In mechanical ventilation, proportional assist (PA) refers to a type of ventilation in which the ventilator acts as an inspiratory amplifier that provides pressure support based on the patient's effort. The degree of amplification (the “support setting”) is set by an operator, for example as a percentage based on the patient's effort. In one implementation of PA ventilation, the ventilator may continuously monitor the patient's instantaneous inspiratory flow and instantaneous net lung volume, which are indicators of the patient's inspiratory effort. These signals, together with ongoing estimates of the patient's lung compliance and lung resistance, allow the ventilator to compute the instantaneous pressure at a point in the ventilation circuit that assists the patient's inspiratory muscles to the degree selected by the operator as the support setting.
PA ventilation relies on certain physiological principles. The act of inspiration requires the patient's inspiratory muscles to develop a pressure gradient between the mouth and the alveoli sufficient to draw in breathing gas and inflate the lungs. Some of this pressure gradient is dissipated as gas travels through the artificial airway and the patient's conducting airways, and some of the pressure gradient is dissipated in the inflation of the lungs and thorax. Each element of pressure dissipation is characterized by a measurable property: the resistance of the artificial and patient airways, and the compliance (or elastance) of the lung and thorax.
The ventilator providing PA ventilation uses specific information, including resistance of the artificial airway, resistance of the patient's airways, lung compliance, instantaneous inspiratory flow and net lung volume, and the support setting to compute the instantaneous pressure to be applied at the wye. The ventilator may estimate patient lung resistance and lung compliance, for example approximately every four to ten breaths. In one implementation, every computational cycle (e.g., 5 milliseconds), the ventilator estimates lung flow, based on an estimate of circuit flow, and lung volume, based on the integral value of estimated circuit flow.
PA ventilation begins inspiratory assist when flow (generated by the patient's inspiratory muscles) is detected. If the patient ceases inspiration, the assist also ceases. Once inspiratory flow begins, the ventilator monitors instantaneous flow and volume and applies the pressure calculated to deliver a proportion (determined by the support setting) of the total demand as determined by the patient's inspiratory effort. In Tube Compensation (TC) ventilation, the ventilator monitors instantaneous flow and volume and applies the pressure calculated to overcome a proportion (determined by the support setting) of the pressure losses dissipated across the resistance of the artificial airways (e.g., endotracheal tube).
The lung compliance and lung resistance of a patient may be collectively referred to as the respiratory mechanics of the lung or, simply, the patient's respiratory mechanics. Because PA relies on the patient's respiratory mechanics, more accurate determination of respiratory mechanics is essential to performance of the ventilator when providing PA.
Leak-Compensated Proportional Assist Ventilation
This disclosure describes systems and methods for compensating for leakage when during delivery of gas to a patient from a medical ventilator in a proportional assist (PA) mode. The technology described herein includes systems and methods that compensate the delivery of PA ventilation for leakage in the patient circuit by using leak-compensated lung flows as well as respiratory mechanics (lung compliance and lung resistance) estimated in a manner that compensates for elastic and inelastic leaks from the ventilation system.
In part, this disclosure describes a method of compensating for leakage in a ventilation system during delivery of gas from a medical ventilator providing PA to a patient. The method includes monitoring an instantaneous flow in the ventilation system based on one or more measurements of pressure and flow in ventilation system. Leakage from the system is modeled as a first leakage component through a first orifice of a fixed size and a second leakage component through a second orifice of a varying size, in which the first and second leakage components are different functions of instantaneous pressure in the ventilation system. A leak-compensated instantaneous lung flow of gas inhaled or exhaled by the patient is estimated based on the one or more measurements, the first leakage component and second leakage component. The leak-compensated lung flow and a predetermined respiratory mechanics model are used to estimate a leak-compensated lung compliance and a leak-compensated lung resistance. A pressure to be delivered to the patient is then calculated based on the leak-compensated lung flow, the leak-compensated lung compliance and the leak-compensated lung resistance.
This disclosure describes a method of compensating for leakage in a ventilation tubing system during delivery of gas from a medical ventilator to a patient. The method includes receiving a support setting identifying an amount of proportional assistance to provide to the patient. An inelastic leakage in the ventilation system is identified as a first function of at least one of a pressure measurement and a flow measurement in the ventilation system. An elastic leakage in the ventilation system is also identified as a second function of at least one of the pressure measurement and the flow measurement in the ventilation system. The circuit compliance and circuit resistance of the ventilation tubing system is then used along with estimated lung compliance of the patient and estimated lung resistance of the patient based on the inelastic leakage, the elastic leakage, the circuit compliance, circuit resistance and the at least one of the pressure measurement and the flow measurement in the ventilation system. Ventilation is then delivered to the patient based on estimated patient effort and the support setting, in which the patient effort is determined from estimated lung flow using the inelastic leakage, the elastic leakage, the lung compliance and the lung resistance.
The disclosure also describes a pressure support system that includes a pressure generating system adapted to generate a flow of breathing gas and a ventilation tubing system including a patient interface device for connecting the pressure generating system to a patient. One or more sensors are operatively coupled to the pressure generating system or the ventilation system, in which each sensor capable of generating an output indicative of a pressure of the breathing gas. A leak estimation module is provided that identifies leakage in the ventilation system and compensates the calculation of lung flow for the estimated leakage in the system. A respiratory mechanics calculation module is further provided that generates a leak-compensated lung compliance and a leak-compensated lung resistance based on the leakage and at least one output indicative of a pressure of the breathing gas. The system further includes a proportional assistance ventilation module that causes the pressure generating system to provide ventilation to the patient based on patient effort and a support setting, in which the patient effort is determined from estimated lung flow using the leakage, the leak-compensated lung compliance and the leak-compensated lung resistance.
The disclosure flutter describes a PA ventilation controller for a medical ventilator. The controller includes a microprocessor, a module that compensates calculations of lung compliance and lung resistance based on instantaneous elastic leakage and instantaneous inelastic leakage of breathing gas from a ventilation system, and a pressure control module that provides proportional assist ventilation based on the compensated lung compliance and lung resistance.
These and various other features as well as advantages which characterize the systems and methods described herein will be apparent from a reading of the following detailed description and a review of the associated drawings. Additional features are set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the technology. The benefits and features of the technology will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The following drawing figures, which form a part of this application, are illustrative of described technology and are not meant to limit the scope of the invention as claimed in any manner, which scope shall be based on the claims appended hereto.
Although the techniques introduced above and discussed in detail below may be implemented for a variety of medical devices, the present disclosure will discuss the implementation of these techniques in the context of a medical ventilator providing pressure assist (PA) ventilation to a human patient. The reader will understand that the technology described in the context of a medical ventilator for human patients could be adapted for use with other systems such as ventilators for non-human patients and general gas transport systems in which leaks may cause a degradation of performance.
The present systems and methods have proved particularly advantageous in noninvasive settings, such as with facial breathing masks, as those settings typically are more susceptible to leaks. However, leaks do occur in a variety of settings, and the present description contemplates that the patient interface may be invasive or non-invasive, and of any configuration suitable for communicating a flow of breathing gas from the patient circuit to an airway of the patient. Examples of suitable patient interface devices include a nasal mask, nasal/oral mask (which is shown in
Pneumatic system 22 may be configured in a variety of ways. In the present example, system 22 includes an expiratory module 40 coupled with an expiratory limb 34 and an inspiratory module 42 coupled with an inspiratory limb 32. Compressor 44 or another source(s) of pressurized gas (e.g., air and oxygen) is coupled with inspiratory module 42 to provide a gas source for ventilatory support via inspiratory limb 32.
The pneumatic system may include a variety of other components, including sources for pressurized air and/or oxygen, mixing modules, valves, sensors, tubing, accumulators, filters, etc. Controller 50 is operatively coupled with pneumatic system 22, signal measurement and acquisition systems, and an operator interface 52 may be provided to enable an operator to interact with the ventilator (e.g., change ventilator settings, select operational modes, view monitored parameters, etc.). Controller 50 may include memory 54, one or more processors 56, storage 58, and/or other components of the type commonly found in command and control computing devices.
The memory 54 is computer-readable storage media that stores software that is executed by the processor 56 and which controls the operation of the ventilator 20. In an embodiment, the memory 54 comprises one or more solid-state storage devices such as flash memory chips. In an alternative embodiment, the memory 54 may be mass storage connected to the processor 56 through a mass storage controller (not shown) and a communications bus (not shown). Although the description of computer-readable media contained herein refers to a solid-state storage, it should be appreciated by those skilled in the art that computer-readable storage media can be any available media that can be accessed by the processor 56. Computer-readable storage media includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer-readable storage media includes, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer.
As described in more detail below, controller 50 issues commands to pneumatic system 22 in order to control the breathing assistance provided to the patient by the ventilator. The specific commands may be based on inputs received from an operator, the patient 24, the pneumatic system 22 and sensors, the operator interface 52 and/or other components of the ventilator. In the depicted example, operator interface includes a display 59 that is touch-sensitive, enabling the display to serve both as an input and output device.
In an embodiment, before the respiratory mechanics of a patient can be determined, the mechanics of the ventilation tubing system may be determined. For example, when modeling the delivery of gas to and from a patient 24 via a closed-circuit ventilator, one simple assumption is that compliance of the ventilator circuit 30 (the “circuit compliance”) is fixed and that all gas injected into the ventilator circuit 30 that does not exit the circuit 30 via the expiratory limb 34 (in a dual-limb embodiment) fills the circuit as well as the patient's lungs and causes an increase in pressure. As gas is injected (L1), the lung responds to the increased gas pressure in the circuit 30 by expanding. The amount the lung expands is proportional to the lung compliance and is defined as a function of gas pressure differential (e.g., lung compliance=volume delivered/pressure difference). As discussed in greater detail below, this assumption is not valid when leaks are present.
The term circuit compliance is used to refer to the relationship between the amount the pressure in the ventilator circuit 30 (or ventilator circuit 30 and attached patient interface 28, depending on how the compliance is determined) and changes in volume delivered into the circuit. In an embodiment, the circuit compliance may be estimated by pressurizing the ventilator circuit 30 (or circuit 30 and interface 28 combination) when flow to the patient is blocked and measuring the volume of additional gas introduced to cause the pressure change (compliance=volume delivered/pressure difference).
The term circuit resistance is used to refer to the amount the pressure changes between two sites upstream and downstream the ventilator circuit as a function of volumetric flow rate through that circuit. Circuit resistance may be modeled as a two-parameter function of flow and several methods for modeling and calculating circuit resistance are known in the art. For example, in an embodiment, the circuit resistance may be estimated by passing several fixed flow rates through the circuit and measuring the pressure difference between certain upstream and downstream sites and finding the best curve fit to the collected data.
