Leak detection in circulated fluid systems for heating subsurface formations

Information

  • Patent Grant
  • 9399905
  • Patent Number
    9,399,905
  • Date Filed
    Monday, May 4, 2015
    9 years ago
  • Date Issued
    Tuesday, July 26, 2016
    8 years ago
Abstract
A method of treating a subsurface formation includes circulating at least one molten salt through at least one conduit of a conduit-in-conduit heater located in the formation to heat hydrocarbons in the formation to at least a mobilization temperature of the hydrocarbons. At least some of the hydrocarbons are produced from the formation. An electrical resistance of at least one of the conduits of the conduit-in-conduit heater is assessed to assess a presence of a leak in at least one of the conduits.
Description
BACKGROUND

1. Field of the Invention


The present invention relates generally to methods and systems for production of hydrocarbons, hydrogen, and/or other products from various subsurface formations such as hydrocarbon containing formations.


2. Description of Related Art


Hydrocarbons obtained from subterranean formations are often used as energy resources, as feedstocks, and as consumer products. Concerns over depletion of available hydrocarbon resources and concerns over declining overall quality of produced hydrocarbons have led to development of processes for more efficient recovery, processing and/or use of available hydrocarbon resources. In situ processes may be used to remove hydrocarbon materials from subterranean formations. Chemical and/or physical properties of hydrocarbon material in a subterranean formation may need to be changed to allow hydrocarbon material to be more easily removed from the subterranean formation. The chemical and physical changes may include in situ reactions that produce removable fluids, composition changes, solubility changes, density changes, phase changes, and/or viscosity changes of the hydrocarbon material in the formation. A fluid may be, but is not limited to, a gas, a liquid, an emulsion, a slurry, and/or a stream of solid particles that has flow characteristics similar to liquid flow.


U.S. Pat. No. 7,575,052 to Sandberg et al., which is incorporated by reference as if fully set forth herein, describes an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation.


U.S. Patent Application Publication No. 2008-0135254 to Vinegar et al., which is incorporated by reference as if fully set forth herein, describes systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas. The circulation system uses a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping is positioned in at least two wellbores.


U.S. Patent Application Publication No. 2009-0095476 to Nguyen et al., which is incorporated by reference as if fully set forth herein, describes a heating system for a subsurface formation includes a conduit located in an opening in the subsurface formation. An insulated conductor is located in the conduit. A material is in the conduit between a portion of the insulated conductor and a portion of the conduit. The material may be a salt. The material is a fluid at operating temperature of the heating system. Heat transfers from the insulated conductor to the fluid, from the fluid to the conduit, and from the conduit to the subsurface formation.


There has been a significant amount of effort to develop methods and systems to economically produce hydrocarbons, hydrogen, and/or other products from hydrocarbon containing formations. At present, however, there are still many hydrocarbon containing formations from which hydrocarbons, hydrogen, and/or other products cannot be economically produced. There is also a need for improved methods and systems that reduce energy costs for treating the formation, reduce emissions from the treatment process, facilitate heating system installation, and/or reduce heat loss to the overburden as compared to hydrocarbon recovery processes that utilize surface based equipment.


SUMMARY

Embodiments described herein generally relate to systems, methods, and heaters for treating a subsurface formation. Embodiments described herein also generally relate to heaters that have novel components therein. Such heaters can be obtained by using the systems and methods described herein.


In certain embodiments, the invention provides one or more systems, methods, and/or heaters. In some embodiments, the systems, methods, and/or heaters are used for treating a subsurface formation.


In certain embodiments, a method of treating a subsurface formation, includes: circulating at least one molten salt through piping located in the formation to heat at least a portion of the formation and heat at least some hydrocarbons in the formation to at least a mobilization temperature of the hydrocarbons; providing an oxidizing fluid to at least a portion of the piping; and oxidizing coke formed in the piping.


In certain embodiments, a method of treating a subsurface formation, includes circulating at least one molten salt through piping located in the formation to heat at least a portion of the formation and heat at least some hydrocarbons in the formation to at least a mobilization temperature of the hydrocarbons; and locating a liner in and/or around at least a portion of the piping to inhibit formation fluids from entering the piping and contacting the molten salt.


In certain embodiments, a method of treating a subsurface formation, includes: circulating at least one molten salt through at least one conduit of a conduit-in-conduit heater located in the formation to heat at least some hydrocarbons in the formation to at least a mobilization temperature of the hydrocarbons; producing at least some of the hydrocarbons from the formation; assessing an electrical resistance of at least one of the conduits of the conduit-in-conduit heater; and assessing a presence of a leak in at least one of the conduits based on the assessed resistance.


