportion (determined by the support setting) of the pressure losses dissipated across the resistance of the artificial airways (e.g., endotracheal tube).


The lung compliance and lung resistance of a patient may be collectively referred to as the respiratory mechanics of the lung or, simply, the patient's respiratory mechanics. Because PA relies on the patient's respiratory mechanics, more accurate determination of respiratory mechanics is essential to performance of the ventilator when providing PA.


Leak-Compensated Proportional Assist Ventilation


This disclosure describes systems and methods for compensating for leakage when during delivery of gas to a patient from a medical ventilator in a proportional assist (PA) mode. The technology described herein includes systems and methods that compensate the delivery of PA ventilation for leakage in the patient circuit by using leak-compensated lung flows as well as respiratory mechanics (lung compliance and lung resistance) estimated in a manner that compensates for elastic and inelastic leaks from the ventilation system.


In part, this disclosure describes a method of compensating for leakage in a ventilation system during delivery of gas from a medical ventilator providing PA to a patient. The method includes monitoring an instantaneous flow in the ventilation system based on one or more measurements of pressure and flow in ventilation system. Leakage from the system is modeled as a first leakage component through a first orifice of a fixed size and a second leakage component through a second orifice of a varying size, in which the first and second leakage components are different functions of instantaneous pressure in the ventilation system. A leak-compensated instantaneous lung flow of gas inhaled or exhaled by the patient is estimated based on the one or more measurements, the first leakage component and second leakage component. The leak-compensated lung flow and a predetermined respiratory mechanics model are used to estimate a leak-compensated lung compliance and a leak-compensated lung resistance. A pressure to be delivered to the patient is then calculated based on the leak-compensated lung flow, the leak-compensated lung compliance and the leak-compensated lung resistance.


This disclosure describes a method of compensating for leakage in a ventilation tubing system during delivery of gas from a medical ventilator to a patient. The method includes receiving a support setting identifying an amount of proportional assistance to provide to the patient. An inelastic leakage in the ventilation system is identified as a first function of at least one of a pressure measurement and a flow measurement in the ventilation system. An elastic leakage in the ventilation system is also identified as a second function of at least one of the pressure measurement and the flow measurement in the ventilation system. The circuit compliance and circuit resistance of the ventilation tubing system is then used along with estimated lung compliance of the patient and estimated lung resistance of the patient based on the inelastic leakage, the elastic leakage, the circuit compliance, circuit resistance and the at least one of the pressure measurement and the flow measurement in the ventilation system. Ventilation is then delivered to the patient based on estimated patient effort and the support setting, in which the patient effort is determined from estimated lung flow using the inelastic leakage, the elastic leakage, the lung compliance and the lung resistance.


The disclosure also describes a pressure support system that includes a pressure generating system adapted to generate a flow of breathing gas and a ventilation tubing system including a patient interface device for connecting the pressure generating system to a patient. One or more sensors are operatively coupled to the pressure generating system or the ventilation system, in which each sensor capable of generating an output indicative of a pressure of the breathing gas. A leak estimation module is provided that identifies leakage in the ventilation system and compensates the calculation of lung flow for the estimated leakage in the system. A respiratory mechanics calculation module is further provided that generates a leak-compensated lung compliance and a leak-compensated lung resistance based on the leakage and at least one output indicative of a pressure of the breathing gas. The system further includes a proportional assistance ventilation module that causes the pressure generating system to provide ventilation to the patient based on patient effort and a support setting, in which the patient effort is determined from estimated lung flow using the leakage, the leak-compensated lung compliance and the leak-compensated lung resistance.


The disclosure further describes a PA ventilation controller for a medical ventilator. The controller includes a microprocessor, a module that compensates calculations of lung compliance and lung resistance based on instantaneous elastic leakage and instantaneous inelastic leakage of breathing gas from a ventilation system, and a pressure control module that provides proportional assist ventilation based on the compensated lung compliance and lung resistance.


These and various other features as well as advantages which characterize the systems and methods described herein will be apparent from a reading of the following detailed description and a review of the associated drawings. Additional features are set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the technology. The benefits and features of the technology will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.





BRIEF DESCRIPTION OF THE DRAWINGS

The following drawing figures, which form a part of this application, are illustrative of described technology and are not meant to limit the scope of the invention as claimed in any manner, which scope shall be based on the claims appended hereto.



FIG. 1 illustrates an embodiment of a ventilator connected to a human patient.



FIG. 2 schematically depicts example systems and methods of ventilator control.



FIG. 3 illustrates an embodiment of a method of compensating for leakage in a ventilator providing pressure assistance to a patient.



FIG. 4 illustrates an embodiment of a method for providing a leak-compensated PA breath to a patient.



FIG. 5 illustrates an embodiment of a method for estimating respiratory mechanics of patient that utilizes a respiratory mechanics maneuver.



FIG. 6 illustrates an embodiment of a method for dynamically estimating respiratory mechanics of patient.



FIG. 7 illustrates a functional block diagram of modules and other components that may be used in an embodiment of ventilator that compensates for elastic and rigid orifice sources of leaks when performing PA ventilation.





DETAILED DESCRIPTION

Although the techniques introduced above and discussed in detail below may be implemented for a variety of medical devices, the present disclosure will discuss the implementation of these techniques in the context of a medical ventilator providing pressure assist (PA) ventilation to a human patient. The reader will understand that the technology described in the context of a medical ventilator for human patients could be adapted for use with other systems such as ventilators for non-human patients and general gas transport systems in which leaks may cause a degradation of performance.



FIG. 1 illustrates an embodiment of a ventilator 20 connected to a human patient 24. Ventilator 20 includes a pneumatic system 22 (also referred to as a pressure generating system 22) for circulating breathing gases to and from patient 24 via the ventilation tubing system 26, which couples the patient to the pneumatic system via physical patient interface 28 and ventilator circuit 30. Ventilator circuit 30 could be a dual-limb or single-limb circuit for carrying gas to and from the patient. In a dual-limb embodiment as shown, a wye fitting 36 may be provided as shown to couple the patient interface 28 to the inspiratory limb 32 and the expiratory limb 34 of the circuit 30.


The present systems and methods have proved particularly advantageous in noninvasive settings, such as with facial breathing masks, as those settings typically are more susceptible to leaks. However, leaks do occur in a variety of settings, and the present description contemplates that the patient interface may be invasive or non-invasive, and of any configuration suitable for communicating a flow of breathing gas from the patient circuit to an airway of the patient. Examples of suitable patient interface devices include a nasal mask, nasal/oral mask (which is shown in FIG. 1), nasal prong, full-face mask, tracheal tube, endotracheal tube, nasal pillow, etc.


Pneumatic system 22 may be configured in a variety of ways. In the present example, system 22 includes an expiratory module 40 coupled with an expiratory limb 34 and an inspiratory module 42 coupled with an inspiratory limb 32. Compressor 44 or another source(s) of pressurized gas (e.g., air and oxygen) is coupled with inspiratory module 42 to provide a gas source for ventilatory support via inspiratory limb 32.


The pneumatic system may include a variety of other components, including sources for pressurized air and/or oxygen, mixing modules, valves, sensors, tubing, accumulators, filters, etc. Controller 50 is operatively coupled with pneumatic system 22, signal measurement and acquisition systems, and an operator interface 52 may be provided to enable an operator to interact with the ventilator (e.g., change ventilator settings, select operational modes, view monitored parameters, etc.). Controller 50 may include memory 54, one or more processors 56, storage 58, and/or other components of the type commonly found in command and control computing devices.


The memory 54 is computer-readable storage media that stores software that is executed by the processor 56 and which controls the operation of the ventilator 20. In an embodiment, the memory 54 comprises one or more solid-state storage devices such as flash memory chips. In an alternative embodiment, the memory 54 may be mass storage connected to the processor 56 through a mass storage controller (not shown) and a communications bus (not shown). Although the description of computer-readable media contained herein refers to a solid-state storage, it should be appreciated by those skilled in the art that computer-readable storage media can be any available media that can be accessed by the processor 56. Computer-readable storage media includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer-readable storage media includes, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer.


As described in more detail below, controller 50 issues commands to pneumatic system 22 in order to control the breathing assistance provided to the patient by the ventilator. The specific commands may be based on inputs received from an operator, the patient 24, the pneumatic system 22 and sensors, the operator interface 52 and/or other components of the ventilator. In the depicted example, operator interface includes a display 59 that is touch-sensitive, enabling the display to serve both as an input and output device.



FIG. 2 schematically depicts exemplary systems and methods of ventilator control. As shown, controller 50 issues control commands 60 to drive pneumatic system 22 and thereby circulate breathing gas to and from patient 24. The depicted schematic interaction between pneumatic system 22 and patient 24 may be viewed in terms of pressure and/or flow “signals.” For example, signal 62 may be an increased pressure which is applied to the patient via inspiratory limb 32. Control commands 60 are based upon inputs received at controller 50 which may include, among other things, inputs from operator interface 52, and feedback from pneumatic system 22 (e.g., from pressure/flow sensors) and/or sensed from patient 24.


In an embodiment, before the respiratory mechanics of a patient can be determined, the mechanics of the ventilation tubing system may be determined. For example, when modeling the delivery of gas to and from a patient 24 via a closed-circuit ventilator, one simple assumption is that compliance of the ventilator circuit 30 (the “circuit compliance”) is fixed and that all gas injected into the ventilator circuit 30 that does not exit the circuit 30 via the expiratory limb 34 (in a dual-limb embodiment) fills the circuit as well as the patient's lungs and causes an increase in pressure. As gas is injected (L1), the lung responds to the increased gas pressure in the circuit 30 by expanding. The amount the lung expands is proportional to the lung compliance and is defined as a function of gas pressure differential (e.g., lung compliance =volume delivered/pressure difference). As discussed in greater detail below, this assumption is not valid when leaks are present.


The term circuit compliance is used to refer to the relationship between the amount the pressure in the ventilator circuit 30 (or ventilator circuit 30 and attached patient interface 28, depending on how the compliance is determined) and changes in volume delivered into the circuit. In an embodiment, the circuit compliance may be estimated by pressurizing the ventilator circuit 30 (or circuit 30 and interface 28 combination) when flow to the patient is blocked and measuring the volume of additional gas introduced to cause the pressure change (compliance=volume delivered/pressure difference).


The term circuit resistance is used to refer to the amount the pressure changes between two sites upstream and downstream the ventilator circuit as a function of volumetric flow rate through that circuit. Circuit resistance may be modeled as a two-parameter function of flow and several methods for modeling and calculating circuit resistance are known in the art. For example, in an embodiment, the circuit resistance may be estimated by passing several fixed flow rates through the circuit and measuring the pressure difference between certain upstream and downstream sites and finding the best curve fit to the collected data.


Methods of determining circuit compliance and circuit resistance (such as those described above) may be executed by the operator prior to attaching the patient to the ventilator as part of the set up of the ventilator 20 to provide therapy. Other methods of determining circuit compliance and/or resistance are also known and could be adapted for use with the disclosed leak-compensation systems and methods described herein.


In many cases, it may be desirable to establish a baseline pressure and/or flow trajectory for a given respiratory therapy session. The volume of breathing gas delivered to the patient's lung (L1) and the volume of the gas exhaled by the patient (142) are measured or determined, and the measured or predicted/estimated leaks are accounted for to ensure accurate delivery and data reporting and monitoring. Accordingly, the more accurate the leak estimation, the better the baseline calculation of delivered and exhaled flow rates and volumes.