Methods of determining circuit compliance and circuit resistance (such as those described above) may be executed by the operator prior to attaching the patient to the ventilator as part of the set up of the ventilator 20 to provide therapy. Other methods of determining circuit compliance and/or resistance are also known and could be adapted for use with the disclosed leak-compensation systems and methods described herein.
In many cases, it may be desirable to establish a baseline pressure and/or flow trajectory for a given respiratory therapy session. The volume of breathing gas delivered to the patient's lung (L1) and the volume of the gas exhaled by the patient (L2) are measured or determined, and the measured or predicted/estimated leaks are accounted for to ensure accurate delivery and data reporting and monitoring. Accordingly, the more accurate the leak estimation, the better the baseline calculation of delivered and exhaled flow rates and volumes.
Errors may be introduced due to leaks in the ventilation tubing system 26. The term ventilation tubing system 26 is used herein to describe the ventilator circuit 30, any equipment attached to or used in the ventilator circuit 30 such as water traps, monitors, drug delivery devices, etc. (not shown), and the patient interface 28. Depending on the embodiment, this may include some equipment contained in the inspiration module 42 and/or the expiration module 40. When referring to leaks in or from the ventilation tubing system 26, such leaks include leaks within the tubing system 26 and leaks where the tubing system 26 connects to the pressure generator 22 or the patient 24. Thus, leaks from the ventilation tubing system 26 include leaks from the ventilator circuit 30, leaks from the patient interface 28 (e.g., masks are often provided with holes or other pressure relief devices through which some leakage may occur), leaks from the point of connection of the patient interface 28 to the patient 24 (e.g., leaks around the edges of a mask due to a poor fit or patient movement), and leaks from the point of connection of the patient interface 28 to the circuit 30 (e.g., due to a poor connection between the patient interface 28 and the circuit 30).
For the purpose of estimating how a leak flow rate changes based on changes in pressure in the ventilation tubing system 26, the instantaneous leak may be modeled as a leak through a single rigid orifice or opening of a fixed size in which that size is determined based on comparing the total flow into the inspiratory limb 32 and out of the expiratory limb 34. However, this leak model does not take into account any elastic component of leak source(s) in the system 26, that is how much of the area of any of the holes or openings in the ventilation tubing system 26 through which leakage occurs may change due to an increase or decrease in pressure.
It has been determined that not accounting for elastic leakage from the ventilation tubing system 26 can cause many problems. First, if only the inelastic/fixed orifice model is used to estimate leak, the subsequent errors caused by ignoring the elastic effects of any actual leaks end up generating inaccurate estimates of flow rates into the lung. This can cause the ventilator 20 to estimate gas volume delivered into the lung inaccurately when, in fact, the elastic leaks in the system 26 have let more gas escape than estimated. Second, if the elasticity of the leak source is ignored, any other calculation, estimate, or action that the ventilator 20 may perform which is affected by the leak estimate will be less accurate.
In the systems and methods described herein, the provision of PA ventilation is made more accurate by compensating for tubing system leakage. In the embodiments described herein fixed (rigid) and elastic components of the system leakage are used when determining the lung flow, net lung volume, lung compliance and lung resistance of the patient. This results in a more accurate determination of lung compliance and lung resistance and, therefore, ventilation of patients based on respiratory mechanics. While the systems and methods are presented in the context of specific leakage models, the technology described herein could be used to compensate the respiratory mechanics determined by any model for leakage using any type of mechanical ventilator or other device that provides gas.
The method 300 illustrated starts with a circuit compliance and resistance operation 302. In that operation 302, the ventilator circuit compliance and resistance are estimated. In an embodiment, this may be performed prior to connecting the ventilator to the patient (as previously described). Alternatively, it may be dynamically determined periodically throughout the delivery of ventilatory support to the patient.
After the circuit compliance and resistance have been determined, the ventilator is connected to the patient and an initialization operation 304 is performed. In the initialization operation 304 the ventilator operates for an initialization or startup period in order to generate an initial estimate of lung compliance and lung resistance. If the ventilator already has some knowledge of the respiratory mechanics of the patient (e.g., the respiratory mechanics have been recently determined during provision of a different type of ventilation or an operator has provided initial settings for lung compliance and resistance), this operation 304 may be automatically or manually omitted in favor of the previously determined values.
A description of an embodiment of the initialization operation 304 is as follows. Because the ventilator does not know the patient's mechanics when the PA breath type is selected, it performs a startup routine to obtain initial data. In an embodiment, upon startup the ventilator delivers some number (e.g., two, four, etc.) of consecutive PA breaths, each of which includes an end-inspiratory maneuver that yields estimates of the patient's resistance and compliance. Using four training breaths for the initialization operation 304 as an example, the first breath is delivered using a predicted resistance for the artificial airway and conservative estimates for patient resistance and compliance. The predicted values may be determined based on known characteristics of the patient, such as based on the patient's ideal body weight (IBW), height, gender, age, physical condition, etc. Each of the following three PA breath's averages stepwise decreased physiologic values with the estimated resistance and compliance values from the previous breath, weighting earlier estimates less with each successive breath, and yielding more reliable estimates for lung resistance and lung compliance.
In an embodiment of the method 300, a leakage estimate may also be done prior to the initialization operation 304. Prior determination of leak parameters allows for estimates of respiratory mechanics to be made. This may include delivering pressure-regulated breaths with specific settings or performing specific “leak maneuvers”, that is a specified set of controlled actions on the part of the ventilator that allow leakage parameters to be identified and quantified, such as interrupting the therapeutic delivery of respiratory gas and holding or changing the pressure and flow, so that data concerning the leakage of the system during the controlled actions may be obtained. For example, a leak maneuver may include periodically holding the pressure and flow in the circuit constant while determining (based on a comparison of the measured flow into the inspiratory limb and the measured flow out of the expiratory limb via the exhalation valve) the net leakage from the system. In an embodiment, such a leak maneuver may be performed during specific parts of the respiratory phase, e.g., at the end of the expiratory phase. In yet another embodiment, a sequence of pressure-based test breaths is delivered with specific settings to determine leak parameters prior to execution of test breaths for respiratory mechanics determinations.
After the initialization operation 304, the ventilator provides ongoing PA ventilation to the patient in a PA ventilation operation 306. PA ventilation begins inspiratory assist when an inspiratory trigger is detected such as leak-compensated lung flow (generated by the patient's inspiratory muscles) exceeds a set sensitivity threshold. If the patient ceases inspiration, the assist also ceases. Once inspiratory flow begins, the ventilator monitors instantaneous flow and volume and applies the pressure calculated to deliver a proportion (determined by the support setting) of the total demand as determined by the patient's inspiratory effort.
During PA ventilation, pressure assistance is provided to the patient based on the patient's effort and the operator-selected support setting. PA ventilation determines how much to assist the patient's efforts based on one or more equations of motion used to describe the mechanics of the lung. Such equations use respiratory mechanics of the patient, e.g., lung resistance and lung compliance, and the circuit when calculating how much flow and/or pressure to provide. One example of an equation of motion for use in determining the pressure to provide during PA ventilation is as follows:
Paw(t)=E∫Qdt+QR−Pm(t)
where Paw is the pressure measured at the patient interface, Pm is the pressure generated by the inspiratory muscles of the patient which is may be used as the index of the patient's effort, E is the lung elastance (which is the inverse of lung compliance, i.e., E=1/C), Q is the instantaneous leak-compensated lung flow and R is the lung resistance. By manipulating this equation slightly, an equation for the amount of desired pressure assistance at the patient interface to provide can be obtained:
Paw(t)=kE∫Qdt+kQR
where k is the % support setting based on the patient effort, Pm. The equations above are one example of how PA ventilation may be provided based on patient effort. PA ventilation is known in the art and any suitable technique or set of equations for determining the assistance to provide may be used.
As described above, the patient's effort is determined based on the pressure and leak-compensated lung flow in the circuit. In order to compensate for leakage in the circuit, in the method 300 shown the PA ventilation operation 306 includes the ongoing calculation of leakage while providing ventilation, as illustrated by the leakage calculation/compensation operation 307. As discussed in greater detail below with reference to
The method 300 also includes periodically or randomly performing a respiratory mechanics maneuver in order to recalculate the lung compliance and lung resistance of the patient. In an embodiment, the respiratory mechanics maneuver operation 308 is performed randomly once every four to ten PA breaths.
The respiratory mechanics maneuver operation 308 compensates for leakage as determined by the leakage calculation/compensation operation 307 when calculating the respiratory mechanics for the patient. This may include stabilizing the pressure and flow in the patient circuit based on the calculated leakage at that pressure so that the flow into the patient circuit is approximately equal to the calculated amount of gas leaking from the patient circuit at that pressure; a period of stable pressure during which there is no flow into or out of the patient's lungs even though there is leakage flow in the ventilator tubing system. The respiratory mechanics maneuver operation 308 may further include using leak-compensated values of lung flow and lung volume when determining the respiratory mechanics.
The newly determined values of lung compliance and lung resistance may be averaged, low-pass filtered or otherwise combined with the previously determined values. These revised values are then stored for use in later delivery of PA ventilation and the ventilator returns to providing PA ventilation to the patient.
During PA ventilation, the pressure and flow and other parameters of the system are monitored, illustrated by the monitoring operation 402. In an embodiment, the monitoring operation 402 collects data including the instantaneous pressure and/or flow at or indicative of one or more locations in the ventilation tubing system. Depending upon how a particular leak model is defined, the operation 402 may also include making one or more calculations using data from pressure and flow measurements taken by the sensors. For example, a model may require a flow measurement as observed at the patient interface even though the ventilation system may not have a flow sensor at that location in the ventilation tubing system. Thus, a measurement from a sensor or sensors located elsewhere in the system (or data from a different type of sensor at the location) may be mathematically manipulated in order to obtain an estimate of the flow observed at the patient interface in order to calculate the leak using the model.
The data obtained in the monitoring operation 402 is then used to calculate leakage from the ventilator tubing system in a leakage calculation operation 404. In an embodiment, the leakage calculation operation 404 uses the data obtained in the monitoring operation 402, e.g., some or all of the instantaneous pressure and flow data collected during the monitoring operation 402 as well as information about the current respiratory phase (inhalation or exhalation).
The leakage calculation operation 404 calculates an instantaneous leakage flow or volume for the sample period. The instantaneous leakage is calculated using a mathematical formula that has been previously determined. Any leakage model, now known or later developed, may be used. In an embodiment, the mathematical formula is a leakage model that separates the leak into the sum of two leak components, inelastic leak and elastic leak, in which each component represents a different relationship between the quantity of leakage from the ventilation system and the measured current/instantaneous pressure and/or flow of gas in the ventilation system. As discussed above, the inelastic leak may be modeled as the flow through a rigid orifice of a fixed size while the elastic leak may be modeled as the flow through a different orifice of a size that changes based on the pressure (or flow) of the gas in the ventilation system.