In certain embodiments, a method of treating a subsurface formation, includes: circulating at least one molten salt through at least one conduit of a conduit-in-conduit heater located in the formation to heat at least some hydrocarbons in the formation to at least a mobilization temperature of the hydrocarbons; producing at least some of the hydrocarbons from the formation; circulating an inert gas with the molten salt; and assessing a presence of a leak in at least one of the conduits by assessing a presence of the inert gas inside the walls of at least one of the conduits.


In certain embodiments, a method of treating a subsurface formation, includes: circulating at least one molten salt through piping in the formation to heat at least some hydrocarbons in the formation to at least a mobilization temperature of the hydrocarbons; producing at least some of the hydrocarbons from the formation; terminating circulation of the molten salt in the piping after a selected amount of hydrocarbons have been produced from the formation; and providing a compressed gas into the piping to remove molten salt remaining in the piping.


In certain embodiments, a method of heating a subsurface formation, includes: circulating a heated heat transfer fluid comprising a carbonate molten salt through piping positioned in at least two of a plurality of wellbores using a fluid circulation system, wherein the plurality of wellbores are positioned in a formation; and heating at least a portion of the formation.


In certain embodiments, a method for treating a hydrocarbon containing formation, includes: injecting a composition comprising solid salts in a section of the formation; providing heat from one or more heaters to the portion of the formation to heat the composition to about or above a melting point of the solid salts in the composition; and melting at least a portion of the solid salts to form a molten salt and create fractures in the section.


In further embodiments, features from specific embodiments may be combined with features from other embodiments. For example, features from one embodiment may be combined with features from any of the other embodiments.


In further embodiments, treating a subsurface formation is performed using any of the methods, systems, power supplies, or heaters described herein.


In further embodiments, additional features may be added to the specific embodiments described herein.





BRIEF DESCRIPTION OF THE DRAWINGS

Advantages of the present invention may become apparent to those skilled in the art with the benefit of the following detailed description and upon reference to the accompanying drawings in which:



FIG. 1 shows a schematic view of an embodiment of a portion of an in situ heat treatment system for treating a hydrocarbon containing formation.



FIG. 2 depicts a schematic representation of an embodiment of a heat transfer fluid circulation system for heating a portion of a formation.



FIG. 3 depicts a schematic representation of an embodiment of an L-shaped heater for use with a heat transfer fluid circulation system for heating a portion of a formation.



FIG. 4 depicts a schematic representation of an embodiment of a vertical heater for use with a heat transfer fluid circulation system for heating a portion of a formation where thermal expansion of the heater is accommodated below the surface.



FIG. 5 depicts a schematic representation of another embodiment of a vertical heater for use with a heat transfer fluid circulation system for heating a portion of a formation where thermal expansion of the heater is accommodated above and below the surface.



FIG. 6 depicts a schematic representation of an embodiment of a vertical heater for use with a heat transfer fluid circulation system for heating a portion of a formation including an electrical resistance leak detection system.



FIG. 7 depicts a graphical representation of the relationship of the electrical resistance of an inner conduit of a conduit-in-conduit heater over a depth at which a breach has occurred in the inner conduit of the conduit-in-conduit heater.



FIG. 8 depicts a graphical representation of the relationship of the electrical resistance of an outer conduit of a conduit-in-conduit heater over a depth at which a breach has occurred in the outer conduit of the conduit-in-conduit heater.



FIG. 9 depicts a graphical representation of the relationship of the electrical resistance of an inner conduit of a conduit-in-conduit heater and the salt block height over an amount of leaked molten salt.



FIG. 10 depicts a graphical representation of the relationship of the electrical resistance of an outer conduit of a conduit-in-conduit heater and the salt block height over an amount of leaked molten salt.



FIG. 11 depicts a graphical representation of the relationship of the electrical resistance of a conduit of a conduit-in-conduit heater once a breach forms over an average temperature of the molten salt.



FIG. 12 depicts a schematic representation of an embodiment of a vertical heater for use with a heat transfer fluid circulation system for heating a portion of a formation including an inert gas based leak detection system.



FIG. 13 depicts a graphical representation of the relationship of the salt displacement efficiency over time for three different compressed air mass flow rates.



FIG. 14 depicts a graphical representation of the relationship of the air volume flow rate at inlet of a conduit over time for three different compressed air mass flow rates.



FIG. 15 depicts a graphical representation of the relationship of the compressor discharge pressure over time for three different compressed air mass flow rates.



FIG. 16 depicts a graphical representation of the relationship of the salt volume fraction at outlet of a conduit over time for three different compressed air mass flow rates.



FIG. 17 depicts a graphical representation of the relationship of the salt volume flow rate at outlet of a conduit over time for three different compressed air mass flow rates.