Errors may be introduced due to leaks in the ventilation tubing system 26. The term ventilation tubing system 26 is used herein to describe the ventilator circuit 30, any equipment attached to or used in the ventilator circuit 30 such as water traps, monitors, drug delivery devices, etc. (not shown), and the patient interface 28. Depending on the embodiment, this may include some equipment contained in the inspiration module 42 and/or the expiration module 40. When referring to leaks in or from the ventilation tubing system 26, such leaks include leaks within the tubing system 26 and leaks where the tubing system 26 connects to the pressure generator 22 or the patient 24. Thus, leaks from the ventilation tubing system 26 include leaks from the ventilator circuit 30, leaks from the patient interface 28 (e.g., masks are often provided with holes or other pressure relief devices through which some leakage may occur), leaks from the point of connection of the patient interface 28 to the patient 24 (e.g., leaks around the edges of a mask due to a poor fit or patient movement), and leaks from the point of connection of the patient interface 28 to the circuit 30 (e.g., due to a poor connection between the patient interface 28 and the circuit 30).


For the purpose of estimating how a leak flow rate changes based on changes in pressure in the ventilation tubing system 26, the instantaneous leak may be modeled as a leak through a single rigid orifice or opening of a fixed size in which that size is determined based on comparing the total flow into the inspiratory limb 32 and out of the expiratory limb 34. However, this leak model does not take into account any elastic component of leak source(s) in the system 26, that is how much of the area of any of the holes or openings in the ventilation tubing system 26 through which leakage occurs may change due to an increase or decrease in pressure.


It has been determined that not accounting for elastic leakage from the ventilation tubing system 26 can cause many problems. First, if only the inelastic/fixed orifice model is used to estimate leak, the subsequent errors caused by ignoring the elastic effects of any actual leaks end up generating inaccurate estimates of flow rates into the lung. This can cause the ventilator 20 to estimate gas volume delivered into the lung inaccurately when, in fact, the elastic leaks in the system 26 have let more gas escape than estimated. Second, if the elasticity of the leak source is ignored, any other calculation, estimate, or action that the ventilator 20 may perform which is affected by the leak estimate will be less accurate.


In the systems and methods described herein, the provision of PA ventilation is made more accurate by compensating for tubing system leakage. In the embodiments described herein fixed (rigid) and elastic components of the system leakage are used when determining the lung flow, net lung volume, lung compliance and lung resistance of the patient. This results in a more accurate determination of lung compliance and lung resistance and, therefore, ventilation of patients based on respiratory mechanics. While the systems and methods are presented in the context of specific leakage models, the technology described herein could be used to compensate the respiratory mechanics determined by any model for leakage using any type of mechanical ventilator or other device that provides gas.



FIG. 3 illustrates an embodiment of a method of compensating PA ventilation for leakage during delivery of gas from a medical ventilator to a patient. In the method 300 shown, a medical ventilator such as that described above with reference to FIGS. 1 and 2 is used to provide PA ventilation to a patient.


The method 300 illustrated starts with a circuit compliance and resistance operation 302. In that operation 302, the ventilator circuit compliance and resistance are estimated. In an embodiment, this may be performed prior to connecting the ventilator to the patient (as previously described). Alternatively, it may be dynamically determined periodically throughout the delivery of ventilatory support to the patient.


After the circuit compliance and resistance have been determined, the ventilator is connected to the patient and an initialization operation 304 is performed. In the initialization operation 304 the ventilator operates for an initialization or startup period in order to generate an initial estimate of lung compliance and lung resistance. If the ventilator already has some knowledge of the respiratory mechanics of the patient (e.g., the respiratory mechanics have been recently determined during provision of a different type of ventilation or an operator has provided initial settings for lung compliance and resistance), this operation 304 may be automatically or manually omitted in favor of the previously determined values.


A description of an embodiment of the initialization operation 304 is as follows. Because the ventilator does not know the patient's mechanics when the PA breath type is selected, it performs a startup routine to obtain initial data. In an embodiment, upon startup the ventilator delivers some number (e.g., two, four, etc.) of consecutive PA breaths, each of which includes an end-inspiratory maneuver that yields estimates of the patient's resistance and compliance. Using four training breaths for the initialization operation 304 as an example, the first breath is delivered using a predicted resistance for the artificial airway and conservative estimates for patient resistance and compliance. The predicted values may be determined based on known characteristics of the patient, such as based on the patient's ideal body weight (IBW), height, gender, age, physical condition, etc. Each of the following three PA breath's averages stepwise decreased physiologic values with the estimated resistance and compliance values from the previous breath, weighting earlier estimates less with each successive breath, and yielding more reliable estimates for lung resistance and lung compliance.


In an embodiment of the method 300, a leakage estimate may also be done prior to the initialization operation 304. Prior determination of leak parameters allows for estimates of respiratory mechanics to be made. This may include delivering pressure-regulated breaths with specific settings or performing specific “leak maneuvers”, that is a specified set of controlled actions on the part of the ventilator that allow leakage parameters to be identified and quantified, such as interrupting the therapeutic delivery of respiratory gas and holding or changing the pressure and flow, so that data concerning the leakage of the system during the controlled actions may be obtained. For example, a leak maneuver may include periodically holding the pressure and flow in the circuit constant while determining (based on a comparison of the measured flow into the inspiratory limb and the measured flow out of the expiratory limb via the exhalation valve) the net leakage from the system. In an embodiment, such a leak maneuver may be performed during specific parts of the respiratory phase, e.g., at the end of the expiratory phase. In yet another embodiment, a sequence of pressure-based test breaths is delivered with specific settings to determine leak parameters prior to execution of test breaths for respiratory mechanics determinations.


After the initialization operation 304, the ventilator provides ongoing PA ventilation to the patient in a PA ventilation operation 306. PA ventilation begins inspiratory assist when an inspiratory trigger is detected such as leak-compensated lung flow (generated by the patient's inspiratory muscles) exceeds a set sensitivity threshold. If the patient ceases inspiration, the assist also ceases. Once inspiratory flow begins, the ventilator monitors instantaneous flow and volume and applies the pressure calculated to deliver a proportion (determined by the support setting) of the total demand as determined by the patient's inspiratory effort.


During PA ventilation, pressure assistance is provided to the patient based on the patient's effort and the operator-selected support setting. PA ventilation determines how much to assist the patient's efforts based on one or more equations of motion used to describe the mechanics of the lung. Such equations use respiratory mechanics of the patient, e.g., lung resistance and lung compliance, and the circuit when calculating how much flow and/or pressure to provide. One example of an equation of motion for use in determining the pressure to provide during PA ventilation is as follows:

Paw(t)=E∫Qdt+QR−Pm(t)

where Paw is the pressure measured at the patient interface, Pm is the pressure generated by the inspiratory muscles of the patient which is may be used as the index of the patient's effort, E is the lung elastance (which is the inverse of lung compliance, i.e., E=1/C), Q is the instantaneous leak-compensated lung flow and R is the lung resistance. By manipulating this equation slightly, an equation for the amount of desired pressure assistance at the patient interface to provide can be obtained:

Paw(t)=kE∫Qdt+kQR

where k is the % support setting based on the patient effort, Pm. The equations above are one example of how PA ventilation may be provided based on patient effort. PA ventilation is known in the art and any suitable technique or set of equations for determining the assistance to provide may be used.


As described above, the patient's effort is determined based on the pressure and leak-compensated lung flow in the circuit. In order to compensate for leakage in the circuit, in the method 300 shown the PA ventilation operation 306 includes the ongoing calculation of leakage while providing ventilation, as illustrated by the leakage calculation/compensation operation 307. As discussed in greater detail below with reference to FIG. 4, the leakage is calculated and the leak-compensated values for lung flow, current lung volume and net delivered lung flow may be determined taking into account the calculated leakage.


The method 300 also includes periodically or randomly performing a respiratory mechanics maneuver in order to recalculate the lung compliance and lung resistance of the patient. In an embodiment, the respiratory mechanics maneuver operation 308 is performed randomly once every four to ten PA breaths.


The respiratory mechanics maneuver operation 308 compensates for leakage as determined by the leakage calculation/compensation operation 307 when calculating the respiratory mechanics for the patient. This may include stabilizing the pressure and flow in the patient circuit based on the calculated leakage at that pressure so that the flow into the patient circuit is approximately equal to the calculated amount of gas leaking from the patient circuit at that pressure; a period of stable pressure during which there is no flow into or out of the patient's lungs even though there is leakage flow in the ventilator tubing system. The respiratory mechanics maneuver operation 308 may further include using leak-compensated values of lung flow and lung volume when determining the respiratory mechanics.


The newly determined values of lung compliance and lung resistance may be averaged, low-pass filtered or otherwise combined with the previously determined values. These revised values are then stored for use in later delivery of PA ventilation and the ventilator returns to providing PA ventilation to the patient.



FIG. 4 illustrates an embodiment of a method for providing a leak-compensated PA breath to a patient. In an embodiment, the method 400 corresponds to the operations performed during the PA ventilation operation 306 and the respiratory mechanics maneuver operation 308 discussed with reference to FIG. 3. In the embodiment of the method 400 illustrated, the operations occur repeatedly while the ventilator is providing PA ventilation, such as once a sample period or computation cycle.


During PA ventilation, the pressure and flow and other parameters of the system are monitored, illustrated by the monitoring operation 402. In an embodiment, the monitoring operation 402 collects data including the instantaneous pressure and/or flow at or indicative of one or more locations in the ventilation tubing system. Depending upon how a particular leak model is defined, the operation 402 may also include making one or more calculations using data from pressure and flow measurements taken by the sensors. For example, a model may require a flow measurement as observed at the patient interface even though the ventilation system may not have a flow sensor at that location in the ventilation tubing system. Thus, a measurement from a sensor or sensors located elsewhere in the system (or data from a different type of sensor at the location) may be mathematically manipulated in order to obtain an estimate of the flow observed at the patient interface in order to calculate the leak using the model.


The data obtained in the monitoring operation 402 is then used to calculate leakage from the ventilator tubing system in a leakage calculation operation 404. In an embodiment, the leakage calculation operation 404 uses the data obtained in the monitoring operation 402, e.g., some or all of the instantaneous pressure and flow data collected during the monitoring operation 402 as well as information about the current respiratory phase (inhalation or exhalation).


The leakage calculation operation 404 calculates an instantaneous leakage flow or volume for the sample period. The instantaneous leakage is calculated using a mathematical formula that has been previously determined. Any leakage model, now known or later developed, may be used. In an embodiment, the mathematical formula is a leakage model that separates the leak into the sum of two leak components, inelastic leak and elastic leak, in which each component represents a different relationship between the quantity of leakage from the ventilation system and the measured current/instantaneous pressure and/or flow of gas in the ventilation system. As discussed above, the inelastic leak may be modeled as the flow through a rigid orifice of a fixed size while the elastic leak may be modeled as the flow through a different orifice of a size that changes based on the pressure (or flow) of the gas in the ventilation system.


An example of a method and system for modeling leak in a ventilation system as a combination of an elastic leak component and an inelastic leak component can be found in commonly-assigned U.S. Provisional Patent Application Ser. No. 61/041,070, filed Mar. 31, 2008, titled VENTILATOR LEAK COMPENSATION, which application is hereby incorporated by reference herein. The VENTILATOR LEAK COMPENSATION represents one way of characterizing the leak from a ventilation system as a combination of elastic and inelastic components. Other methods and models are also possible and may be adapted for use with this technology.


The mathematical formula used to calculate leakage may contain several parameters that are empirically determined and that may be periodically or occasionally revised in order to maintain the accuracy of the leakage estimate. For example, in an embodiment the parameters of a leakage formula include a first constant associated with the rigid orifice and a second constant associated with the variable-sized orifice. At various times during ventilation, the calculated leakage may be checked against a measured leakage and, if the estimate is significantly different from the measured leakage, the constants may be revised. This revision of the parameters in a leakage formula may be done as part of the leakage calculation operation 404 or may be done as a separate operation (not shown) that may, or may not, be performed every sample period.