An example of a method and system for modeling leak in a ventilation system as a combination of an elastic leak component and an inelastic leak component can be found in commonly-assigned U.S. Provisional Patent Application Ser. No. 61/041,070, filed Mar. 31, 2008, titled VENTILATOR LEAK COMPENSATION, which application is hereby incorporated by reference herein. The VENTILATOR LEAK COMPENSATION represents one way of characterizing the leak from a ventilation system as a combination of elastic and inelastic components. Other methods and models are also possible and may be adapted for use with this technology.
The mathematical formula used to calculate leakage may contain several parameters that are empirically determined and that may be periodically or occasionally revised in order to maintain the accuracy of the leakage estimate. For example, in an embodiment the parameters of a leakage formula include a first constant associated with the rigid orifice and a second constant associated with the variable-sized orifice. At various times during ventilation, the calculated leakage may be checked against a measured leakage and, if the estimate is significantly different from the measured leakage, the constants may be revised. This revision of the parameters in a leakage formula may be done as part of the leakage calculation operation 404 or may be done as a separate operation (not shown) that may, or may not, be performed every sample period.
The term instantaneous is used herein to describe a determination made for any particular instant or sampling period based on the measured data for that instant. For example, if a pressure measurement is taken every 5 milliseconds (sample period), the pressure measurement and the leakage model can be used to determine an instantaneous leak flow based on the instantaneous pressure measurement. With knowledge of the length of the sample period, the instantaneous flow may then be used to determine an instantaneous volume of gas leaking out of the circuit during that sample period. For longer periods covering multiple sample periods the instantaneous values for each sample period may be summed to obtain a total leakage volume. If a measurement is also the most recent measurement taken, then the instantaneous value may also be referred to as the current value.
After the current leak has been calculated, the method 400 further estimates the leak-compensated instantaneous lung flow to or from the patient in a lung flow estimation operation 406. The estimated lung flow is compensated for the leak flow calculated in the instantaneous leak calculation operation 404 so that it represents a more accurate estimate of the actual flow into (or out of depending on the point of view and period selected) the lungs of the patient.
In the embodiment illustrated, the leak-compensated net lung volume is also calculated as part of the lung flow estimation operation 406. In an embodiment, this may be performed by maintaining a running summation of net flow into/out of the lung over the period of a breath. For example, upon triggering inhalation, the ventilator may set a variable corresponding to net lung volume to zero and, each sample period, update this net lung volume to include the detected leak-compensated instantaneous lung flow delivered to the patient during that sample period.
In the PA ventilation method 400 illustrated, the leak-compensated lung flow or net volume is then used along with the support setting and the previously determined lung resistance and lung compliance (which were themselves determined using leak-compensated lung flows and net lung volumes) to calculate the amount of assistance to provide during ventilation.
The PA ventilation method 400 also includes calculating the patient effort in effort calculation operation 408. As described above, the operation 408 may use one or more equations that relate the amount of pressure to calculate the patient's effort based on the instantaneous lung flow, current lung volume, lung compliance, lung resistance, support setting and other factors such as circuit compliance and resistance. Various methods are known in the art for calculating patient effort that use one or more respiratory mechanics and other parameters measurable while providing ventilatory support. Any such method for determining patient effort, now known or later developed, may be used herein.
The appropriate amount of ventilation is then provided in a ventilation operation 410. In this operation, the patient effort calculated above and the support setting are used to determine how much assistance to provide. Of course, if there is no patient effort (i.e., during the expiratory phase), no ventilation is provided. In this case, the appropriate ventilation may be providing a predetermined positive end expiratory pressure (PEEP) level. Depending on the equations used, the effort calculation operation 408 may not be technically necessary as the amount of ventilation to provide may be determined directly from the monitored data and the previously determined values of lung compliance and resistance using an appropriate algorithm.
The PA ventilation method 400 also periodically determines the respiratory mechanics from the leak-compensated lung parameters, which is illustrated by the determination operation 412. For example, in an embodiment respiratory mechanics may be calculated on a fixed or random schedule or calculated in response to an explicit operator command. In addition, depending on the respiratory mechanics determination method used, there may be a requirement that the respiratory mechanics calculation (using data collected during the breath) be performed at a certain point within the patient's respiration such as at the end of the inspiratory phase or the end of the expiratory phase or after the completion of a specific maneuver (e.g., an Inspiratory Hold Maneuver). The respiratory mechanics calculation includes the performance a respiratory mechanics “maneuver,” that is a specified set of controlled actions on the part of the ventilator. In an embodiment, the maneuver includes interrupting the therapeutic delivery of respiratory gas for a period of time and monitoring and/or changing the pressure and flow, so that data concerning the response of the patient's lung to the controlled actions may be obtained. An example of a respiratory mechanics maneuver is provided below with reference to the static determination of lung compliance.
If it is time to calculate respiratory mechanics, a calculate respiratory mechanics operation 414 is performed. The calculate respiratory mechanics operation 414 may also include performing the appropriate maneuver, as necessary to obtain the data for the respiratory mechanics model being used. In the operation 414, the necessary data for the respiratory mechanics model being used is obtained and the respiratory mechanics parameters are estimated.
In the calculate respiratory mechanics operation 414 leak-compensated values are used to estimate the respiratory mechanics. For example, if the respiratory mechanics model being used requires a total delivered lung volume, the leak-compensated lung volume is used. Likewise, if an instantaneous lung flow is required, a leak-compensated instantaneous lung flow is used in generating the estimate.
The method 400 is then repeated every computational cycle or sample period, as illustrated by the feedback loop, so that the instantaneous lung flow and net lung flow are continuously determined and, when appropriate, the respiratory mechanics are recalculated based on the current leak-compensated data. In an alternative embodiment, the leak-compensation of lung flow and net delivered lung volume may be performed as part of the calculate respiratory mechanics operation 414 in order to reduce the number of calculations a processor must perform every cycle.
The following is a discussion of two embodiments of methods for compensating the estimation of respiratory mechanics in the presence of leaks. The first embodiment is that of applying leak compensation to a static compliance and resistance determination. The second embodiment is that of applying leak compensation to a dynamic compliance determination.
Leak-Compensation of Static Determination of Lung Compliance
In the embodiment shown, the system performs a respiratory maneuver which includes the forced imposition of a stable period at the end of an inspiratory phase so that there is no flow delivery to or from the patient's lung. The method 500 includes a delay until the next end of an inspiratory phase is detected, as illustrated by detect end of inspiratory phase operation 504.
When the end of the inspiratory phase is detected, a stabilization operation 506 is performed. In an embodiment, the operation 506 includes stabilizing the pressure and flow in the patient circuit so that there is no flow into or out of the patient's lungs at the point in which the lungs have taken a breath and thus are expanded with a known volume of gas (as determined during normal operation of the ventilator as discussed above with reference to the leak-compensated lung volume).
The stabilization operation 506 and the maintain stable condition operation 508 (discussed below) may sometimes be referred to collectively as a pause maneuver or a plateau maneuver. They are separated in this discussion for clarity purposes.
In order to stabilize the pressure and flow to achieve no flow between the circuit and the patient, if there are leaks in the tubing system these leaks are compensated for by the ventilator. Thus, in order to stabilize the flow the ventilator provides a leak-compensation flow that is equal to the amount of leakage from the system estimated by the leakage model at the stable pressure.
In practice, the stabilization of the pressure and flow is an iterative process in which the ventilator monitors the pressure and adjusts delivered flow until the pressure and flow stabilize at the point where the pressure and flow correspond to a solution to the leak model and the lung flow is practically zero, i.e., the current flow provided by the ventilator is the leakage flow determined from the model using the current pressure. In an embodiment, for a flow and pressure to be considered stable, a certain acceptable error may be allowed between the calculated leakage (calculated based on the current pressure) and the actual measured flow. Such an error may be predetermined amount or range based on an absolute difference between delivery and calculated flow or pressure or relative difference (e.g., calculated flow within x % of actual stable flow at a given pressure). Various methods for stabilizing pressure and flow in a ventilation tubing system are known in the art and any suitable method may be adapted for use in conjunction with the technology described in this disclosure.
When attempting to stabilize the pressure and flow during the stabilization operation 506, the leakage model may be used to increase the speed of the stabilization through a prediction of the likely resulting leakage flow at different pressures. This information may be used to determine a more accurate initial starting point for the stabilization and determine more accurate selection of adjustments to be made in order to more quickly converge on the stable pressure and flow.
After a stable pressure has been achieved, in the embodiment shown a maintain stable condition operation 508 is performed. The maintain stable condition operation 508 may maintain the stable pressure and stable, leak-compensating flow for a predetermined period of time such as 25-200 milliseconds or more preferably between 50-100 milliseconds. During the operation 458, the drop in pressure over the period of the maneuver may be monitored to ensure that it is within some acceptable performance threshold. If it is not, the ventilator may resume attempting to stabilize the pressure and flow or may abort the method and attempt the method 500 at the end of the next inspiratory phase.
The stable pressure observed during the maintain stable condition operation 508 is then used to calculate the leak-compensated compliance in a lung compliance calculation operation 510. The pressure value used may be an actual pressure or an average pressure observed over the maneuver period. Alternatively, different values derived from or based on the observed stable pressure may be calculated and used depending on the data required by the particular respiratory mechanics model being utilized.
In addition to using the stable pressure obtained during the pause maneuver, the compliance calculation operation 510 further utilizes leak-compensated lung flow and leak-compensated net lung volume when performing the calculation.
As discussed above, any suitable model for calculating lung compliance may be used. For example, in an embodiment of the compliance calculation operation 510 compliance is calculated using the following simple model:
Stable pressure=Leak-Compensated Net Lung Volume/Compliance,
or, stated a different way,
Compliance=Leak-Compensated Net Lung Volume/Stable pressure.
By using a leak-compensated value for lung volume and a stable pressure determined while compensating for leaks in the patient circuit, a more accurate leak-compensated lung compliance is estimated.
The leak-compensated compliance then may be used in a subsequent operation to determine a leak-compensated lung resistance. In the embodiment of the method 500 shown, this is illustrated by optional resistance calculation operation 512. In an embodiment of the resistance calculation operation 512 after the leak-compensated compliance has been determined, a resistance model that calculates lung resistance based on pressure, flow and compliance may be used to calculate resistance. An example of one such resistance model is as follows:
P(t2)−P(t1)=(V(t2)−V(t1))/C+R*(Q(t2)−Q(t1))
In which t1 and t2 are different times during a breath, P(t) is the airway pressure at time t, V(t) is the delivered lung volume at time t, C is the lung compliance, R is the lung resistance and Q(t) is the net lung flow at time t. In the resistance model provided above, leak-compensated lung flow, leak-compensated net lung volume and leak-compensated lung compliance are utilized to obtain a leak-compensated resistance. This computation may be performed repeatedly over several appropriate time windows and combined together (e.g., by an averaging method) to generate an estimate for lung resistance. Also, lung resistance may be determined from the leak-compensated exhalation flow waveform subsequent to the inspiratory pause maneuver using algorithms for resistance estimation under no leak conditions.