FIG. 18 depicts a schematic representation of an embodiment of a compressed air shut-down system.



FIG. 19 depicts a schematic representation of a system for heating a formation using carbonate molten salt.



FIG. 20 depicts a schematic representation of a system after heating a formation using carbonate molten salt.



FIG. 21 depicts a cross-sectional representation of an embodiment of a section of the formation after heating the formation with a carbonate molten salt.





While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and may herein be described in detail. The drawings may not be to scale. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.


DETAILED DESCRIPTION

The following description generally relates to systems and methods for treating hydrocarbons in the formations. Such formations may be treated to yield hydrocarbon products, hydrogen, and other products.


“API gravity” refers to API gravity at 15.5° C. (60° F.). API gravity is as determined by ASTM Method D6822 or ASTM Method D1298.


“ASTM” refers to American Standard Testing and Materials.


In the context of reduced heat output heating systems, apparatus, and methods, the term “automatically” means such systems, apparatus, and methods function in a certain way without the use of external control (for example, external controllers such as a controller with a temperature sensor and a feedback loop, PID controller, or predictive controller).


“Asphalt/bitumen” refers to a semi-solid, viscous material soluble in carbon disulfide. Asphalt/bitumen may be obtained from refining operations or produced from subsurface formations.


“Carbon number” refers to the number of carbon atoms in a molecule. A hydrocarbon fluid may include various hydrocarbons with different carbon numbers. The hydrocarbon fluid may be described by a carbon number distribution. Carbon numbers and/or carbon number distributions may be determined by true boiling point distribution and/or gas-liquid chromatography.


“Condensable hydrocarbons” are hydrocarbons that condense at 25° C. and one atmosphere absolute pressure. Condensable hydrocarbons may include a mixture of hydrocarbons having carbon numbers greater than 4. “Non-condensable hydrocarbons” are hydrocarbons that do not condense at 25° C. and one atmosphere absolute pressure. Non-condensable hydrocarbons may include hydrocarbons having carbon numbers less than 5.


A “fluid” may be, but is not limited to, a gas, a liquid, an emulsion, a slurry, and/or a stream of solid particles that has flow characteristics similar to liquid flow.


A “formation” includes one or more hydrocarbon containing layers, one or more non-hydrocarbon layers, an overburden, and/or an underburden. “Hydrocarbon layers” refer to layers in the formation that contain hydrocarbons. The hydrocarbon layers may contain non-hydrocarbon material and hydrocarbon material. The “overburden” and/or the “underburden” include one or more different types of impermeable materials. For example, the overburden and/or underburden may include rock, shale, mudstone, or wet/tight carbonate. In some embodiments of in situ heat treatment processes, the overburden and/or the underburden may include a hydrocarbon containing layer or hydrocarbon containing layers that are relatively impermeable and are not subjected to temperatures during in situ heat treatment processing that result in significant characteristic changes of the hydrocarbon containing layers of the overburden and/or the underburden. For example, the underburden may contain shale or mudstone, but the underburden is not allowed to heat to pyrolysis temperatures during the in situ heat treatment process. In some cases, the overburden and/or the underburden may be somewhat permeable.


“Formation fluids” refer to fluids present in a formation and may include pyrolyzation fluid, synthesis gas, mobilized hydrocarbons, and water (steam). Formation fluids may include hydrocarbon fluids as well as non-hydrocarbon fluids. The term “mobilized fluid” refers to fluids in a hydrocarbon containing formation that are able to flow as a result of thermal treatment of the formation. “Produced fluids” refer to fluids removed from the formation.


A “heat source” is any system for providing heat to at least a portion of a formation substantially by conductive and/or radiative heat transfer. For example, a heat source may include electrically conducting materials and/or electric heaters such as an insulated conductor, an elongated member, and/or a conductor disposed in a conduit. A heat source may also include systems that generate heat by burning a fuel external to or in a formation. The systems may be surface burners, downhole gas burners, flameless distributed combustors, and natural distributed combustors. In some embodiments, heat provided to or generated in one or more heat sources may be supplied by other sources of energy. The other sources of energy may directly heat a formation, or the energy may be applied to a transfer medium that directly or indirectly heats the formation. It is to be understood that one or more heat sources that are applying heat to a formation may use different sources of energy. Thus, for example, for a given formation some heat sources may supply heat from electrically conducting materials, electric resistance heaters, some heat sources may provide heat from combustion, and some heat sources may provide heat from one or more other energy sources (for example, chemical reactions, solar energy, wind energy, biomass, or other sources of renewable energy). A chemical reaction may include an exothermic reaction (for example, an oxidation reaction). A heat source may also include an electrically conducting material and/or a heater that provides heat to a zone proximate and/or surrounding a heating location such as a heater well.