The term instantaneous is used herein to describe a determination made for any particular instant or sampling period based on the measured data for that instant. For example, if a pressure measurement is taken every 5 milliseconds (sample period), the pressure measurement and the leakage model can be used to determine an instantaneous leak flow based on the instantaneous pressure measurement, With knowledge of the length of the sample period, the instantaneous flow may then be used to determine an instantaneous volume of gas leaking out of the circuit during that sample period. For longer periods covering multiple sample periods the instantaneous values for each sample period may be summed to obtain a total leakage volume. If a measurement is also the most recent measurement taken, then the instantaneous value may also be referred to as the current value.


After the current leak has been calculated, the method 400 further estimates the leak-compensated instantaneous lung flow to or from the patient in a lung flow estimation operation 406. The estimated lung flow is compensated for the leak flow calculated in the instantaneous leak calculation operation 404 so that it represents a more accurate estimate of the actual flow into (or out of depending on the point of view and period selected) the lungs of the patient.


In the embodiment illustrated, the leak-compensated net lung volume is also calculated as part of the lung flow estimation operation 406. In an embodiment, this may be performed by maintaining a running summation of net flow into/out of the lung over the period of a breath. For example, upon triggering inhalation, the ventilator may set a variable corresponding to net lung volume to zero and, each sample period, update this net lung volume to include the detected leak-compensated instantaneous lung flow delivered to the patient during that sample period.


In the PA ventilation method 400 illustrated, the leak-compensated lung flow or net volume is then used along with the support setting and the previously determined lung resistance and lung compliance (which were themselves determined using leak-compensated lung flows and net lung volumes) to calculate the amount of assistance to provide during ventilation.


The PA ventilation method 400 also includes calculating the patient effort in effort calculation operation 408. As described above, the operation 408 may use one or more equations that relate the amount of pressure to calculate the patient's effort based on the instantaneous lung flow, current lung volume, lung compliance, lung resistance, support setting and other factors such as circuit compliance and resistance. Various methods are known in the art for calculating patient effort that use one or more respiratory mechanics and other parameters measurable while providing ventilatory support. Any such method for determining patient effort, now known or later developed, may be used herein.


The appropriate amount of ventilation is then provided in a ventilation operation 410. In this operation, the patient effort calculated above and the support setting are used to determine how much assistance to provide. Of course, if there is no patient effort (i.e., during the expiratory phase), no ventilation is provided. In this case, the appropriate ventilation may be providing a predetermined positive end expiratory pressure (PEEP) level. Depending on the equations used, the effort calculation operation 408 may not be technically necessary as the amount of ventilation to provide may be determined directly from the monitored data and the previously determined values of lung compliance and resistance using an appropriate algorithm.


The PA ventilation method 400 also periodically determines the respiratory mechanics from the leak-compensated lung parameters, which is illustrated by the determination operation 412. For example, in an embodiment respiratory mechanics may be calculated on a fixed or random schedule or calculated in response to an explicit operator command. In addition, depending on the respiratory mechanics determination method used, there may be a requirement that the respiratory mechanics calculation (using data collected during the breath) be performed at a certain point within the patient's respiration such as at the end of the inspiratory phase or the end of the expiratory phase or after the completion of a specific maneuver (e.g., an Inspiratory Hold Maneuver). The respiratory mechanics calculation includes the performance a respiratory mechanics “maneuver,” that is a specified set of controlled actions on the part of the ventilator. In an embodiment, the maneuver includes interrupting the therapeutic delivery of respiratory gas for a period of time and monitoring and/or changing the pressure and flow, so that data concerning the response of the patient's lung to the controlled actions may be obtained. An example of a respiratory mechanics maneuver is provided below with reference to the static determination of lung compliance.


If it is time to calculate respiratory mechanics, a calculate respiratory mechanics operation 414 is performed, The calculate respiratory mechanics operation 414 may also include performing the appropriate maneuver, as necessary to obtain the data for the respiratory mechanics model being used. In the operation 414, the necessary data for the respiratory mechanics model being used is obtained and the respiratory mechanics parameters are estimated.


In the calculate respiratory mechanics operation 414 leak-compensated values are used to estimate the respiratory mechanics. For example, if the respiratory mechanics model being used requires a total delivered lung volume, the leak-compensated lung volume is used. Likewise, if an instantaneous lung flow is required, a leak-compensated instantaneous lung flow is used in generating the estimate.


The method 400 is then repeated every computational cycle or sample period, as illustrated by the feedback loop, so that the instantaneous lung flow and net lung flow are continuously determined and, when appropriate, the respiratory mechanics are recalculated based on the current leak-compensated data. In an alternative embodiment, the leak-compensation of lung flow and net delivered lung volume may be performed as part of the calculate respiratory mechanics operation 414 in order to reduce the number of calculations a processor must perform every cycle.


The following is a discussion of two embodiments of methods for compensating the estimation of respiratory mechanics in the presence of leaks, The first embodiment is that of applying leak compensation to a static compliance and resistance determination. The second embodiment is that of applying leak compensation to a dynamic compliance determination,


Leak-Compensation of Static Determination of Lung Compliance



FIG. 5 illustrates an embodiment of a method for estimating respiratory mechanics of patient that utilizes a respiratory mechanics maneuver. In the embodiment shown, the ventilator is providing respiratory gas to a patient in accordance with some mode of operation such as a mandatory mode or a pressure assist mode (e.g., a mandatory volume-controlled (VCV) inspiration under square waveform setting or a mandatory pressure-controlled (PCV) inspiration with specific settings, or execute an inspiratory hold at the end of a PA inspiration), as is well known in the art. During operation, an operator command to estimate the compliance of the patient is received in a receive command operation 502. In an embodiment, the command may be entered by the operator of the ventilator via selection of a button or other interface element on a user interface of the ventilator. In an alternative embodiment, the ventilator may perform the method 500 automatically such as periodically, randomly or upon the detection of predetermined respiratory event.


In the embodiment shown, the system performs a respiratory maneuver which includes the forced imposition of a stable period at the end of an inspiratory phase so that there is no flow delivery to or from the patient's lung. The method 500 includes a delay until the next end of an inspiratory phase is detected, as illustrated by detect end of inspiratory phase operation 504.


When the end of the inspiratory phase is detected, a stabilization operation 506 is performed. In an embodiment, the operation 506 includes stabilizing the pressure and flow in the patient circuit so that there is no flow into or out of the patient's lungs at the point in which the lungs have taken a breath and thus are expanded with a known volume of gas (as determined during normal operation of the ventilator as discussed above with reference to the leak-compensated lung volume).


The stabilization operation 506 and the maintain stable condition operation 508 (discussed below) may sometimes be referred to collectively as a pause maneuver or a plateau maneuver. They are separated in this discussion for clarity purposes.


In order to stabilize the pressure and flow to achieve no flow between the circuit and the patient, if there are leaks in the tubing system these leaks are compensated for by the ventilator. Thus, in order to stabilize the flow the ventilator provides a leak-compensation flow that is equal to the amount of leakage from the system estimated by the leakage model at the stable pressure.


In practice, the stabilization of the pressure and flow is an iterative process in which the ventilator monitors the pressure and adjusts delivered flow until the pressure and flow stabilize at the point where the pressure and flow correspond to a solution to the leak model and the lung flow is practically zero, i.e., the current flow provided by the ventilator is the leakage flow determined from the model using the current pressure. In an embodiment, for a flow and pressure to be considered stable, a certain acceptable error may be allowed between the calculated leakage (calculated based on the current pressure) and the actual measured flow. Such an error may be predetermined amount or range based on an absolute difference between delivery and calculated flow or pressure or relative difference (e.g., calculated flow within x % of actual stable flow at a given pressure). Various methods for stabilizing pressure and flow in a ventilation tubing system are known in the art and any suitable method may be adapted for use in conjunction with the technology described in this disclosure.


When attempting to stabilize the pressure and flow during the stabilization operation 506, the leakage model may be used to increase the speed of the stabilization through a prediction of the likely resulting leakage flow at different pressures. This information may be used to determine a more accurate initial starting point for the stabilization and determine more accurate selection of adjustments to be made in order to more quickly converge on the stable pressure and flow.


After a stable pressure has been achieved, in the embodiment shown a maintain stable condition operation 508 is performed. The maintain stable condition operation 508 may maintain the stable pressure and stable, leak-compensating flow for a predetermined period of time such as 25-200 milliseconds or more preferably between 50-100 milliseconds. During the operation 458, the drop in pressure over the period of the maneuver may be monitored to ensure that it is within some acceptable performance threshold. If it is not, the ventilator may resume attempting to stabilize the pressure and flow or may abort the method and attempt the method 500 at the end of the next inspiratory phase.


The stable pressure observed during the maintain stable condition operation 508 is then used to calculate the leak-compensated compliance in a lung compliance calculation operation 510. The pressure value used may be an actual pressure or an average pressure observed over the maneuver period. Alternatively, different values derived from or based on the observed stable pressure may be calculated and used depending on the data required by the particular respiratory mechanics model being utilized.


In addition to using the stable pressure obtained during the pause maneuver, the compliance calculation operation 510 further utilizes leak-compensated lung flow and leak-compensated net lung volume when performing the calculation.


As discussed above, any suitable model for calculating lung compliance may be used. For example, in an embodiment of the compliance calculation operation 510 compliance is calculated using the following simple model:

Stable pressure=Leak-Compensated Net Lung Volume/Compliance.

or, stated a different way,

Compliance=Leak-Compensated Net Lung Volume/Stable pressure.


By using a leak-compensated value for lung volume and a stable pressure determined while compensating for leaks in the patient circuit, a more accurate leak-compensated lung compliance is estimated.


The leak-compensated compliance then may be used in a subsequent operation to determine a leak-compensated lung resistance. In the embodiment of the method 500 shown, this is illustrated by optional resistance calculation operation 512. In an embodiment of the resistance calculation operation 512 after the leak-compensated compliance has been determined, a resistance model that calculates lung resistance based on pressure, flow and compliance may be used to calculate resistance. An example of one such resistance model is as follows:

P(t2)−P(t1)=(V(t2)−V(t1))/C+R*(Q(t2)−Q(t1))

In which t1 and t2 are different times during a breath, P(t) is the airway pressure at time t, V(t) is the delivered lung volume at time t, C is the lung compliance, R is the lung resistance and Q(t) is the net lung flow at time t. In the resistance model provided above, leak-compensated lung flow, leak-compensated net lung volume and leak-compensated lung compliance are utilized to obtain a leak-compensated resistance. This computation may be performed repeatedly over several appropriate time windows and combined together (e,g., by an averaging method) to generate an estimate for lung resistance. Also, lung resistance may be determined from the leak-compensated exhalation flow waveform subsequent to the inspiratory pause maneuver using algorithms for resistance estimation under no leak conditions.


In an alternative embodiment of method 500, if it is determined that the ventilator has relatively low leakage, the lung compliance calculation operation 510 may forego the use of leak-compensated lung flow and net lung volume but still utilize the stable pressure determined through the provision of a leak-compensating flow during the pause maneuver. Lung compliance calculated in this fashion is still considered leak-compensated as the stable pressure was determined by compensating for leakage during the pause maneuver when generating the stable pressure.