In an alternative embodiment of method 500, if it is determined that the ventilator has relatively low leakage, the lung compliance calculation operation 510 may forego the use of leak-compensated lung flow and net lung volume but still utilize the stable pressure determined through the provision of a leak-compensating flow during the pause maneuver. Lung compliance calculated in this fashion is still considered leak-compensated as the stable pressure was determined by compensating for leakage during the pause maneuver when generating the stable pressure.
Leak-Compensation of Dynamic Determination of Luna Compliance and Resistance
In the embodiment shown, the ventilator is providing respiratory gas to a patient in accordance with some mode of operation such as a mandatory mode or a pressure assist or support or PA mode, as is well known in the art. During operation, the ventilator detects a condition that indicates that it is time to estimate the respiratory mechanics of the patient. This is illustrated by the detection operation 602. In an embodiment, the condition detected may be a command entered by the operator of the ventilator via selection of a button or other interface element on a user interface of the ventilator. Alternatively, the ventilator may perform the dynamic estimation automatically such as during every breath, after a predetermined period of time or after the detection of some occurrence such as once every 100 breaths or upon detection of certain flow conditions.
Following determination that it is time to calculate the dynamic respiratory mechanics, the method 600 retrieves and/or calculates leak-compensated lung flow and leak-compensated net lung volume as necessary depending on whether the leak-compensated data already exists or not. For example, in an embodiment the leak-compensated lung flows for each sampling period may be available but the leak-compensated net lung volume may only be available “as needed” by calculating it from the compensated lung flow data.
The method 600 then calculates the leak-compensated respiratory mechanics in a calculation operation 606. The leak-compensated respiratory mechanics are calculated from a predetermined dynamic respiratory mechanics model using the leak-compensated lung flows, leak-compensated net lung volume(s) and pressure in order to obtain estimates of dynamic compliance and dynamic resistance that are compensated for the leaks in the tubing system. The method 600 is then repeated as necessary.
Any respiratory mechanics model may be used as long as the model may be adapted to be used in a dynamic calculation, that is without interrupting the ventilation of the patient. Many such models are known in the art, some requiring iterative solutions of a set of multiple equations using data obtained over of a period of time.
The main functions of the ventilator such as receiving and interpreting operator inputs and providing therapy via changing pressure and flow of gas in the ventilator circuit are performed by the control module 718. In the context of the methods and systems described herein, the module 718 will perform one or more actions upon the determination that a patient receiving therapy is inhaling or exhaling.
In the embodiment described herein, the control module 718 determines and provides the appropriate amount of ventilation when in PA ventilation mode. This may include calculating patient effort and, based on the patient effort and the support setting, determining the appropriate amount of ventilation, i.e., the pressure and/or flow to provide to the patient. This may include performing one or more calculations based on leak-compensated lung flow, leak-compensated lung volume, leak-compensated lung compliance and leak-compensated lung resistance. PA ventilation is based on an estimation of patient's respiratory effort, therefore, patient effort may be first calculated and then the amount of ventilation (desired pressure reference) calculated therefrom.
The static calculation of respiratory mechanics is performed by the leak-compensated static respiratory mechanics module 716. The module 716 utilizes one or more respiratory models suitable for static determination of respiratory mechanics and one or more embodiments of the method 400 described above to calculate leak-compensated respiratory mechanics such as lung compliance and lung resistance. The module 716 uses leak-compensated values for one or both of lung flows and net lung volume. Leak-compensated values may be retrieved if they have already been calculated or may be calculated as needed from leakage information received from the leak-compensated lung flow and net lung volume estimation module 726. When calculating static respiratory mechanics, the module 716 may control the operation of the ventilator so that a pause maneuver is performed when required. Alternatively, some or all of the actions required in a pause maneuver may be controlled by the control module 718 in response to a respiratory mechanics calculation request and the data obtained during the maneuver provided to the static respiratory mechanics module 716.
The dynamic calculation of respiratory mechanics is performed by the leak-compensated dynamic respiratory mechanics module 724. The module 724 utilizes one or more dynamic respiratory models and one or more embodiments of the method 500 described above to calculate leak-compensated respiratory mechanics such as lung compliance and lung resistance. The module 724 uses leak-compensated values for one or both of lung flows and net lung volume. Leak-compensated values may be retrieved if they have already been calculated or may be calculated from leakage information received from the leak-compensated lung flow and net lung volume estimation module 726.
The current conditions in the ventilation system are monitored by the monitoring module 722. This module 722 collects the data generated by the sensors 704, 706 and may also perform certain calculations on the data to make the data more readily usable by other modules or may process the current data and or previously acquired data or operator input to derive auxiliary parameters or attributes of interest. In an embodiment, the monitoring module 722 receives data and provides it to each of the other modules in the ventilator control system 702 that need the current pressure or flow data for the system.
In the embodiment shown, compensated lung flows are calculated by the lung flow module 726. The lung flow module 726 uses a quantitative model for lung flow of the patient during both inhalation and exhalation and from this characterization and pressure and flow measurements generates an estimate for instantaneous lung flow. In an embodiment, lung flow may be simply determined based on subtracting the estimated leak flow and measured outflow via the expiratory limb from the flow into the inspiratory limb, thereby generating a leak-compensated net flow into (or out of) the lung. The lung flow module 726 may or may not also calculate an ongoing leak-compensated net lung volume during a patient's breath as described above. Compression in the circuits and accessories may also be accounted for to improve the accuracy of estimated lung flow.
The leak model parameters are generated by the leak estimation module 712 which creates one or more quantitative mathematical models, equations or correlations that uses pressure and flow observed in the ventilation system over regular periods of respiratory cycles (inhalation and exhalation) and apply physical and mathematical principles derived from mass balance and characteristic waveform settings of ventilation modalities (regulated pressure or flow trajectories) to derive the parameters of the leak model incorporating both rigid and elastic (variable pressure-dependent) orifices. In an embodiment, the mathematical model may be a model such as:
Qinelastic=R1*Pix
Qelastic=R2*Piy
wherein Qelastic is the instantaneous leak flow due to elastic leaks in the ventilation system, Qinelastic is the instantaneous leak flow due to inelastic leaks in the ventilation system, R1 is the inelastic leak constant, R2 is the elastic leak constant, Pi is the current or instantaneous pressure measurement, x is an exponent for use when determining the inelastic leak and y is an exponent different than x for use when determining the elastic leak. The group R1*Pix represents flow through an orifice of fixed size as a function of instantaneous pressure Pi and the group R2*Piy represents flow through a different orifice that varies in size based on the instantaneous pressure. The equations above presuppose that there will always be an elastic component and an inelastic component of leakage from the ventilation system. In the absence of an elastic component or a leak source of varying size, R2 would turn out be zero.
In the embodiment shown, the current or instantaneous elastic leak is calculated by the leak estimation module 712. The calculation is made using the elastic leak portion of the leak model developed by the leak estimation module 712 and the pressure data obtained by the monitoring module 722. The leak estimation module 712 may calculate a new instantaneous elastic leak flow or volume for each pressure sample taken (i.e., for each sampling period) by the monitoring module 722. The calculated elastic leak may then be provided to any other module as needed.
In the embodiment shown, the current or instantaneous inelastic leak is also calculated by the leak estimation module 712. The calculation is made using the inelastic leak portion of the leak model and the pressure data obtained by the monitoring module 722. The leak estimation module 712 may calculate a new instantaneous inelastic leak flow or volume for each pressure sample taken (i.e., for each sampling period) by the monitoring module 722. The calculated inelastic leak may then be provided to any other module as needed.
The system 700 illustrated will compensate lung flow for leaks due to elastic and inelastic leaks in the ventilation system. Furthermore, the system may perform a dynamic compensation of lung flow based on the changing leak conditions of the ventilation system and the instantaneous pressure and flow measurements. The system then compensates the respiratory mechanics calculations based on the estimated leakage in the system. By compensating for the inelastic as well as the elastic components of dynamic leaks, the medical ventilator can more accurately and precisely estimate the respiratory mechanics of a patient including estimating the lung compliance and lung resistance.
It will be clear that the systems and methods described herein are well adapted to attain the ends and advantages mentioned as well as those inherent therein. Those skilled in the art will recognize that the methods and systems within this specification may be implemented in many manners and as such is not to be limited by the foregoing exemplified embodiments and examples. For example, the operations and steps of the embodiments of methods described herein may be combined or the sequence of the operations may be changed while still achieving the goals of the technology. In addition, specific functions and/or actions may also be allocated in such as a way as to be performed by a different module or method step without deviating from the overall disclosure. In other words, functional elements being performed by a single or multiple components, in various combinations of hardware and software, and individual functions can be distributed among software applications. In this regard, any number of the features of the different embodiments described herein may be combined into one single embodiment and alternate embodiments having fewer than or more than all of the features herein described are possible.
While various embodiments have been described for purposes of this disclosure, various changes and modifications may be made which are well within the scope of the technology described herein. For example, the systems and methods described herein could be adapted to automatically determine leak-compensated resistance and/or compliance and initiate an alarm if the leak-compensated values are outside of a specified range for predetermined leakage values, thus eliminating false resistance and compliance alarms due to changes in leakage. Numerous other changes may be made which will readily suggest themselves to those skilled in the art and which are encompassed in the spirit of the disclosure and as defined in the appended claims.
This application is a divisional application of U.S. patent application Ser. No. 12/408,408 (now U.S. Pat. No. 8,267,085), entitled “LEAK-COMPENSATED PROPORTIONAL ASSIST VENTILATION,” filed on Mar. 20, 2009, the complete disclosure of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3805780 | Cramer et al. | Apr 1974 | A |
3941124 | Rodewald et al. | Mar 1976 | A |
4056098 | Michel et al. | Nov 1977 | A |
4305388 | Brisson | Dec 1981 | A |
4340044 | Levy et al. | Jul 1982 | A |
4448192 | Stawitcke et al. | May 1984 | A |
4752089 | Carter | Jun 1988 | A |
4766894 | Legrand et al. | Aug 1988 | A |
4921642 | LaTorraca | May 1990 | A |
4939647 | Clough et al. | Jul 1990 | A |
4954799 | Kumar | Sep 1990 | A |
4971052 | Edwards | Nov 1990 | A |
4972842 | Korten et al. | Nov 1990 | A |
4986268 | Tehrani | Jan 1991 | A |
5057822 | Hoffman | Oct 1991 | A |
5072728 | Pasternack | Dec 1991 | A |
5072737 | Goulding | Dec 1991 | A |
5094235 | Westenskow et al. | Mar 1992 | A |
5148802 | Sanders et al. | Sep 1992 | A |
5150291 | Cummings et al. | Sep 1992 | A |
5161525 | Kimm et al. | Nov 1992 | A |
5237987 | Anderson et al. | Aug 1993 | A |
5239995 | Estes et al. | Aug 1993 | A |
5259373 | Gruenke et al. | Nov 1993 | A |
5271389 | Isaza et al. | Dec 1993 | A |
5279549 | Ranford | Jan 1994 | A |
5299568 | Forare et al. | Apr 1994 | A |
5301921 | Kumar | Apr 1994 | A |
5313937 | Zdrojkowski et al. | May 1994 | A |
5315989 | Tobia | May 1994 | A |
5316009 | Yamada | May 1994 | A |
5319540 | Isaza et al. | Jun 1994 | A |
5325861 | Goulding | Jul 1994 | A |
5333606 | Schneider et al. | Aug 1994 | A |
5339807 | Carter | Aug 1994 | A |
5343857 | Schneider et al. | Sep 1994 | A |
5351522 | Lura | Oct 1994 | A |
5357946 | Kee et al. | Oct 1994 | A |
5365922 | Raemer | Nov 1994 | A |
5368019 | LaTorraca | Nov 1994 | A |
5383449 | Forare et al. | Jan 1995 | A |
5385142 | Brady et al. | Jan 1995 | A |
5388575 | Taube | Feb 1995 | A |
5390666 | Kimm et al. | Feb 1995 | A |
5398682 | Lynn | Mar 1995 | A |
5401135 | Stoen et al. | Mar 1995 | A |
5402796 | Packer et al. | Apr 1995 | A |
5407174 | Kumar | Apr 1995 | A |
5413110 | Cummings et al. | May 1995 | A |
5429123 | Shaffer et al. | Jul 1995 | A |
5433193 | Sanders et al. | Jul 1995 | A |
5438980 | Phillips | Aug 1995 | A |
5443075 | Holscher | Aug 1995 | A |
5492113 | Estes et al. | Feb 1996 | A |
5503146 | Froehlich et al. | Apr 1996 | A |
5503147 | Bertheau | Apr 1996 | A |
5513631 | McWilliams | May 1996 | A |
5517983 | Deighan et al. | May 1996 | A |
5520071 | Jones | May 1996 | A |
5524615 | Power | Jun 1996 | A |
5531221 | Power | Jul 1996 | A |
5535738 | Estes et al. | Jul 1996 | A |
5540220 | Gropper et al. | Jul 1996 | A |
5542415 | Brady | Aug 1996 | A |
5544674 | Kelly | Aug 1996 | A |
5549106 | Gruenke et al. | Aug 1996 | A |
5551418 | Estes et al. | Sep 1996 | A |
5551419 | Froehlich et al. | Sep 1996 | A |
5555880 | Winter et al. | Sep 1996 | A |
5596984 | O'Mahoney et al. | Jan 1997 | A |
5598838 | Servidio et al. | Feb 1997 | A |
5605151 | Lynn | Feb 1997 | A |
5623923 | Bertheau et al. | Apr 1997 | A |
5630411 | Holscher | May 1997 | A |
5632269 | Zdrojkowski | May 1997 | A |
5632270 | O'Mahoney et al. | May 1997 | A |
5645048 | Brodsky et al. | Jul 1997 | A |
5645053 | Remmers et al. | Jul 1997 | A |
5660171 | Kimm et al. | Aug 1997 | A |
5664560 | Merrick et al. | Sep 1997 | A |
5664562 | Bourdon | Sep 1997 | A |
5671767 | Kelly | Sep 1997 | A |
5672041 | Ringdahl et al. | Sep 1997 | A |
5673689 | Power | Oct 1997 | A |
5685296 | Zdrojkowski et al. | Nov 1997 | A |
5687715 | Landis et al. | Nov 1997 | A |
5692497 | Schnitzer et al. | Dec 1997 | A |
5715812 | Deighan et al. | Feb 1998 | A |
5752509 | Lachmann et al. | May 1998 | A |
5762480 | Adahan | Jun 1998 | A |
5771884 | Yarnall et al. | Jun 1998 | A |
5791339 | Winter | Aug 1998 | A |
5794615 | Estes | Aug 1998 | A |
5794986 | Gansel et al. | Aug 1998 | A |
5803065 | Zdrojkowski et al. | Sep 1998 | A |
5813399 | Isaza et al. | Sep 1998 | A |
5823187 | Estes et al. | Oct 1998 | A |
5826575 | Lall | Oct 1998 | A |
5829441 | Kidd et al. | Nov 1998 | A |
5864938 | Gansel et al. | Feb 1999 | A |
5865168 | Isaza | Feb 1999 | A |
5876352 | Weismann | Mar 1999 | A |
5881717 | Isaza | Mar 1999 | A |
5881723 | Wallace et al. | Mar 1999 | A |
5884622 | Younes | Mar 1999 | A |
5884623 | Winter | Mar 1999 | A |
5891023 | Lynn | Apr 1999 | A |
5901704 | Estes et al. | May 1999 | A |
5904141 | Estes et al. | May 1999 | A |
5909731 | O'Mahony et al. | Jun 1999 | A |
5915379 | Wallace et al. | Jun 1999 | A |
5915380 | Wallace et al. | Jun 1999 | A |
5915382 | Power | Jun 1999 | A |
5918597 | Jones et al. | Jul 1999 | A |
5921238 | Bourdon | Jul 1999 | A |
5921920 | Marshall et al. | Jul 1999 | A |
5927274 | Servidio et al. | Jul 1999 | A |
5934274 | Merrick et al. | Aug 1999 | A |
5970975 | Estes et al. | Oct 1999 | A |
6024089 | Wallace et al. | Feb 2000 | A |
6029664 | Zdrojkowski et al. | Feb 2000 | A |
6041780 | Richard et al. | Mar 2000 | A |
6047860 | Sanders | Apr 2000 | A |
6055981 | Laswick et al. | May 2000 | A |
6076523 | Jones et al. | Jun 2000 | A |
6105575 | Estes et al. | Aug 2000 | A |
6116240 | Merrick et al. | Sep 2000 | A |
6116464 | Sanders | Sep 2000 | A |
6123073 | Schlawin et al. | Sep 2000 | A |
6123074 | Hete et al. | Sep 2000 | A |
6135106 | Dirks et al. | Oct 2000 | A |
6142150 | O'Mahony | Nov 2000 | A |
6148814 | Clemmer et al. | Nov 2000 | A |
6152129 | Berthon-Jones | Nov 2000 | A |
6158432 | Biondi et al. | Dec 2000 | A |
6161539 | Winter | Dec 2000 | A |
6220245 | Takabayashi et al. | Apr 2001 | B1 |
6223064 | Lynn et al. | Apr 2001 | B1 |
6253765 | Högnelid et al. | Jul 2001 | B1 |
6257234 | Sun | Jul 2001 | B1 |
6269812 | Wallace et al. | Aug 2001 | B1 |
6273444 | Power | Aug 2001 | B1 |
6279569 | Berthon-Jones | Aug 2001 | B1 |
6283119 | Bourdon | Sep 2001 | B1 |
6286508 | Remmers et al. | Sep 2001 | B1 |
6305372 | Servidio | Oct 2001 | B1 |
6305373 | Wallace et al. | Oct 2001 | B1 |
6305374 | Zdrojkowski et al. | Oct 2001 | B1 |
6321748 | O'Mahoney | Nov 2001 | B1 |
6325785 | Babkes et al. | Dec 2001 | B1 |
6342039 | Lynn et al. | Jan 2002 | B1 |
6357438 | Hansen | Mar 2002 | B1 |
6360741 | Truschel | Mar 2002 | B2 |
6360745 | Wallace et al. | Mar 2002 | B1 |
6369838 | Wallace et al. | Apr 2002 | B1 |
6371114 | Schmidt et al. | Apr 2002 | B1 |
6390091 | Banner et al. | May 2002 | B1 |
6412483 | Jones et al. | Jul 2002 | B1 |
6425395 | Brewer et al. | Jul 2002 | B1 |
6427689 | Estes et al. | Aug 2002 | B1 |
6439229 | Du et al. | Aug 2002 | B1 |
6467478 | Merrick et al. | Oct 2002 | B1 |
6484719 | Berthon-Jones | Nov 2002 | B1 |
6512938 | Claure et al. | Jan 2003 | B2 |
6532957 | Berthon-Jones | Mar 2003 | B2 |
6532958 | Buan et al. | Mar 2003 | B1 |
6532959 | Berthon-Jones | Mar 2003 | B1 |
6532960 | Yurko | Mar 2003 | B1 |
6536429 | Pavlov et al. | Mar 2003 | B1 |
6536432 | Truschel | Mar 2003 | B2 |
6539940 | Zdrojkowski et al. | Apr 2003 | B2 |
6543449 | Woodring et al. | Apr 2003 | B1 |
6546930 | Emerson et al. | Apr 2003 | B1 |
6550478 | Remmers et al. | Apr 2003 | B2 |
6553991 | Isaza | Apr 2003 | B1 |
6553992 | Berthon-Jones et al. | Apr 2003 | B1 |
6557553 | Borrello | May 2003 | B1 |
6561187 | Schmidt et al. | May 2003 | B2 |
6571795 | Bourdon | Jun 2003 | B2 |
6575163 | Berthon-Jones | Jun 2003 | B1 |
6578575 | Jonson | Jun 2003 | B1 |
6609016 | Lynn | Aug 2003 | B1 |
6609517 | Estes et al. | Aug 2003 | B1 |
6615834 | Gradon et al. | Sep 2003 | B2 |
6622726 | Du | Sep 2003 | B1 |
6626175 | Jafari et al. | Sep 2003 | B2 |