Leak-Compensation of Dynamic Determination of Lung Compliance and Resistance



FIG. 6 illustrates an embodiment of a method for dynamically estimating respiratory mechanics of patient, This may be used as an alternative method of calculating lung compliance and resistance, thereby obviating the need to perform respiratory maneuvers during PA ventilation.


In the embodiment shown, the ventilator is providing respiratory gas to a patient in accordance with some mode of operation such as a mandatory mode or a pressure assist or support or PA mode, as is well known in the art. During operation, the ventilator detects a condition that indicates that it is time to estimate the respiratory mechanics of the patient. This is illustrated by the detection operation 602. In an embodiment, the condition detected may be a command entered by the operator of the ventilator via selection of a button or other interface element on a user interface of the ventilator. Alternatively, the ventilator may perform the dynamic estimation automatically such as during every breath, after a predetermined period of time or after the detection of some occurrence such as once every 100 breaths or upon detection of certain flow conditions.


Following determination that it is time to calculate the dynamic respiratory mechanics, the method 600 retrieves and/or calculates leak-compensated lung flow and leak-compensated net lung volume as necessary depending on whether the leak-compensated data already exists or not. For example, in an embodiment the leak-compensated lung flows for each sampling period may be available but the leak-compensated net lung volume may only be available “as needed” by calculating it from the compensated lung flow data


The method 600 then calculates the leak-compensated respiratory mechanics in a calculation operation 606. The leak-compensated respiratory mechanics are calculated from a predetermined dynamic respiratory mechanics model using the leak-compensated lung flows, leak-compensated net lung volume(s) and pressure in order to obtain estimates of dynamic compliance and dynamic resistance that are compensated for the leaks in the tubing system. The method 600 is then repeated as necessary.


Any respiratory mechanics model may be used as long as the model may be adapted to be used in a dynamic calculation, that is without interrupting the ventilation of the patient. Many such models are known in the art, some requiring iterative solutions of a set of multiple equations using data obtained over of a period of time.



FIG. 7 illustrates a functional block diagram of modules and other components that may be used in an embodiment of ventilator that compensates for elastic and rigid orifice sources of leaks when determining patient respiratory mechanics. In the embodiment shown, the ventilator 700 includes pressure sensors 706 (two are shown placed at different locations in the system), flow sensors (one is shown), and a ventilator control system 702. The ventilator control system 702 controls the operation of the ventilator and includes a plurality of modules described by their function. In the embodiment shown, the ventilator control system 702 includes a processor 708, memory 714 which may include mass storage as described above, a leak estimation module 712 incorporating a parametric leak model accounting for both elastic and rigid orifice leak sources such as that described in U.S. Provisional Application 61/041,070 previously incorporated herein, a leak-compensated static respiratory mechanics module 716, a pressure and flow control module 718, a monitoring module 722, a leak model module 720, a leak-compensated dynamic respiratory mechanics module 724, and a leak-compensated lung flow and volume estimation module 726. The processor 708 and memory 716 have been discussed above. Each of the other modules will be discussed in turn below.


The main functions of the ventilator such as receiving and interpreting operator inputs and providing therapy via changing pressure and flow of gas in the ventilator circuit are performed by the control module 718. In the context of the methods and systems described herein, the module 718 will perform one or more actions upon the determination that a patient receiving therapy is inhaling or exhaling.


In the embodiment described herein, the control module 718 determines and provides the appropriate amount of ventilation when in PA ventilation mode. This may include calculating patient effort and, based on the patient effort and the support setting, determining the appropriate amount of ventilation, i.e., the pressure and/or flow to provide to the patient. This may include performing one or more calculations based on leak-compensated lung flow, leak-compensated lung volume, leak-compensated lung compliance and leak-compensated lung resistance. PA ventilation is based on an estimation of patient's respiratory effort, therefore, patient effort may be first calculated and then the amount of ventilation (desired pressure reference) calculated therefrom.


The static calculation of respiratory mechanics is performed by the leak-compensated static respiratory mechanics module 716. The module 716 utilizes one or more respiratory models suitable for static determination of respiratory mechanics and one or more embodiments of the method 400 described above to calculate leak-compensated respiratory mechanics such as lung compliance and lung resistance. The module 716 uses leak-compensated values for one or both of lung flows and net lung volume. Leak-compensated values may be retrieved if they have already been calculated or may be calculated as needed from leakage information received from the leak-compensated lung flow and net lung volume estimation module 726. When calculating static respiratory mechanics, the module 716 may control the operation of the ventilator so that a pause maneuver is performed when required. Alternatively, some or all of the actions required in a pause maneuver may be controlled by the control module 718 in response to a respiratory mechanics calculation request and the data obtained during the maneuver provided to the static respiratory mechanics module 716.


The dynamic calculation of respiratory mechanics is performed by the leak-compensated dynamic respiratory mechanics module 724. The module 724 utilizes one or more dynamic respiratory models and one or more embodiments of the method 500 described above to calculate leak-compensated respiratory mechanics such as lung compliance and lung resistance. The module 724 uses leak-compensated values for one or both of lung flows and net lung volume. Leak-compensated values may be retrieved if they have already been calculated or may be calculated from leakage information received from the leak-compensated lung flow and net lung volume estimation module 726.


The current conditions in the ventilation system are monitored by the monitoring module 722. This module 722 collects the data generated by the sensors 704, 706 and may also perform certain calculations on the data to make the data more readily usable by other modules or may process the current data and or previously acquired data or operator input to derive auxiliary parameters or attributes of interest. In an embodiment, the monitoring module 722 receives data and provides it to each of the other modules in the ventilator control system 702 that need the current pressure or flow data for the system.


In the embodiment shown, compensated lung flows are calculated by the lung flow module 726. The lung flow module 726 uses a quantitative model for lung flow of the patient during both inhalation and exhalation and from this characterization and pressure and flow measurements generates an estimate for instantaneous lung flow. In an embodiment, lung flow may be simply determined based on subtracting the estimated leak flow and measured outflow via the expiratory limb from the flow into the inspiratory limb, thereby generating a leak-compensated net flow into (or out of) the lung. The lung flow module 726 may or may not also calculate an ongoing leak-compensated net lung volume during a patient's breath as described above. Compression in the circuits and accessories may also be accounted for to improve the accuracy of estimated lung flow.


The leak model parameters are generated by the leak estimation module 712 which creates one or more quantitative mathematical models, equations or correlations that uses pressure and flow observed in the ventilation system over regular periods of respiratory cycles (inhalation and exhalation) and apply physical and mathematical principles derived from mass balance and characteristic waveform settings of ventilation modalities (regulated pressure or flow trajectories) to derive the parameters of the leak model incorporating both rigid and elastic (variable pressure-dependent) orifices. In an embodiment, the mathematical model may be a model such as:

Qinelastic=R1*Pix
Qelastic=R2*Piy

wherein Qelastic is the instantaneous leak flow due to elastic leaks in the ventilation system, Qinelastic is the instantaneous leak flow due to inelastic leaks in the ventilation system, R1 is the inelastic leak constant, R2 is the elastic leak constant, Pi is the current or instantaneous pressure measurement, x is an exponent for use when determining the inelastic leak and y is an exponent different than x for use when determining the elastic leak. The group R1 * Pix represents flow through an orifice of fixed size as a function of instantaneous pressure Pi and the group R2 * Piy represents flow through a different orifice that varies in size based on the instantaneous pressure. The equations above presuppose that there will always be an elastic component and an inelastic component of leakage from the ventilation system. In the absence of an elastic component or a leak source of varying size, R2 would turn out be zero.


In the embodiment shown, the current or instantaneous elastic leak is calculated by the leak estimation module 712. The calculation is made using the elastic leak portion of the leak model developed by the leak estimation module 712 and the pressure data obtained by the monitoring module 722. The leak estimation module 712 may calculate a new instantaneous elastic leak flow or volume for each pressure sample taken (i.e., for each sampling period) by the monitoring module 722. The calculated elastic leak may then be provided to any other module as needed.


In the embodiment shown, the current or instantaneous inelastic leak is also calculated by the leak estimation module 712. The calculation is made using the inelastic leak portion of the leak model and the pressure data obtained by the monitoring module 722. The leak estimation module 712 may calculate a new instantaneous inelastic leak flow or volume for each pressure sample taken (i.e., for each sampling period) by the monitoring module 722. The calculated inelastic leak may then be provided to any other module as needed.


The system 700 illustrated will compensate lung flow for leaks due to elastic and inelastic leaks in the ventilation system. Furthermore, the system may perform a dynamic compensation of lung flow based on the changing leak conditions of the ventilation system and the instantaneous pressure and flow measurements. The system then compensates the respiratory mechanics calculations based on the estimated leakage in the system. By compensating for the inelastic as well as the elastic components of dynamic leaks, the medical ventilator can more accurately and precisely estimate the respiratory mechanics of a patient including estimating the lung compliance and lung resistance.


It will be clear that the systems and methods described herein are well adapted to attain the ends and advantages mentioned as well as those inherent therein. Those skilled in the art will recognize that the methods and systems within this specification may be implemented in many manners and as such is not to be limited by the foregoing exemplified embodiments and examples. For example, the operations and steps of the embodiments of methods described herein may be combined or the sequence of the operations may be changed while still achieving the goals of the technology. In addition, specific functions and/or actions may also be allocated in such as a way as to be performed by a different module or method step without deviating from the overall disclosure. In other words, functional elements being performed by a single or multiple components, in various combinations of hardware and software, and individual functions can be distributed among software applications. In this regard, any number of the features of the different embodiments described herein may be combined into one single embodiment and alternate embodiments having fewer than or more than all of the features herein described are possible.


While various embodiments have been described for purposes of this disclosure, various changes and modifications may be made which are well within the scope of the technology described herein. For example, the systems and methods described herein could be adapted to automatically determine leak-compensated resistance and/or compliance and initiate an alarm if the leak-compensated values are outside of a specified range for predetermined leakage values, thus eliminating false resistance and compliance alarms due to changes in leakage. Numerous other changes may be made which will readily suggest themselves to those skilled in the art and which are encompassed in the spirit of the disclosure and as defined in the appended claims.