6629527 | Estes et al. | Oct 2003 | B1 |
6640806 | Yurko | Nov 2003 | B2 |
6644310 | Delache et al. | Nov 2003 | B1 |
6644312 | Berthon-Jones et al. | Nov 2003 | B2 |
6644316 | Bowman et al. | Nov 2003 | B2 |
6659101 | Berthon-Jones | Dec 2003 | B2 |
6668824 | Isaza et al. | Dec 2003 | B1 |
6671529 | Claure et al. | Dec 2003 | B2 |
6675801 | Wallace et al. | Jan 2004 | B2 |
6688307 | Berthon-Jones | Feb 2004 | B2 |
6701926 | Olsen et al. | Mar 2004 | B2 |
6718974 | Moberg | Apr 2004 | B1 |
6722365 | Nilsson et al. | Apr 2004 | B2 |
6723055 | Hoffman | Apr 2004 | B2 |
6723132 | Salehpoor | Apr 2004 | B2 |
6725447 | Gilman et al. | Apr 2004 | B1 |
6739337 | Isaza | May 2004 | B2 |
6748252 | Lynn et al. | Jun 2004 | B2 |
6752150 | Remmers et al. | Jun 2004 | B1 |
6752151 | Hill | Jun 2004 | B2 |
6755193 | Berthon-Jones et al. | Jun 2004 | B2 |
6758216 | Berthon-Jones et al. | Jul 2004 | B1 |
6760608 | Lynn | Jul 2004 | B2 |
6761165 | Strickland, Jr. | Jul 2004 | B2 |
6761167 | Nadjafizadeh et al. | Jul 2004 | B1 |
6761168 | Nadjafizadeh et al. | Jul 2004 | B1 |
6789541 | Olsen et al. | Sep 2004 | B2 |
6796305 | Banner et al. | Sep 2004 | B1 |
6810876 | Berthon-Jones | Nov 2004 | B2 |
6814074 | Nadjafizadeh et al. | Nov 2004 | B1 |
6820613 | Wenkebach et al. | Nov 2004 | B2 |
6820618 | Banner et al. | Nov 2004 | B2 |
6823866 | Jafari et al. | Nov 2004 | B2 |
6837242 | Younes | Jan 2005 | B2 |
6843250 | Efrati | Jan 2005 | B2 |
6866040 | Bourdon | Mar 2005 | B1 |
6868346 | Larson et al. | Mar 2005 | B2 |
6874503 | Rydgren | Apr 2005 | B2 |
6910480 | Berthon-Jones | Jun 2005 | B1 |
6910481 | Kimmel et al. | Jun 2005 | B2 |
6920875 | Hill et al. | Jul 2005 | B1 |
6920877 | Remmers et al. | Jul 2005 | B2 |
6932084 | Estes et al. | Aug 2005 | B2 |
6945248 | Berthon-Jones | Sep 2005 | B2 |
6948497 | Zdrojkowski et al. | Sep 2005 | B2 |
6960854 | Nadjafizadeh et al. | Nov 2005 | B2 |
6962155 | Sinderby | Nov 2005 | B1 |
6986347 | Hickle | Jan 2006 | B2 |
7000612 | Jafari et al. | Feb 2006 | B2 |
7008380 | Rees et al. | Mar 2006 | B1 |
7013892 | Estes et al. | Mar 2006 | B2 |
7017576 | Olsen et al. | Mar 2006 | B2 |
7036504 | Wallace et al. | May 2006 | B2 |
7040320 | Fjeld et al. | May 2006 | B2 |
7055522 | Berthon-Jones | Jun 2006 | B2 |
7066173 | Banner et al. | Jun 2006 | B2 |
7073501 | Remmers et al. | Jul 2006 | B2 |
7077131 | Hansen | Jul 2006 | B2 |
7081095 | Lynn et al. | Jul 2006 | B2 |
RE39225 | Isaza et al. | Aug 2006 | E |
7089936 | Madaus et al. | Aug 2006 | B2 |
7092757 | Larson et al. | Aug 2006 | B2 |
7100607 | Zdrojkowski et al. | Sep 2006 | B2 |
7100608 | Brewer et al. | Sep 2006 | B2 |
7100609 | Berthon-Jones et al. | Sep 2006 | B2 |
7107991 | Kolobow | Sep 2006 | B2 |
7117438 | Wallace et al. | Oct 2006 | B2 |
7137389 | Berthon-Jones | Nov 2006 | B2 |
7152598 | Morris et al. | Dec 2006 | B2 |
7168429 | Matthews et al. | Jan 2007 | B2 |
7195028 | Basset et al. | Mar 2007 | B2 |
7210478 | Banner et al. | May 2007 | B2 |
7229430 | Hickle et al. | Jun 2007 | B2 |
7267122 | Hill | Sep 2007 | B2 |
7270126 | Wallace et al. | Sep 2007 | B2 |
7275540 | Bolam et al. | Oct 2007 | B2 |
7296573 | Estes et al. | Nov 2007 | B2 |
7297119 | Westbrook et al. | Nov 2007 | B2 |
7331343 | Schmidt et al. | Feb 2008 | B2 |
7353824 | Forsyth et al. | Apr 2008 | B1 |
7367337 | Berthon-Jones et al. | May 2008 | B2 |
7369757 | Farbarik | May 2008 | B2 |
7370650 | Nadjafizadeh et al. | May 2008 | B2 |
7398115 | Lynn | Jul 2008 | B2 |
7406870 | Seto | Aug 2008 | B2 |
7428902 | Du et al. | Sep 2008 | B2 |
7448381 | Sasaki et al. | Nov 2008 | B2 |
7455583 | Taya et al. | Nov 2008 | B2 |
7460959 | Jafari | Dec 2008 | B2 |
7475685 | Dietz et al. | Jan 2009 | B2 |
7487773 | Li | Feb 2009 | B2 |
7509957 | Duquette et al. | Mar 2009 | B2 |
7527056 | Turiello | May 2009 | B2 |
7533671 | Gonzalez et al. | May 2009 | B2 |
7621269 | Turiello | Nov 2009 | B2 |
7644713 | Berthon-Jones | Jan 2010 | B2 |
7654802 | Crawford, Jr. et al. | Feb 2010 | B2 |
7661428 | Berthon-Jones | Feb 2010 | B2 |
7673629 | Turiello | Mar 2010 | B2 |
7677247 | Turiello | Mar 2010 | B2 |
7694677 | Tang | Apr 2010 | B2 |
7694678 | Turiello | Apr 2010 | B2 |
7717112 | Sun et al. | May 2010 | B2 |
7717113 | Andrieux | May 2010 | B2 |
D618356 | Ross | Jun 2010 | S |
7770578 | Estes et al. | Aug 2010 | B2 |
7784461 | Figueiredo et al. | Aug 2010 | B2 |
7810496 | Estes et al. | Oct 2010 | B2 |
7810497 | Pittman et al. | Oct 2010 | B2 |
7814906 | Moretti | Oct 2010 | B2 |
7823588 | Hansen | Nov 2010 | B2 |
7827988 | Matthews et al. | Nov 2010 | B2 |
7855716 | McCreary et al. | Dec 2010 | B2 |
7856979 | Doshi et al. | Dec 2010 | B2 |
D632796 | Ross et al. | Feb 2011 | S |
D632797 | Ross et al. | Feb 2011 | S |
7882835 | Eger et al. | Feb 2011 | B2 |
7886739 | Soliman et al. | Feb 2011 | B2 |
7886740 | Thomas et al. | Feb 2011 | B2 |
7891354 | Farbarik | Feb 2011 | B2 |
7893560 | Carter | Feb 2011 | B2 |
7905231 | Chalvignac | Mar 2011 | B2 |
7918222 | Chen | Apr 2011 | B2 |
7918223 | Soliman et al. | Apr 2011 | B2 |
7920067 | Durtschi et al. | Apr 2011 | B2 |
7928852 | Durtschi et al. | Apr 2011 | B2 |
D638852 | Skidmore et al. | May 2011 | S |
7934499 | Berthon-Jones | May 2011 | B2 |
7938114 | Matthews et al. | May 2011 | B2 |
7963283 | Sinderby | Jun 2011 | B2 |
7984712 | Soliman et al. | Jul 2011 | B2 |
7984714 | Hausmann et al. | Jul 2011 | B2 |
D643535 | Ross et al. | Aug 2011 | S |
7992557 | Nadjafizadeh et al. | Aug 2011 | B2 |
8001967 | Wallace et al. | Aug 2011 | B2 |
8002154 | Fontela et al. | Aug 2011 | B2 |
D645158 | Sanchez et al. | Sep 2011 | S |
8021309 | Zilberg | Sep 2011 | B2 |
8021310 | Sanborn et al. | Sep 2011 | B2 |
8033280 | Heinonen | Oct 2011 | B2 |
D649157 | Skidmore et al. | Nov 2011 | S |
8051853 | Berthon-Jones | Nov 2011 | B2 |
8070709 | Childers | Dec 2011 | B2 |
8083677 | Rohde | Dec 2011 | B2 |
D652521 | Ross et al. | Jan 2012 | S |
D652936 | Ross et al. | Jan 2012 | S |
8105310 | Klein | Jan 2012 | B2 |
D653749 | Winter et al. | Feb 2012 | S |
8113062 | Graboi et al. | Feb 2012 | B2 |
8122885 | Berthon-Jones et al. | Feb 2012 | B2 |
D655405 | Winter et al. | Mar 2012 | S |
D655809 | Winter et al. | Mar 2012 | S |
D656237 | Sanchez et al. | Mar 2012 | S |
8136521 | Matthews et al. | Mar 2012 | B2 |
8152116 | Westberg | Apr 2012 | B2 |
RE43398 | Honkonen et al. | May 2012 | E |
8181643 | Friedberg | May 2012 | B2 |
8181648 | Perine et al. | May 2012 | B2 |
8181649 | Brunner | May 2012 | B2 |
8187184 | Muller et al. | May 2012 | B2 |
8210173 | Vandine | Jul 2012 | B2 |
8210174 | Farbarik | Jul 2012 | B2 |
8211128 | Facundus et al. | Jul 2012 | B1 |
8216159 | Leiboff | Jul 2012 | B1 |
8217218 | Court et al. | Jul 2012 | B2 |
8225796 | Davenport et al. | Jul 2012 | B2 |
8235930 | McCall | Aug 2012 | B1 |
8240684 | Ross et al. | Aug 2012 | B2 |
8251923 | Carrez et al. | Aug 2012 | B2 |
8256418 | Bassin | Sep 2012 | B2 |
8267085 | Jafari et al. | Sep 2012 | B2 |
8272379 | Jafari et al. | Sep 2012 | B2 |
8272380 | Jafari et al. | Sep 2012 | B2 |
8288607 | Court et al. | Oct 2012 | B2 |
8302600 | Andrieux et al. | Nov 2012 | B2 |
8302602 | Andrieux et al. | Nov 2012 | B2 |
20020014240 | Truschel | Feb 2002 | A1 |
20020053345 | Jafari et al. | May 2002 | A1 |
20020185126 | Krebs | Dec 2002 | A1 |
20030010339 | Banner et al. | Jan 2003 | A1 |
20030158466 | Lynn et al. | Aug 2003 | A1 |
20030159695 | Younes | Aug 2003 | A1 |
20030221689 | Berthon-Jones | Dec 2003 | A1 |
20040050387 | Younes | Mar 2004 | A1 |
20040074492 | Berthon-Jones | Apr 2004 | A1 |
20040089561 | Herman | May 2004 | A1 |