Claims
  • 1. A method of compensating for leakage in a ventilation tubing system during delivery of proportional assist ventilation to a patient, wherein the method is performed by a ventilation system having a memory storing a computer-readable instructions and a processor, the processor executing the computer-readable instructions for performing the method comprising: receiving a support setting identifying an amount of proportional assistance to provide to the patient;receiving at least one of a pressure measurement and a flow measurement in the ventilation tubing system;modeling leakage from the ventilation tubing system as a first leakage through a first orifice of a fixed size that is estimated as a first function of at least one of the pressure measurement and the flow measurement and a second leakage through a second orifice of a varying size that is estimated as a second function of at least one of the pressure measurement and the flow measurement;estimating a lung compliance of the patient and a lung resistance of the patient based on the first leakage, the second leakage, and the at least one of the pressure measurement and the flow measurement;estimating patient effort based on the first leakage, the second leakage, the lung compliance, the lung resistance, and the at least one of the pressure measurement and the flow measurement; anddelivering ventilation to the patient based on the estimated patient effort and the support setting.
  • 2. The method of claim 1, wherein one or more of modeling leakage, estimating lung compliance and lung resistance, and estimating patient effort occurs every computational cycle.
  • 3. The method of claim 1, wherein estimating the lung compliance further comprises: generating a plurality of leak-compensated lung flows associated with a period of time based on the first leakage, the second leakage, and the at least one of the pressure measurement and the flow measurement associated with the period of time;generating a leak-compensated net lung volume for the period of time based on the plurality of leak-compensated lung flows; andcalculating the lung compliance using the leak-compensated net lung volume.
  • 4. The method of claim 3, further comprising: calculating the lung resistance based on the lung compliance and one or more of the plurality of leak-compensated lung flows, the leak-compensated net lung volume, and at least one pressure measurement.
  • 5. The method of claim 1, wherein estimating the lung compliance and the lung resistance further comprises: generating a plurality of leak-compensated lung flows associated with a period of time based on the first leakage, the second leakage, and the at least one of the pressure measurement and the flow measurement associated with the period of time;generating a leak-compensated net lung volume for the period of time based on the plurality of leak-compensated lung flows; andcalculating the lung compliance and the lung resistance using the leak-compensated net lung volume, the plurality of leak-compensated lung flows for the period of time, and the at least one pressure measurement associated with the period of time.
  • 6. The method of claim 1, wherein estimating the lung compliance comprises calculating a leak-compensated lung compliance comprising: calculating a leak-compensated lung volume based on a leak-compensated lung flow during an inspiratory phase;delivering a stable flow of gas at a stable pressure, wherein the stable flow and stable pressure are determined based on the estimated leakage at the stable pressure;maintaining the stable flow of gas at the stable pressure for at least a predetermined time interval;calculating the leak-compensated lung compliance based on the leak-compensated lung volume and the stable pressure; andcalculating a leak-compensated lung resistance based on the leak-compensated lung compliance and one or more of a previously calculated leak-compensated lung flow, a previously calculated leak-compensated lung volume, and a previously measured pressure.
  • 7. A pressure support system comprising: a pressure generating system adapted to generate a flow of breathing gas;a ventilation tubing system including a patient interface device for connecting the pressure generating system to a patient;one or more sensors operatively coupled to the pressure generating system or the ventilation tubing system, each sensor capable of generating an output indicative of a pressure or a flow of the breathing gas;a leak estimation module that estimates leakage from the ventilation tubing system by identifying an inelastic leakage in the ventilation tubing system as a first function of an output of at least one sensor, and identifying an elastic leakage in the ventilation system as a second function of an output of at least one sensor;a patient effort estimation module that estimates patient effort based on the leakage and an output of at least one sensor; anda proportional assistance ventilation module that causes the pressure generating system to provide ventilation to the patient based on patient effort and a support setting.
  • 8. The system of claim 7, further comprising: a compensation module that generates a leak-compensated lung flow based on the inelastic leakage.
  • 9. The system of claim 7, further comprising: a respiratory mechanics module that uses a static respiratory mechanics model to determine at least one of a static lung compliance and a static lung resistance based on the leak-compensated lung flow and an output of at least one sensor.
  • 10. The system of claim 7, further comprising: a respiratory mechanics module that uses a dynamic respiratory mechanics model to determine at least one of a dynamic lung compliance and a dynamic lung resistance based on the leak-compensated lung flow and an output of at least one sensor.
  • 11. The system of claim 10, wherein the patient effort estimation module estimates patient effort based on the leakage and at least one of the dynamic lung compliance and the dynamic lung resistance.
  • 12. A controller for a medical ventilator comprising: a microprocessor;a leak estimation module that estimates instantaneous elastic leakage of breathing gas from a ventilation tubing system as a first function of and output of at least one sensor and instantaneous inelastic leakage of breathing gas from the ventilation tubing system as a second function of an output of at least one sensor;a module that compensates calculations of lung compliance and lung resistance based on the instantaneous elastic leakage and the instantaneous inelastic leakage; anda pressure generating module controlled by the microprocessor that provides proportional assist ventilation based on the compensated lung compliance and lung resistance.
  • 13. A method of compensating for leakage in a ventilation tubing system during delivery of proportional assist ventilation to a patient, wherein the method is performed by a ventilation system having a memory storing a computer-readable instruction and a processor, the processor executing the computer-readable instruction for performing the method comprising: receiving a support setting identifying an amount of proportional assistance to provide to the patient;receiving at least one of a pressure measurement and a flow measurement associated with the ventilation tubing system;estimating leakage from the ventilation tubing system based on the at least one of the pressure measurement and the flow measurement, comprising: identifying an inelastic leakage in the ventilation system as a first function of the at least one of the pressure measurement and the flow measurement; andidentifying an elastic leakage in the ventilation system as a second function of the at least one of the pressure measurement and the flow measurement;estimating a lung compliance of the patient and a lung resistance of the patient based on the estimated leakage and the at least one of the pressure measurement and the flow measurement;estimating patient effort based on the estimated leakage, the lung compliance, the lung resistance, and the at least one of the pressure measurement and the flow measurement; anddelivering ventilation to the patient based on the estimated patient effort and the support setting.
  • 14. The method of claim 13, wherein one or more of estimating leakage, estimating lung compliance and lung resistance, and estimating patient effort occurs every computational cycle.
  • 15. The method of claim 13, wherein estimating the lung compliance further comprises: generating a plurality of leak-compensated lung flows associated with a period of time based on the estimated leakage and the at least one of the pressure measurement and the flow measurement associated with the period of time;generating a leak-compensated net lung volume for the period of time based on the plurality of leak-compensated lung flows; andcalculating the lung compliance using the leak-compensated net lung volume.
  • 16. The method of claim 15, further comprising: calculating the lung resistance based on the lung compliance and one or more of the plurality of leak-compensated lung flows, the leak-compensated net lung volume, and at least one pressure measurement.
  • 17. The method of claim 13, wherein estimating the lung compliance and the lung resistance further comprises: generating a plurality of leak-compensated lung flows associated with a period of time based on the estimated leakage and the at least one of the pressure measurement and the flow measurement associated with the period of time;generating a leak-compensated net lung volume for the period of time based on the plurality of leak-compensated lung flows; andcalculating the lung compliance and the lung resistance using the leak-compensated net lung volume, the plurality of leak-compensated lung flows for the period of time, and the at least one pressure measurement associated with the period of time.
  • 18. The method of claim 13, wherein estimating the lung compliance comprises calculating a leak-compensated lung compliance comprising: calculating a leak-compensated lung volume based on a leak-compensated lung flow during an inspiratory phase;delivering a stable flow of gas at a stable pressure, wherein the stable flow and stable pressure are determined based on the estimated leakage at the stable pressure;maintaining the stable flow of gas at the stable pressure for at least a predetermined time interval; andcalculating the leak-compensated lung compliance based on the leak-compensated lung volume and the stable pressure.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of U.S. patent application Ser. No. 13/565,595 (now U.S. Pat. No. 8,448,641), entitled “LEAK-COMPENSATED PROPORTIONAL ASSIST VENTILATION,” filed on Aug. 2, 2012, which is a divisional application of U.S. patent application Ser. No. 12/408,408 (now U.S. Pat. No. 8,267,085), entitled “LEAK-COMPENSATED PROPORTIONAL ASSIST VENTILATION,” filed on Mar. 20, 2009, the complete disclosures of which are hereby incorporated by reference in their entirety.