20040163648 | Burton | Aug 2004 | A1 |
20040187870 | Matthews et al. | Sep 2004 | A1 |
20050039748 | Andrieux | Feb 2005 | A1 |
20050109340 | Tehrani | May 2005 | A1 |
20050139212 | Bourdon | Jun 2005 | A1 |
20050172965 | Thulin | Aug 2005 | A1 |
20050188991 | Sun et al. | Sep 2005 | A1 |
20050241639 | Zilberg | Nov 2005 | A1 |
20060000475 | Matthews et al. | Jan 2006 | A1 |
20060011200 | Remmers et al. | Jan 2006 | A1 |
20060086357 | Soliman et al. | Apr 2006 | A1 |
20060102180 | Berthon-Jones | May 2006 | A1 |
20060112959 | Mechlenburg et al. | Jun 2006 | A1 |
20060118112 | Cattano et al. | Jun 2006 | A1 |
20060144144 | Seto | Jul 2006 | A1 |
20060150974 | Berthon-Jones | Jul 2006 | A1 |
20060155206 | Lynn | Jul 2006 | A1 |
20060155207 | Lynn et al. | Jul 2006 | A1 |
20060161071 | Lynn et al. | Jul 2006 | A1 |
20060174883 | Aylsworth et al. | Aug 2006 | A1 |
20060189880 | Lynn et al. | Aug 2006 | A1 |
20060195041 | Lynn et al. | Aug 2006 | A1 |
20060201505 | Remmers et al. | Sep 2006 | A1 |
20060217633 | Glocker et al. | Sep 2006 | A1 |
20060235324 | Lynn | Oct 2006 | A1 |
20060241708 | Boute | Oct 2006 | A1 |
20060247508 | Fennell | Nov 2006 | A1 |
20060249150 | Dietz et al. | Nov 2006 | A1 |
20060249156 | Moretti | Nov 2006 | A1 |
20060254588 | Brewer et al. | Nov 2006 | A1 |
20060264762 | Starr | Nov 2006 | A1 |
20060272642 | Chalvignac | Dec 2006 | A1 |
20060278218 | Hoffman | Dec 2006 | A1 |
20070000494 | Banner et al. | Jan 2007 | A1 |
20070017515 | Wallace et al. | Jan 2007 | A1 |
20070027375 | Melker et al. | Feb 2007 | A1 |
20070028921 | Banner et al. | Feb 2007 | A1 |
20070044796 | Zdrojkowski et al. | Mar 2007 | A1 |
20070068530 | Pacey | Mar 2007 | A1 |
20070072541 | Daniels, II et al. | Mar 2007 | A1 |
20070077200 | Baker | Apr 2007 | A1 |
20070089738 | Soliman et al. | Apr 2007 | A1 |
20070093721 | Lynn et al. | Apr 2007 | A1 |
20070101992 | Soliman et al. | May 2007 | A1 |
20070129647 | Lynn | Jun 2007 | A1 |
20070135736 | Addington et al. | Jun 2007 | A1 |
20070144522 | Eger et al. | Jun 2007 | A1 |
20070149860 | Lynn et al. | Jun 2007 | A1 |
20070157931 | Parker et al. | Jul 2007 | A1 |
20070163579 | Li et al. | Jul 2007 | A1 |
20070191688 | Lynn | Aug 2007 | A1 |
20070191697 | Lynn et al. | Aug 2007 | A1 |
20070215154 | Borrello | Sep 2007 | A1 |
20070221224 | Pittman et al. | Sep 2007 | A1 |
20070227537 | Bemister et al. | Oct 2007 | A1 |
20070251532 | Friedberg | Nov 2007 | A1 |
20070272241 | Sanborn et al. | Nov 2007 | A1 |
20070277823 | Al-Ali et al. | Dec 2007 | A1 |
20070283958 | Naghavi | Dec 2007 | A1 |
20070284361 | Nadjafizadeh et al. | Dec 2007 | A1 |
20080000478 | Matthiessen et al. | Jan 2008 | A1 |
20080000479 | Elaz et al. | Jan 2008 | A1 |
20080041382 | Matthews et al. | Feb 2008 | A1 |
20080041383 | Matthews et al. | Feb 2008 | A1 |
20080051674 | Davenport et al. | Feb 2008 | A1 |
20080053441 | Gottlib et al. | Mar 2008 | A1 |
20080053442 | Estes et al. | Mar 2008 | A1 |
20080053443 | Estes et al. | Mar 2008 | A1 |
20080053444 | Estes et al. | Mar 2008 | A1 |
20080066752 | Baker et al. | Mar 2008 | A1 |
20080066753 | Martin et al. | Mar 2008 | A1 |
20080072896 | Setzer et al. | Mar 2008 | A1 |
20080072902 | Setzer et al. | Mar 2008 | A1 |
20080078390 | Milne et al. | Apr 2008 | A1 |
20080081974 | Pav | Apr 2008 | A1 |
20080083644 | Janbakhsh et al. | Apr 2008 | A1 |
20080092894 | Nicolazzi et al. | Apr 2008 | A1 |
20080097234 | Nicolazzi et al. | Apr 2008 | A1 |
20080168988 | Lu | Jul 2008 | A1 |
20080178880 | Christopher et al. | Jul 2008 | A1 |
20080178882 | Christopher et al. | Jul 2008 | A1 |
20080185002 | Berthon-Jones et al. | Aug 2008 | A1 |
20080200775 | Lynn | Aug 2008 | A1 |
20080200819 | Lynn et al. | Aug 2008 | A1 |
20080221469 | Shevchuk | Sep 2008 | A1 |
20080251079 | Richey | Oct 2008 | A1 |
20080295837 | McCormick et al. | Dec 2008 | A1 |
20080302359 | Loomas et al. | Dec 2008 | A1 |
20090014007 | Brambilla et al. | Jan 2009 | A1 |
20090050153 | Brunner | Feb 2009 | A1 |
20090082653 | Rohde | Mar 2009 | A1 |
20090088613 | Marttila et al. | Apr 2009 | A1 |
20090093697 | Mir et al. | Apr 2009 | A1 |
20090137927 | Miller | May 2009 | A1 |
20090149730 | McCrary | Jun 2009 | A1 |
20090165795 | Nadjafizadeh et al. | Jul 2009 | A1 |
20090171176 | Andersohn | Jul 2009 | A1 |
20090171226 | Campbell et al. | Jul 2009 | A1 |
20090178675 | Turiello | Jul 2009 | A1 |
20090178676 | Villax et al. | Jul 2009 | A1 |
20090194100 | Minagi | Aug 2009 | A1 |
20090205661 | Stephenson et al. | Aug 2009 | A1 |
20090205663 | Vandine et al. | Aug 2009 | A1 |
20090229605 | Efrati et al. | Sep 2009 | A1 |
20090241951 | Jafari et al. | Oct 2009 | A1 |
20090241952 | Nicolazzi et al. | Oct 2009 | A1 |
20090241953 | Vandine et al. | Oct 2009 | A1 |
20090241955 | Jafari et al. | Oct 2009 | A1 |
20090241956 | Baker, Jr. et al. | Oct 2009 | A1 |
20090241957 | Baker, Jr. | Oct 2009 | A1 |
20090241958 | Baker, Jr. | Oct 2009 | A1 |
20090241962 | Jafari et al. | Oct 2009 | A1 |
20090247891 | Wood | Oct 2009 | A1 |
20090250061 | Marasigan | Oct 2009 | A1 |
20090272382 | Euliano et al. | Nov 2009 | A1 |
20090281481 | Harding | Nov 2009 | A1 |
20090301486 | Masic | Dec 2009 | A1 |
20090301487 | Masic | Dec 2009 | A1 |
20090301490 | Masic | Dec 2009 | A1 |
20090301491 | Masic et al. | Dec 2009 | A1 |
20090308398 | Ferdinand et al. | Dec 2009 | A1 |
20090314294 | Chalvignac | Dec 2009 | A1 |
20090318851 | Schenck | Dec 2009 | A1 |
20100011307 | Desfossez et al. | Jan 2010 | A1 |
20100018529 | Chalvignac | Jan 2010 | A1 |
20100024819 | Tiedje | Feb 2010 | A1 |
20100024820 | Bourdon | Feb 2010 | A1 |
20100051026 | Graboi | Mar 2010 | A1 |
20100051029 | Jafari et al. | Mar 2010 | A1 |
20100065057 | Berthon-Jones | Mar 2010 | A1 |
20100069761 | Karst et al. | Mar 2010 | A1 |
20100071689 | Thiessen | Mar 2010 | A1 |
20100071692 | Porges | Mar 2010 | A1 |
20100071695 | Thiessen | Mar 2010 | A1 |
20100071696 | Jafari | Mar 2010 | A1 |
20100071697 | Jafari et al. | Mar 2010 | A1 |
20100078017 | Andrieux et al. | Apr 2010 | A1 |
20100078018 | Heinonen | Apr 2010 | A1 |
20100078026 | Andrieux et al. | Apr 2010 | A1 |
20100081119 | Jafari et al. | Apr 2010 | A1 |
20100081955 | Wood, Jr. et al. | Apr 2010 | A1 |
20100081958 | She | Apr 2010 | A1 |
20100101574 | Bassin | Apr 2010 | A1 |
20100101576 | Berthon-Jones | Apr 2010 | A1 |
20100116276 | Bayasi | May 2010 | A1 |
20100137737 | Addington et al. | Jun 2010 | A1 |
20100139660 | Adahan | Jun 2010 | A1 |
20100147303 | Jafari et al. | Jun 2010 | A1 |
20100186741 | Aylsworth et al. | Jul 2010 | A1 |
20100186744 | Andrieux | Jul 2010 | A1 |
20100218765 | Jafari et al. | Sep 2010 | A1 |
20100218766 | Milne | Sep 2010 | A1 |
20100218767 | Jafari et al. | Sep 2010 | A1 |
20100234758 | de Menezes | Sep 2010 | A1 |
20100236553 | Jafari et al. | Sep 2010 | A1 |
20100236555 | Jafari et al. | Sep 2010 | A1 |
20100242961 | Mougel et al. | Sep 2010 | A1 |
20100252048 | Young et al. | Oct 2010 | A1 |
20100258123 | Somaiya et al. | Oct 2010 | A1 |
20100262038 | Tan et al. | Oct 2010 | A1 |
20100282259 | Figueiredo et al. | Nov 2010 | A1 |
20100288283 | Campbell et al. | Nov 2010 | A1 |
20100300446 | Nicolazzi et al. | Dec 2010 | A1 |
20100331768 | Hedmann et al. | Dec 2010 | A1 |
20110011400 | Gentner et al. | Jan 2011 | A1 |
20110023878 | Thiessen | Feb 2011 | A1 |
20110023879 | Vandine et al. | Feb 2011 | A1 |
20110023880 | Thiessen | Feb 2011 | A1 |
20110023881 | Thiessen | Feb 2011 | A1 |
20110029910 | Thiessen | Feb 2011 | A1 |
20110034863 | Hoffa | Feb 2011 | A1 |
20110041849 | Chen et al. | Feb 2011 | A1 |