US Referenced Citations (675)
Number Name Date Kind
3805780 Cramer et al. Apr 1974 A
3941124 Rodewald et al. Mar 1976 A
4056098 Michel et al. Nov 1977 A
4305388 Brisson Dec 1981 A
4340044 Levy et al. Jul 1982 A
4448192 Stawitcke et al. May 1984 A
4752089 Carter Jun 1988 A
4766894 Legrand et al. Aug 1988 A
4921642 LaTorraca May 1990 A
4939647 Clough et al. Jul 1990 A
4954799 Kumar Sep 1990 A
4971052 Edwards Nov 1990 A
4972842 Korten et al. Nov 1990 A
4986268 Tehrani Jan 1991 A
5057822 Hoffman Oct 1991 A
5065350 Fedder Nov 1991 A
5072728 Pasternack Dec 1991 A
5072737 Goulding Dec 1991 A
5094235 Westenskow et al. Mar 1992 A
5148802 Sanders et al. Sep 1992 A
5150291 Cummings et al. Sep 1992 A
5161525 Kimm et al. Nov 1992 A
5237987 Anderson et al. Aug 1993 A
5239995 Estes et al. Aug 1993 A
5259373 Gruenke et al. Nov 1993 A
5271389 Isaza et al. Dec 1993 A
5279549 Ranford Jan 1994 A
5299568 Forare et al. Apr 1994 A
5301921 Kumar Apr 1994 A
5313937 Zdrojkowski et al. May 1994 A
5315989 Tobia May 1994 A
5316009 Yamada May 1994 A
5319540 Isaza et al. Jun 1994 A
5325861 Goulding Jul 1994 A
5333606 Schneider et al. Aug 1994 A
5339807 Carter Aug 1994 A
5343857 Schneider et al. Sep 1994 A
5351522 Lura Oct 1994 A
5357946 Kee et al. Oct 1994 A
5365922 Raemer Nov 1994 A
5368019 LaTorraca Nov 1994 A
5383449 Forare et al. Jan 1995 A
5385142 Brady et al. Jan 1995 A
5388575 Taube Feb 1995 A
5390666 Kimm et al. Feb 1995 A
5398682 Lynn Mar 1995 A
5401135 Stoen et al. Mar 1995 A
5402796 Packer et al. Apr 1995 A
5407174 Kumar Apr 1995 A
5413110 Cummings et al. May 1995 A
5429123 Shaffer et al. Jul 1995 A
5433193 Sanders et al. Jul 1995 A
5438980 Phillips Aug 1995 A
5443075 Holscher Aug 1995 A
5492113 Estes et al. Feb 1996 A
5503146 Froehlich et al. Apr 1996 A
5503147 Bertheau Apr 1996 A
5513631 McWilliams May 1996 A
5517983 Deighan et al. May 1996 A
5520071 Jones May 1996 A
5524615 Power Jun 1996 A
5531221 Power Jul 1996 A
5535738 Estes et al. Jul 1996 A
5540220 Gropper et al. Jul 1996 A
5542415 Brady Aug 1996 A
5544674 Kelly Aug 1996 A
5549106 Gruenke et al. Aug 1996 A
5551418 Estes et al. Sep 1996 A
5551419 Froehlich et al. Sep 1996 A
5555880 Winter et al. Sep 1996 A
5596984 O'Mahoney et al. Jan 1997 A
5598838 Servidio et al. Feb 1997 A
5605151 Lynn Feb 1997 A
5623923 Bertheau et al. Apr 1997 A
5630411 Holscher May 1997 A
5632269 Zdrojkowski May 1997 A
5632270 O'Mahoney et al. May 1997 A
5645048 Brodsky et al. Jul 1997 A
5645053 Remmers et al. Jul 1997 A
5650943 Powell et al. Jul 1997 A
5660171 Kimm et al. Aug 1997 A
5664560 Merrick et al. Sep 1997 A
5664562 Bourdon Sep 1997 A
5671767 Kelly Sep 1997 A
5672041 Ringdahl et al. Sep 1997 A
5673689 Power Oct 1997 A
5685296 Zdrojkowski et al. Nov 1997 A
5687715 Landis et al. Nov 1997 A
5692497 Schnitzer et al. Dec 1997 A
5715812 Deighan et al. Feb 1998 A
5719785 Standifer Feb 1998 A
5752509 Lachmann et al. May 1998 A
5762480 Adahan Jun 1998 A
5771884 Yarnall et al. Jun 1998 A
5791339 Winter Aug 1998 A
5794615 Estes Aug 1998 A
5794986 Gansel et al. Aug 1998 A
5803065 Zdrojkowski et al. Sep 1998 A
5813399 Isaza et al. Sep 1998 A
5823187 Estes et al. Oct 1998 A
5826575 Lall Oct 1998 A
5829441 Kidd et al. Nov 1998 A
5864938 Gansel et al. Feb 1999 A
5865168 Isaza Feb 1999 A
5876352 Weismann Mar 1999 A
5881717 Isaza Mar 1999 A
5881723 Wallace et al. Mar 1999 A
5884622 Younes Mar 1999 A
5884623 Winter Mar 1999 A
5891023 Lynn Apr 1999 A
5901704 Estes et al. May 1999 A
5904141 Estes et al. May 1999 A
5909731 O'Mahony et al. Jun 1999 A
5915379 Wallace et al. Jun 1999 A
5915380 Wallace et al. Jun 1999 A
5915382 Power Jun 1999 A
5918597 Jones et al. Jul 1999 A
5921238 Bourdon Jul 1999 A
5921920 Marshall et al. Jul 1999 A
5927274 Servidio et al. Jul 1999 A
5934274 Merrick et al. Aug 1999 A
5970975 Estes et al. Oct 1999 A
6024089 Wallace et al. Feb 2000 A
6029664 Zdrojkowski et al. Feb 2000 A
6041780 Richard et al. Mar 2000 A
6047860 Sanders Apr 2000 A
6055981 Laswick et al. May 2000 A
6059732 Orr et al. May 2000 A
6076523 Jones et al. Jun 2000 A
6099481 Daniels et al. Aug 2000 A
6105575 Estes et al. Aug 2000 A
6116240 Merrick et al. Sep 2000 A
6116464 Sanders Sep 2000 A
6123073 Schlawin et al. Sep 2000 A
6123074 Hete et al. Sep 2000 A
6135106 Dirks et al. Oct 2000 A
6142150 O'Mahony et al. Nov 2000 A
6148814 Clemmer et al. Nov 2000 A
6152129 Berthon-Jones Nov 2000 A
6158432 Biondi et al. Dec 2000 A
6161539 Winter Dec 2000 A
6220245 Takabayashi et al. Apr 2001 B1
6223064 Lynn et al. Apr 2001 B1
6253765 Högnelid et al. Jul 2001 B1
6257234 Sun Jul 2001 B1
6269812 Wallace et al. Aug 2001 B1
6273444 Power Aug 2001 B1
6279569 Berthon-Jones Aug 2001 B1
6283119 Bourdon Sep 2001 B1
6286508 Remmers et al. Sep 2001 B1
6305372 Servidio Oct 2001 B1
6305373 Wallace et al. Oct 2001 B1
6305374 Zdrojkowski et al. Oct 2001 B1
6321748 O'Mahoney Nov 2001 B1
6325785 Babkes et al. Dec 2001 B1
6342039 Lynn et al. Jan 2002 B1
6357438 Hansen Mar 2002 B1
6360741 Truschel Mar 2002 B2
6360745 Wallace et al. Mar 2002 B1
6369838 Wallace et al. Apr 2002 B1
6371114 Schmidt et al. Apr 2002 B1
6390091 Banner et al. May 2002 B1
6412483 Jones et al. Jul 2002 B1
6425395 Brewer et al. Jul 2002 B1
6427689 Estes et al. Aug 2002 B1
6439229 Du et al. Aug 2002 B1
6467478 Merrick et al. Oct 2002 B1
6484719 Berthon-Jones Nov 2002 B1
6512938 Claure et al. Jan 2003 B2
6532957 Berthon-Jones Mar 2003 B2
6532958 Buan et al. Mar 2003 B1
6532959 Berthon-Jones Mar 2003 B1
6532960 Yurko Mar 2003 B1
6536429 Pavlov et al. Mar 2003 B1
6536432 Truschel Mar 2003 B2
6539940 Zdrojkowski et al. Apr 2003 B2
6543449 Woodring et al. Apr 2003 B1
6546930 Emerson et al. Apr 2003 B1
6550478 Remmers et al. Apr 2003 B2
6553991 Isaza Apr 2003 B1
6553992 Berthon-Jones et al. Apr 2003 B1
6557553 Borrello May 2003 B1
6561187 Schmidt et al. May 2003 B2
6571795 Bourdon Jun 2003 B2
6575163 Berthon-Jones Jun 2003 B1
6578575 Jonson Jun 2003 B1
6609016 Lynn Aug 2003 B1
6609517 Estes et al. Aug 2003 B1
6615834 Gradon et al. Sep 2003 B2
6622726 Du Sep 2003 B1
6626175 Jafari et al. Sep 2003 B2
6629527 Estes et al. Oct 2003 B1
6640806 Yurko Nov 2003 B2
6644310 Delache et al. Nov 2003 B1
6644312 Berthon-Jones et al. Nov 2003 B2
6644316 Bowman et al. Nov 2003 B2
6659101 Berthon-Jones Dec 2003 B2
6668824 Isaza et al. Dec 2003 B1
6671529 Claure et al. Dec 2003 B2
6675801 Wallace et al. Jan 2004 B2
6688307 Berthon-Jones Feb 2004 B2
6701926 Olsen et al. Mar 2004 B2
6718974 Moberg Apr 2004 B1
6722365 Nilsson et al. Apr 2004 B2
6723055 Hoffman Apr 2004 B2
6723132 Salehpoor Apr 2004 B2
6725447 Gilman et al. Apr 2004 B1
6739337 Isaza May 2004 B2
6748252 Lynn et al. Jun 2004 B2
6752150 Remmers et al. Jun 2004 B1
6752151 Hill Jun 2004 B2
6755193 Berthon-Jones et al. Jun 2004 B2
6758216 Berthon-Jones et al. Jul 2004 B1
6760608 Lynn Jul 2004 B2
6761165 Strickland, Jr. Jul 2004 B2
6761167 Nadjafizadeh et al. Jul 2004 B1
6761168 Nadjafizadeh et al. Jul 2004 B1
6789541 Olsen et al. Sep 2004 B2
6796305 Banner et al. Sep 2004 B1
6810876 Berthon-Jones Nov 2004 B2
6814074 Nadjafizadeh et al. Nov 2004 B1
6820613 Wenkebach et al. Nov 2004 B2
6820618 Banner et al. Nov 2004 B2
6823866 Jafari et al. Nov 2004 B2
6837242 Younes Jan 2005 B2
6843250 Efrati Jan 2005 B2
6866040 Bourdon Mar 2005 B1
6868346 Larson et al. Mar 2005 B2
6874503 Rydgren Apr 2005 B2
6910480 Berthon-Jones Jun 2005 B1
6910481 Kimmel et al. Jun 2005 B2
6920875 Hill et al. Jul 2005 B1
6920877 Remmers et al. Jul 2005 B2
6932084 Estes et al. Aug 2005 B2
6945248 Berthon-Jones Sep 2005 B2
6948497 Zdrojkowski et al. Sep 2005 B2
6960854 Nadjafizadeh et al. Nov 2005 B2
6962155 Sinderby Nov 2005 B1
6986347 Hickle Jan 2006 B2
7000612 Jafari et al. Feb 2006 B2
7008380 Rees et al. Mar 2006 B1
7013892 Estes et al. Mar 2006 B2
7017576 Olsen et al. Mar 2006 B2
7036504 Wallace et al. May 2006 B2
7040320 Fjeld et al. May 2006 B2
7044129 Truschel et al. May 2006 B1
7055522 Berthon-Jones Jun 2006 B2
7066173 Banner et al. Jun 2006 B2
7073501 Remmers et al. Jul 2006 B2
7077131 Hansen Jul 2006 B2
7081095 Lynn et al. Jul 2006 B2
RE39225 Isaza et al. Aug 2006 E
7089936 Madaus et al. Aug 2006 B2
7092757 Larson et al. Aug 2006 B2
7100607 Zdrojkowski et al. Sep 2006 B2
7100608 Brewer et al. Sep 2006 B2
7100609 Berthon-Jones et al. Sep 2006 B2
7107991 Kolobow Sep 2006 B2
7117438 Wallace et al. Oct 2006 B2
7137389 Berthon-Jones Nov 2006 B2
7152598 Morris et al. Dec 2006 B2
7168429 Matthews et al. Jan 2007 B2
7195028 Basset et al. Mar 2007 B2
7210478 Banner et al. May 2007 B2
7229430 Hickle et al. Jun 2007 B2
7267122 Hill Sep 2007 B2
7270126 Wallace et al. Sep 2007 B2
7275540 Bolam et al. Oct 2007 B2
7296573 Estes et al. Nov 2007 B2
7297119 Westbrook et al. Nov 2007 B2
7331343 Schmidt et al. Feb 2008 B2
7353824 Forsyth et al. Apr 2008 B1
7367337 Berthon-Jones et al. May 2008 B2
7369757 Farbarik May 2008 B2
7370650 Nadjafizadeh et al. May 2008 B2
7398115 Lynn Jul 2008 B2
7406870 Seto Aug 2008 B2
7428902 Du et al. Sep 2008 B2
7448381 Sasaki et al. Nov 2008 B2
7455583 Taya et al. Nov 2008 B2
7460959 Jafari Dec 2008 B2
7475685 Dietz et al. Jan 2009 B2
7487773 Li Feb 2009 B2
7509957 Duquette et al. Mar 2009 B2
7527056 Turiello May 2009 B2
7533671 Gonzalez et al. May 2009 B2
7621269 Turiello Nov 2009 B2
7644713 Berthon-Jones Jan 2010 B2
7654802 Crawford, Jr. et al. Feb 2010 B2
7661428 Berthon-Jones Feb 2010 B2
7673629 Turiello Mar 2010 B2
7677247 Turiello Mar 2010 B2
7694677 Tang Apr 2010 B2
7694678 Turiello Apr 2010 B2
7717112 Sun et al. May 2010 B2
7717113 Andrieux May 2010 B2
D618356 Ross Jun 2010 S
7770578 Estes et al. Aug 2010 B2
7784461 Figueiredo et al. Aug 2010 B2
7810496 Estes et al. Oct 2010 B2
7810497 Pittman et al. Oct 2010 B2
7814906 Moretti Oct 2010 B2
7823588 Hansen Nov 2010 B2
7827988 Matthews et al. Nov 2010 B2
7855716 McCreary et al. Dec 2010 B2
7856979 Doshi et al. Dec 2010 B2
D632796 Ross et al. Feb 2011 S
D632797 Ross et al. Feb 2011 S
7882835 Eger et al. Feb 2011 B2
7886739 Soliman et al. Feb 2011 B2
7886740 Thomas et al. Feb 2011 B2
7891354 Farbarik Feb 2011 B2
7893560 Carter Feb 2011 B2
7905231 Chalvignac Mar 2011 B2
7918222 Chen Apr 2011 B2
7918223 Soliman et al. Apr 2011 B2
7920067 Durtschi et al. Apr 2011 B2
7928852 Durtschi et al. Apr 2011 B2
D638852 Skidmore et al. May 2011 S
7934499 Berthon-Jones May 2011 B2
7938114 Matthews et al. May 2011 B2
7963283 Sinderby Jun 2011 B2
7984712 Soliman et al. Jul 2011 B2
7984714 Hausmann et al. Jul 2011 B2
D643535 Ross et al. Aug 2011 S
7992557 Nadjafizadeh et al. Aug 2011 B2
8001967 Wallace et al. Aug 2011 B2
8002154 Fontela et al. Aug 2011 B2
D645158 Sanchez et al. Sep 2011 S
8021309 Zilberg Sep 2011 B2
8021310 Sanborn et al. Sep 2011 B2
8033280 Heinonen Oct 2011 B2
D649157 Skidmore et al. Nov 2011 S
8051853 Berthon-Jones Nov 2011 B2
8070709 Childers Dec 2011 B2
8083677 Rohde Dec 2011 B2
D652521 Ross et al. Jan 2012 S
D652936 Ross et al. Jan 2012 S
8105310 Klein Jan 2012 B2
D653749 Winter et al. Feb 2012 S
8113062 Graboi et al. Feb 2012 B2
8122885 Berthon-Jones et al. Feb 2012 B2
D655405 Winter et al. Mar 2012 S
D655809 Winter et al. Mar 2012 S
D656237 Sanchez et al. Mar 2012 S
8136521 Matthews et al. Mar 2012 B2
8152116 Westberg Apr 2012 B2
RE43398 Honkonen et al. May 2012 E
8181643 Friedberg May 2012 B2
8181648 Perine et al. May 2012 B2
8181649 Brunner May 2012 B2
8187184 Muller et al. May 2012 B2
8210173 Vandine Jul 2012 B2
8210174 Farbarik Jul 2012 B2
8211128 Facundus et al. Jul 2012 B1
8216159 Leiboff Jul 2012 B1
8217218 Court et al. Jul 2012 B2
8225796 Davenport et al. Jul 2012 B2
8235930 McCall Aug 2012 B1
8240684 Ross et al. Aug 2012 B2
8251923 Carrez et al. Aug 2012 B2
8256418 Bassin Sep 2012 B2
8267085 Jafari et al. Sep 2012 B2
8272379 Jafari et al. Sep 2012 B2
8272380 Jafari et al. Sep 2012 B2
8288607 Court et al. Oct 2012 B2
8302600 Andrieux et al. Nov 2012 B2
8302602 Andrieux et al. Nov 2012 B2
8418691 Jafari et al. Apr 2013 B2
8424521 Jafari et al. Apr 2013 B2
8434480 Jafari et al. May 2013 B2
8448641 Jafari et al. May 2013 B2
20020014240 Truschel Feb 2002 A1
20020053345 Jafari et al. May 2002 A1
20020185126 Krebs Dec 2002 A1
20030010339 Banner et al. Jan 2003 A1
20030158466 Lynn et al. Aug 2003 A1
20030159695 Younes Aug 2003 A1
20030221689 Berthon-Jones Dec 2003 A1
20040050387 Younes Mar 2004 A1
20040074492 Berthon-Jones Apr 2004 A1
20040089561 Herman May 2004 A1
20040163648 Burton Aug 2004 A1
20040187870 Matthews et al. Sep 2004 A1
20050039748 Andrieux Feb 2005 A1
20050109340 Tehrani May 2005 A1
20050139212 Bourdon Jun 2005 A1
20050172965 Thulin Aug 2005 A1
20050188991 Sun et al. Sep 2005 A1
20050241639 Zilberg Nov 2005 A1
20060000475 Matthews et al. Jan 2006 A1
20060011200 Remmers et al. Jan 2006 A1
20060086357 Soliman et al. Apr 2006 A1
20060102180 Berthon-Jones May 2006 A1
20060112959 Mechlenburg et al. Jun 2006 A1
20060118112 Cattano et al. Jun 2006 A1
20060144144 Seto Jul 2006 A1
20060150974 Berthon-Jones Jul 2006 A1
20060155206 Lynn Jul 2006 A1
20060155207 Lynn et al. Jul 2006 A1
20060161071 Lynn et al. Jul 2006 A1
20060174883 Aylsworth et al. Aug 2006 A1
20060189880 Lynn et al. Aug 2006 A1
20060195041 Lynn et al. Aug 2006 A1
20060201505 Remmers et al. Sep 2006 A1
20060217633 Glocker et al. Sep 2006 A1
20060235324 Lynn Oct 2006 A1
20060241708 Boute Oct 2006 A1
20060247508 Fennell Nov 2006 A1
20060249150 Dietz et al. Nov 2006 A1
20060249156 Moretti Nov 2006 A1
20060254588 Brewer et al. Nov 2006 A1
20060264762 Starr Nov 2006 A1
20060272642 Chalvignac Dec 2006 A1
20060278218 Hoffman Dec 2006 A1
20070000494 Banner et al. Jan 2007 A1
20070017515 Wallace et al. Jan 2007 A1
20070027375 Melker et al. Feb 2007 A1
20070028921 Banner et al. Feb 2007 A1
20070044796 Zdrojkowski et al. Mar 2007 A1
20070068530 Pacey Mar 2007 A1
20070072541 Daniels, II et al. Mar 2007 A1
20070077200 Baker Apr 2007 A1
20070089738 Soliman et al. Apr 2007 A1
20070093721 Lynn et al. Apr 2007 A1
20070101992 Soliman et al. May 2007 A1
20070129647 Lynn Jun 2007 A1
20070135736 Addington et al. Jun 2007 A1
20070144522 Eger et al. Jun 2007 A1
20070149860 Lynn et al. Jun 2007 A1
20070157931 Parker et al. Jul 2007 A1
20070163579 Li et al. Jul 2007 A1
20070191688 Lynn Aug 2007 A1
20070191697 Lynn et al. Aug 2007 A1
20070215154 Borrello Sep 2007 A1
20070221224 Pittman et al. Sep 2007 A1
20070227537 Bemister et al. Oct 2007 A1
20070251532 Friedberg Nov 2007 A1
20070272241 Sanborn et al. Nov 2007 A1
20070277823 Al-Ali et al. Dec 2007 A1
20070283958 Naghavi Dec 2007 A1
20070284361 Nadjafizadeh et al. Dec 2007 A1
20080000478 Matthiessen et al. Jan 2008 A1
20080000479 Elaz et al. Jan 2008 A1
20080041382 Matthews et al. Feb 2008 A1
20080041383 Matthews et al. Feb 2008 A1
20080051674 Davenport et al. Feb 2008 A1
20080053441 Gottlib et al. Mar 2008 A1
20080053442 Estes et al. Mar 2008 A1
20080053443 Estes et al. Mar 2008 A1
20080053444 Estes et al. Mar 2008 A1
20080066752 Baker et al. Mar 2008 A1
20080066753 Martin et al. Mar 2008 A1
20080072896 Setzer et al. Mar 2008 A1
20080072902 Setzer et al. Mar 2008 A1
20080078390 Milne et al. Apr 2008 A1
20080081974 Pav Apr 2008 A1
20080083644 Janbakhsh et al. Apr 2008 A1
20080092894 Nicolazzi et al. Apr 2008 A1
20080097234 Nicolazzi et al. Apr 2008 A1
20080168988 Lu Jul 2008 A1
20080178880 Christopher et al. Jul 2008 A1
20080178882 Christopher et al. Jul 2008 A1
20080185002 Berthon-Jones et al. Aug 2008 A1
20080200775 Lynn Aug 2008 A1
20080200819 Lynn et al. Aug 2008 A1
20080221469 Shevchuk Sep 2008 A1
20080251079 Richey Oct 2008 A1
20080295837 McCormick et al. Dec 2008 A1
20080302359 Loomas et al. Dec 2008 A1
20090014007 Brambilla et al. Jan 2009 A1
20090050153 Brunner Feb 2009 A1
20090082653 Rohde Mar 2009 A1
20090088613 Marttila et al. Apr 2009 A1
20090093697 Mir et al. Apr 2009 A1
20090137927 Miller May 2009 A1
20090149730 McCrary Jun 2009 A1
20090165795 Nadjafizadeh et al. Jul 2009 A1
20090171176 Andersohn Jul 2009 A1
20090171226 Campbell et al. Jul 2009 A1
20090178675 Turiello Jul 2009 A1
20090178676 Villax et al. Jul 2009 A1
20090194100 Minagi Aug 2009 A1
20090205661 Stephenson et al. Aug 2009 A1
20090205663 Vandine et al. Aug 2009 A1
20090229605 Efrati et al. Sep 2009 A1
20090241951 Jafari et al. Oct 2009 A1
20090241952 Nicolazzi et al. Oct 2009 A1
20090241953 Vandine et al. Oct 2009 A1
20090241955 Jafari et al. Oct 2009 A1
20090241956 Baker, Jr. et al. Oct 2009 A1
20090241957 Baker, Jr. Oct 2009 A1
20090241958 Baker, Jr. Oct 2009 A1
20090241962 Jafari et al. Oct 2009 A1
20090247891 Wood Oct 2009 A1
20090250061 Marasigan Oct 2009 A1
20090272382 Euliano et al. Nov 2009 A1
20090281481 Harding Nov 2009 A1
20090301486 Masic Dec 2009 A1
20090301487 Masic Dec 2009 A1
20090301490 Masic Dec 2009 A1
20090301491 Masic et al. Dec 2009 A1
20090308398 Ferdinand et al. Dec 2009 A1
20090314294 Chalvignac Dec 2009 A1
20090318851 Schenck Dec 2009 A1
20100011307 Desfossez et al. Jan 2010 A1
20100018529 Chalvignac Jan 2010 A1
20100024819 Tiedje Feb 2010 A1
20100024820 Bourdon Feb 2010 A1
20100051026 Graboi Mar 2010 A1
20100051029 Jafari et al. Mar 2010 A1
20100065057 Berthon-Jones Mar 2010 A1
20100069761 Karst et al. Mar 2010 A1
20100071689 Thiessen Mar 2010 A1
20100071692 Porges Mar 2010 A1
20100071695 Thiessen Mar 2010 A1
20100071696 Jafari Mar 2010 A1
20100071697 Jafari et al. Mar 2010 A1
20100078017 Andrieux et al. Apr 2010 A1
20100078018 Heinonen Apr 2010 A1
20100078026 Andrieux et al. Apr 2010 A1
20100081119 Jafari et al. Apr 2010 A1
20100081955 Wood, Jr. et al. Apr 2010 A1
20100081958 She Apr 2010 A1
20100101574 Bassin Apr 2010 A1
20100101576 Berthon-Jones Apr 2010 A1
20100116276 Bayasi May 2010 A1
20100137737 Addington et al. Jun 2010 A1
20100139660 Adahan Jun 2010 A1
20100147303 Jafari et al. Jun 2010 A1
20100186741 Aylsworth et al. Jul 2010 A1
20100186744 Andrieux Jul 2010 A1
20100218765 Jafari et al. Sep 2010 A1
20100218766 Milne Sep 2010 A1
20100218767 Jafari et al. Sep 2010 A1
20100234758 de Menezes Sep 2010 A1
20100236553 Jafari et al. Sep 2010 A1
20100236555 Jafari et al. Sep 2010 A1
20100242961 Mougel et al. Sep 2010 A1
20100252048 Young et al. Oct 2010 A1
20100258123 Somaiya et al. Oct 2010 A1
20100262038 Tan et al. Oct 2010 A1
20100282259 Figueiredo et al. Nov 2010 A1
20100288283 Campbell et al. Nov 2010 A1