20110041850 | Vandine et al. | Feb 2011 | A1 |
20110061648 | Durtschi et al. | Mar 2011 | A1 |
20110071367 | Court et al. | Mar 2011 | A1 |
20110077549 | Kitai et al. | Mar 2011 | A1 |
20110100373 | Efrati et al. | May 2011 | A1 |
20110125052 | Davenport et al. | May 2011 | A1 |
20110126829 | Carter et al. | Jun 2011 | A1 |
20110126832 | Winter et al. | Jun 2011 | A1 |
20110126834 | Winter et al. | Jun 2011 | A1 |
20110126835 | Winter et al. | Jun 2011 | A1 |
20110126836 | Winter et al. | Jun 2011 | A1 |
20110126837 | Winter et al. | Jun 2011 | A1 |
20110128008 | Carter | Jun 2011 | A1 |
20110132361 | Sanchez | Jun 2011 | A1 |
20110132362 | Sanchez | Jun 2011 | A1 |
20110132363 | Chalvignac | Jun 2011 | A1 |
20110132364 | Ogilvie et al. | Jun 2011 | A1 |
20110132365 | Patel et al. | Jun 2011 | A1 |
20110132366 | Ogilvie et al. | Jun 2011 | A1 |
20110132367 | Patel | Jun 2011 | A1 |
20110132368 | Sanchez et al. | Jun 2011 | A1 |
20110132369 | Sanchez | Jun 2011 | A1 |
20110132371 | Sanchez et al. | Jun 2011 | A1 |
20110133936 | Sanchez et al. | Jun 2011 | A1 |
20110138308 | Palmer et al. | Jun 2011 | A1 |
20110138309 | Skidmore et al. | Jun 2011 | A1 |
20110138311 | Palmer | Jun 2011 | A1 |
20110138315 | Vandine et al. | Jun 2011 | A1 |
20110138323 | Skidmore et al. | Jun 2011 | A1 |
20110146681 | Jafari et al. | Jun 2011 | A1 |
20110146683 | Jafari et al. | Jun 2011 | A1 |
20110154241 | Skidmore et al. | Jun 2011 | A1 |
20110175728 | Baker, Jr. | Jul 2011 | A1 |
20110178427 | Tan et al. | Jul 2011 | A1 |
20110196251 | Jourdain et al. | Aug 2011 | A1 |
20110201956 | Alferness et al. | Aug 2011 | A1 |
20110209702 | Vuong et al. | Sep 2011 | A1 |
20110209704 | Jafari et al. | Sep 2011 | A1 |
20110209707 | Terhark | Sep 2011 | A1 |
20110213215 | Doyle et al. | Sep 2011 | A1 |
20110220112 | Connor | Sep 2011 | A1 |
20110226250 | LaBollita et al. | Sep 2011 | A1 |
20110230780 | Sanborn et al. | Sep 2011 | A1 |
20110249006 | Wallace et al. | Oct 2011 | A1 |
20110259330 | Jafari et al. | Oct 2011 | A1 |
20110259332 | Sanchez et al. | Oct 2011 | A1 |
20110259333 | Sanchez et al. | Oct 2011 | A1 |
20110265024 | Leone et al. | Oct 2011 | A1 |
20110271960 | Milne et al. | Nov 2011 | A1 |
20110273299 | Milne et al. | Nov 2011 | A1 |
20110284003 | Douglas et al. | Nov 2011 | A1 |
20110290246 | Zachar | Dec 2011 | A1 |
20110293706 | Ludwig et al. | Dec 2011 | A1 |
20110313689 | Holley et al. | Dec 2011 | A1 |
20120000466 | Rapoport | Jan 2012 | A1 |
20120000467 | Milne et al. | Jan 2012 | A1 |
20120000468 | Milne et al. | Jan 2012 | A1 |
20120000469 | Milne et al. | Jan 2012 | A1 |
20120000470 | Milne et al. | Jan 2012 | A1 |
20120006328 | Berthon-Jones | Jan 2012 | A1 |
20120022441 | Kelly et al. | Jan 2012 | A1 |
20120029317 | Doyle et al. | Feb 2012 | A1 |
20120030611 | Skidmore | Feb 2012 | A1 |
20120060835 | Mashak | Mar 2012 | A1 |
20120060841 | Crawford, Jr. et al. | Mar 2012 | A1 |
20120065533 | Carrillo, Jr. et al. | Mar 2012 | A1 |
20120071729 | Doyle et al. | Mar 2012 | A1 |
20120083729 | Childers | Apr 2012 | A1 |
20120090610 | O'Connor et al. | Apr 2012 | A1 |
20120090611 | Graboi et al. | Apr 2012 | A1 |
20120096381 | Milne et al. | Apr 2012 | A1 |
20120133519 | Milne et al. | May 2012 | A1 |
20120136222 | Doyle et al. | May 2012 | A1 |
20120137249 | Milne et al. | May 2012 | A1 |
20120137250 | Milne et al. | May 2012 | A1 |
20120139734 | Olde et al. | Jun 2012 | A1 |
20120150057 | Mantri | Jun 2012 | A1 |
20120167885 | Masic et al. | Jul 2012 | A1 |
20120185792 | Kimm et al. | Jul 2012 | A1 |
20120197578 | Vig et al. | Aug 2012 | A1 |
20120197580 | Vij et al. | Aug 2012 | A1 |
20120211008 | Perine et al. | Aug 2012 | A1 |
20120215081 | Euliano et al. | Aug 2012 | A1 |
20120216809 | Milne et al. | Aug 2012 | A1 |
20120216810 | Jafari et al. | Aug 2012 | A1 |
20120216811 | Kimm et al. | Aug 2012 | A1 |
20120226444 | Milne et al. | Sep 2012 | A1 |
20120247471 | Masic et al. | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
19808543 | Nov 1998 | DE |
0425092 | May 1991 | EP |
1270036 | Jan 2003 | EP |
WO 9423780 | Oct 1994 | WO |
WO 9806449 | Feb 1998 | WO |
WO 0010634 | Mar 2000 | WO |
WO 0045880 | Aug 2000 | WO |
WO 0174430 | Oct 2001 | WO |
WO 0228460 | Apr 2002 | WO |
WO 03055552 | Jul 2003 | WO |
WO 04000114 | Dec 2003 | WO |
WO 2004084980 | Oct 2004 | WO |
WO 2005105189 | Nov 2005 | WO |
WO 2006137784 | Dec 2006 | WO |
WO 2007145948 | Dec 2007 | WO |
WO 2009123981 | Oct 2009 | WO |
Entry |
---|
PCT International Search Report and Written Opinion in Application PCT/2009/038810, mailed Jul. 6, 2009, 16 pgs. |
PCT International Search Report and Written Opinion in Application PCT/2009/038815, mailed Jul. 1, 2009, 14 pgs. |
PCT International Search Report and Written Opinion in Application PCT/US09/038811, mailed Jun. 7, 2009, 13 pgs. |
PCT International Search Report and Written Opinion in Application PCT/US2009/038819, mailed Jun. 26, 2009, 12 pgs. |
PCT International Search Report and Written Opinion in Application PCT/US2009/038820, mailed Jul. 22, 2009, 14 pgs. |
PCT International Search Report and Written Opinion in Application PCT/US2009038818, mailed Jul. 14, 2009, 15 pgs. |
PCT International Search Report and Written Opinion in Application PCT/US201/0026618, mailed Jun. 22, 2010, 19 pgs. |
PCT International Search Report and Written Opinion in Application PCT/US2010/025485, mailed Feb. 27, 2009, 8 pgs. |
U.S. Appl. No. 12/242,741, Notice of Allowance mailed Jun. 5, 2012, 5 pgs. |
U.S. Appl. No. 12/242,741, Office Action mailed Jan. 10, 2012, 7 pgs. |
U.S. Appl. No. 12/242,756, Notice of Allowance mailed Jun. 5, 2012, 5 pgs. |
U.S. Appl. No. 12/242,756, Office Action mailed Jan. 10, 2012, 7 pgs. |
U.S. Appl. No. 12/334,354, Notice of Allowance mailed Jan. 27, 2012, 7 pgs. |
U.S. Appl. No. 12/408,408, Notice of Allowance mailed Jun. 4, 2012, 10 pgs. |
U.S. Appl. No. 12/408,414, Office Action mailed Jun. 20, 2012, 9 pgs. |
U.S. Appl. No. 12/414,419, Office Action mailed Jan. 20, 2012, 15 pgs. |
U.S. Appl. No. 12/414,419, Office Action mailed Jul. 18, 2012, 16 pgs. |
U.S. Appl. No. 12/242,756, Supplemental Notice of Allowability mailed Aug. 27, 2012, 2 pgs. |
U.S. Appl. No. 12/242,741, Supplemental Notice of Allowability mailed Aug. 27, 2012, 2 pgs. |
U.S. Appl. No. 12/408,414, Amendment and Response filed Sep. 5, 2012, 7 pgs. |
U.S. Appl. No. 12/414,419, Amendment and Response filed Aug. 27, 2012, 8 pgs. |
Jafari, M. et al., “Robust Feedback Design for Proportional Assist Ventilation-System Dynamics and Problem Definition” Decision and Control, 2005 and 2005 European Control Conference. CDC-E CC '05. 44th IEEE Conference on Seville, Spain Dec. 12-15, 2005, pp. 4839-4844, XP010884460 DISBN: 978-0-7803-9567-1, the whole document. |
U.S. Appl. No. 12/238,248, Office Action mailed Oct. 15, 2012, 12 pgs. |
U.S. Appl. No. 12/238,248, Office Action mailed May 14, 2012, 12 pgs. |
U.S. Appl. No. 12/334,354, Notice of Allowance mailed Oct. 5, 2012, 5 pgs. |
U.S. Appl. No. 12/395,332, Office Action mailed Sep. 13, 2012, 9 pgs. |
U.S. Appl. No. 12/414,419, Notice of Allowance mailed Sep. 19, 2012, 8 pgs. |
U.S. Appl. No. 12/395,332, Notice of Allowance mailed Dec. 24, 2012, 8 pgs. |
U.S. Appl. No. 12/408,414, Notice of Allowance mailed Dec. 10, 2012, 10 pgs. |
U.S. Appl. No. 12/414,419, Notice of Allowance mailed Jan. 8, 2013, 7 pgs. |
U.S. Appl. No. 12/238,248, Advisory Action mailed Jan. 4, 2013, 3 pgs. |
Number | Date | Country | |
---|---|---|---|
20120304997 A1 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12408408 | Mar 2009 | US |
Child | 13565595 | US |