20100300446 Nicolazzi et al. Dec 2010 A1
20100331768 Hedmann et al. Dec 2010 A1
20110011400 Gentner et al. Jan 2011 A1
20110023878 Thiessen Feb 2011 A1
20110023879 Vandine et al. Feb 2011 A1
20110023880 Thiessen Feb 2011 A1
20110023881 Thiessen Feb 2011 A1
20110029910 Thiessen Feb 2011 A1
20110034863 Hoffa Feb 2011 A1
20110041849 Chen et al. Feb 2011 A1
20110041850 Vandine et al. Feb 2011 A1
20110061648 Durtschi et al. Mar 2011 A1
20110071367 Court et al. Mar 2011 A1
20110077549 Kitai et al. Mar 2011 A1
20110100373 Efrati et al. May 2011 A1
20110125052 Davenport et al. May 2011 A1
20110126829 Carter et al. Jun 2011 A1
20110126832 Winter et al. Jun 2011 A1
20110126834 Winter et al. Jun 2011 A1
20110126835 Winter et al. Jun 2011 A1
20110126836 Winter et al. Jun 2011 A1
20110126837 Winter et al. Jun 2011 A1
20110128008 Carter Jun 2011 A1
20110132361 Sanchez Jun 2011 A1
20110132362 Sanchez Jun 2011 A1
20110132363 Chalvignac Jun 2011 A1
20110132364 Ogilvie et al. Jun 2011 A1
20110132365 Patel et al. Jun 2011 A1
20110132366 Ogilvie et al. Jun 2011 A1
20110132367 Patel Jun 2011 A1
20110132368 Sanchez et al. Jun 2011 A1
20110132369 Sanchez Jun 2011 A1
20110132371 Sanchez et al. Jun 2011 A1
20110133936 Sanchez et al. Jun 2011 A1
20110138308 Palmer et al. Jun 2011 A1
20110138309 Skidmore et al. Jun 2011 A1
20110138311 Palmer Jun 2011 A1
20110138315 Vandine et al. Jun 2011 A1
20110138323 Skidmore et al. Jun 2011 A1
20110146681 Jafari et al. Jun 2011 A1
20110146683 Jafari et al. Jun 2011 A1
20110154241 Skidmore et al. Jun 2011 A1
20110175728 Baker, Jr. Jul 2011 A1
20110178427 Tan et al. Jul 2011 A1
20110196251 Jourdain et al. Aug 2011 A1
20110201956 Alferness et al. Aug 2011 A1
20110209702 Vuong et al. Sep 2011 A1
20110209704 Jafari et al. Sep 2011 A1
20110209707 Terhark Sep 2011 A1
20110213215 Doyle et al. Sep 2011 A1
20110220112 Connor Sep 2011 A1
20110226250 LaBollita et al. Sep 2011 A1
20110230780 Sanborn et al. Sep 2011 A1
20110249006 Wallace et al. Oct 2011 A1
20110259330 Jafari et al. Oct 2011 A1
20110259332 Sanchez et al. Oct 2011 A1
20110259333 Sanchez et al. Oct 2011 A1
20110265024 Leone et al. Oct 2011 A1
20110271960 Milne et al. Nov 2011 A1
20110273299 Milne et al. Nov 2011 A1
20110284003 Douglas et al. Nov 2011 A1
20110290246 Zachar Dec 2011 A1
20110293706 Ludwig et al. Dec 2011 A1
20110313689 Holley et al. Dec 2011 A1
20120000466 Rapoport Jan 2012 A1
20120000467 Milne et al. Jan 2012 A1
20120000468 Milne et al. Jan 2012 A1
20120000469 Milne et al. Jan 2012 A1
20120000470 Milne et al. Jan 2012 A1
20120006328 Berthon-Jones Jan 2012 A1
20120022441 Kelly et al. Jan 2012 A1
20120029317 Doyle et al. Feb 2012 A1
20120030611 Skidmore Feb 2012 A1
20120060835 Mashak Mar 2012 A1
20120060841 Crawford, Jr. et al. Mar 2012 A1
20120065533 Carrillo, Jr. et al. Mar 2012 A1
20120071729 Doyle et al. Mar 2012 A1
20120083729 Childers Apr 2012 A1
20120090610 O'Connor et al. Apr 2012 A1
20120090611 Graboi et al. Apr 2012 A1
20120096381 Milne et al. Apr 2012 A1
20120133519 Milne et al. May 2012 A1
20120136222 Doyle et al. May 2012 A1
20120137249 Milne et al. May 2012 A1
20120137250 Milne et al. May 2012 A1
20120139734 Olde et al. Jun 2012 A1
20120150057 Mantri Jun 2012 A1
20120167885 Masic et al. Jul 2012 A1
20120185792 Kimm et al. Jul 2012 A1
20120197578 Vig et al. Aug 2012 A1
20120197580 Vij et al. Aug 2012 A1
20120211008 Perine et al. Aug 2012 A1
20120215081 Euliano et al. Aug 2012 A1
20120216809 Milne et al. Aug 2012 A1
20120216810 Jafari et al. Aug 2012 A1
20120216811 Kimm et al. Aug 2012 A1
20120226444 Milne et al. Sep 2012 A1
20120247471 Masic et al. Oct 2012 A1
20120272960 Milne Nov 2012 A1
20120272961 Masic et al. Nov 2012 A1
20120272962 Doyle et al. Nov 2012 A1
20120277616 Sanborn et al. Nov 2012 A1
20120279501 Wallace et al. Nov 2012 A1
20120304995 Kauc Dec 2012 A1
20120304997 Jafari et al. Dec 2012 A1
20130000644 Thiessen Jan 2013 A1
20130006133 Doyle et al. Jan 2013 A1
20130006134 Doyle et al. Jan 2013 A1
20130008443 Thiessen Jan 2013 A1
20130025596 Jafari et al. Jan 2013 A1
20130025597 Doyle et al. Jan 2013 A1
20130032151 Adahan Feb 2013 A1
20130047989 Vandine et al. Feb 2013 A1
20130053717 Vandine et al. Feb 2013 A1
20130074844 Kimm et al. Mar 2013 A1
20130081536 Crawford, Jr. et al. Apr 2013 A1
20130104896 Kimm et al. May 2013 A1
20130146055 Jafari et al. Jun 2013 A1
20130167842 Jafari et al. Jul 2013 A1
20130167843 Kimm et al. Jul 2013 A1
20130186400 Jafari et al. Jul 2013 A1
20130186401 Jafari et al. Jul 2013 A1
20130192599 Nakai et al. Aug 2013 A1
20130220324 Jafari et al. Aug 2013 A1
20130255682 Jafari et al. Oct 2013 A1
20130255685 Jafari et al. Oct 2013 A1
20130284172 Doyle et al. Oct 2013 A1
20130284177 Li et al. Oct 2013 A1
20140000606 Doyle et al. Jan 2014 A1
20140012150 Milne et al. Jan 2014 A1
20140034054 Angelico et al. Feb 2014 A1
Foreign Referenced Citations (16)
Number Date Country
19808543 Nov 1998 DE
0425092 May 1991 EP
1270036 Jan 2003 EP
WO 9423780 Oct 1994 WO
WO 9806449 Feb 1998 WO
WO 0010634 Mar 2000 WO
WO 0045880 Aug 2000 WO
WO 0174430 Oct 2001 WO
WO 0228460 Apr 2002 WO
WO 03055552 Jul 2003 WO
WO 04000114 Dec 2003 WO
WO 2004084980 Oct 2004 WO
WO 2005105189 Nov 2005 WO
WO 2006137784 Dec 2006 WO
WO 2007145948 Dec 2007 WO
WO 2009123981 Oct 2009 WO
Non-Patent Literature Citations (36)
Entry
Jafari, M. et al., “Robust Feedback Design for Proportional Assist Ventilation-System Dynamics and Problem Definition” Decision and Control, 2005 and 2005 European Control Conference. CDC-E CC '05. 44TH IEEE Conference on Seville, Spain Dec. 12-15, 2005 (Dec. 12, 2005), pp. 4839-4844, XP010884460 DISBN: 978-0-7803-9567-1, the whole document.
PCT International Search Report and Written Opinion in Application PCT/2009/038810, mailed Jul. 6, 2009, 16 pgs.
PCT International Search Report and Written Opinion in Application PCT/2009/038815, mailed Jul. 1, 2009, 14 pgs.
PCT International Search Report and Written Opinion in Application PCT/US09/038811, mailed Jun. 7, 2009, 13 pgs.
PCT International Search Report and Written Opinion in Application PCT/US2009/038819, mailed Jun. 26, 2009, 12 pgs.
PCT International Search Report and Written Opinion in Application PCT/US2009/038820, mailed Jul. 22, 2009, 14 pgs.
PCT International Search Report and Written Opinion in Application PCT/US2009038818, mailed Jul. 14, 2009, 15 pgs.
PCT International Search Report and Written Opinion in Application PCT/US201/0026618, mailed Jun. 22, 2010, 19 pgs.
PCT International Search Report and Written Opinion in Application PCT/US2010/025485, mailed Feb. 27, 2009, 8 pgs.
U.S. Appl. No. 12/238,248, Office Action mailed Oct. 15, 2012, 12 pgs.
U.S. Appl. No. 12/238,248, Office Action mailed May 14, 2012, 12 pgs.
U.S. Appl. No. 12/242,741, Notice of Allowance mailed Jun. 5, 2012, 5 pgs.
U.S. Appl. No. 12/242,741, Office Action mailed Jan. 10, 2012, 7 pgs.
U.S. Appl. No. 12/242,741, Supplemental Notice of Allowability mailed Aug. 27, 2012, 2 pgs.
U.S. Appl. No. 12/242,756, Notice of Allowance mailed Jun. 5, 2012, 5 pgs.
U.S. Appl. No. 12/242,756, Office Action mailed Jan. 10, 2012, 7 pgs.
U.S. Appl. No. 12/242,756, Supplemental Notice of Allowability mailed Aug. 27, 2012, 2 pgs.
U.S. Appl. No. 12/334,354, Notice of Allowance mailed Jan. 27, 2012, 7 pgs.
U.S. Appl. No. 12/334,354, Notice of Allowance mailed Oct. 5, 2012, 5 pgs.
U.S. Appl. No. 12/395,332, Office Action mailed Sep. 13, 2012, 9 pgs.
U.S. Appl. No. 12/408,408, Notice of Allowance mailed Jun. 4, 2012, 10 pgs.
U.S. Appl. No. 12/408,414, Amendment and Response filed Sep. 5, 2012, 7 pgs.
U.S. Appl. No. 12/408,414, Office Action mailed Jun. 20, 2012, 9 pgs.
U.S. Appl. No. 12/414,419, Amendment and Response filed Aug. 27, 2012, 8 pgs.
U.S. Appl. No. 12/414,419, Notice of Allowance mailed Sep. 19, 2012, 8 pgs.
U.S. Appl. No. 12/414,419, Office Action mailed Jan. 20, 2012, 15 pgs.
U.S. Appl. No. 12/414,419, Office Action mailed Jul. 18, 2012, 16 pgs.
U.S. Appl. No. 13/565,595, Notice of Allowance mailed Nov. 2, 2012, 12 pgs.
U.S. Appl. No. 12/395,332, Notice of Allowance mailed Dec. 24, 2012, 8 pgs.
U.S. Appl. No. 12/408,414, Notice of Allowance mailed Dec. 10, 2012, 10 pgs.
U.S. Appl. No. 12/414,419, Notice of Allowance mailed Jan. 8, 2013, 7 pgs.
U.S. Appl. No. 12/238,248, Advisory Action mailed Jan. 4, 2013, 3 pgs.
U.S. Appl. No. 13/565,595, Notice of Allowance mailed Feb. 25, 2013, 8 pgs.
Younes, M, et al., “Control of breathing relevant to mechanical ventilation”, in Physiological Basis of Ventilatory Support, J.J. Marini and A.S. Slutsky, Ed., New York, Marcel Dekker, 1998, pp. 1-73.
Crooke, P.S. et al., “Patient-ventilator interaction: A general model for nonpassive mechanical ventilation”, 1998, AMA Journal of Mathematics Applied in Medicine and Biology, 15, pp. 321-337.
U.S. Appl. No. 12/238,248, Office Action mailed Apr. 26, 2013, 13 pgs.
Related Publications (1)
Number Date Country
20130233314 A1 Sep 2013 US
Divisions (1)
Number Date Country
Parent 12408408 Mar 2009 US
Child 13565595 US
Continuations (1)
Number Date Country
Parent 13565595 Aug 2012 US
Child 13871075 US