A “heater” is any system or heat source for generating heat in a well or a near wellbore region. Heaters may be, but are not limited to, electric heaters, burners, combustors that react with material in or produced from a formation, and/or combinations thereof.


“Heavy hydrocarbons” are viscous hydrocarbon fluids. Heavy hydrocarbons may include highly viscous hydrocarbon fluids such as heavy oil, tar, and/or asphalt. Heavy hydrocarbons may include carbon and hydrogen, as well as smaller concentrations of sulfur, oxygen, and nitrogen. Additional elements may also be present in heavy hydrocarbons in trace amounts. Heavy hydrocarbons may be classified by API gravity. Heavy hydrocarbons generally have an API gravity below about 20°. Heavy oil, for example, generally has an API gravity of about 10-20°, whereas tar generally has an API gravity below about 10°. The viscosity of heavy hydrocarbons is generally greater than about 100 centipoise at 15° C. Heavy hydrocarbons may include aromatics or other complex ring hydrocarbons.


Heavy hydrocarbons may be found in a relatively permeable formation. The relatively permeable formation may include heavy hydrocarbons entrained in, for example, sand or carbonate. “Relatively permeable” is defined, with respect to formations or portions thereof, as an average permeability of 10 millidarcy or more (for example, 10 or 100 millidarcy). “Relatively low permeability” is defined, with respect to formations or portions thereof, as an average permeability of less than about 10 millidarcy. One darcy is equal to about 0.99 square micrometers. An impermeable layer generally has a permeability of less than about 0.1 millidarcy.


Certain types of formations that include heavy hydrocarbons may also include, but are not limited to, natural mineral waxes, or natural asphaltites. “Natural mineral waxes” typically occur in substantially tubular veins that may be several meters wide, several kilometers long, and hundreds of meters deep. “Natural asphaltites” include solid hydrocarbons of an aromatic composition and typically occur in large veins. In situ recovery of hydrocarbons from formations such as natural mineral waxes and natural asphaltites may include melting to form liquid hydrocarbons and/or solution mining of hydrocarbons from the formations.


“Hydrocarbons” are generally defined as molecules formed primarily by carbon and hydrogen atoms. Hydrocarbons may also include other elements such as, but not limited to, halogens, metallic elements, nitrogen, oxygen, and/or sulfur. Hydrocarbons may be, but are not limited to, kerogen, bitumen, pyrobitumen, oils, natural mineral waxes, and asphaltites. Hydrocarbons may be located in or adjacent to mineral matrices in the earth. Matrices may include, but are not limited to, sedimentary rock, sands, silicilytes, carbonates, diatomites, and other porous media. “Hydrocarbon fluids” are fluids that include hydrocarbons. Hydrocarbon fluids may include, entrain, or be entrained in non-hydrocarbon fluids such as hydrogen, nitrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, water, and ammonia.


An “in situ conversion process” refers to a process of heating a hydrocarbon containing formation from heat sources to raise the temperature of at least a portion of the formation above a pyrolysis temperature so that pyrolyzation fluid is produced in the formation.


An “in situ heat treatment process” refers to a process of heating a hydrocarbon containing formation with heat sources to raise the temperature of at least a portion of the formation above a temperature that results in mobilized fluid, visbreaking, and/or pyrolysis of hydrocarbon containing material so that mobilized fluids, visbroken fluids, and/or pyrolyzation fluids are produced in the formation.


“Insulated conductor” refers to any elongated material that is able to conduct electricity and that is covered, in whole or in part, by an electrically insulating material.


“Kerogen” is a solid, insoluble hydrocarbon that has been converted by natural degradation and that principally contains carbon, hydrogen, nitrogen, oxygen, and sulfur. Coal and oil shale are typical examples of materials that contain kerogen. “Bitumen” is a non-crystalline solid or viscous hydrocarbon material that is substantially soluble in carbon disulfide. “Oil” is a fluid containing a mixture of condensable hydrocarbons.


“Perforations” include openings, slits, apertures, or holes in a wall of a conduit, tubular, pipe or other flow pathway that allow flow into or out of the conduit, tubular, pipe or other flow pathway.


“Pyrolysis” is the breaking of chemical bonds due to the application of heat. For example, pyrolysis may include transforming a compound into one or more other substances by heat alone. Heat may be transferred to a section of the formation to cause pyrolysis.


“Pyrolyzation fluids” or “pyrolysis products” refers to fluid produced substantially during pyrolysis of hydrocarbons. Fluid produced by pyrolysis reactions may mix with other fluids in a formation. The mixture would be considered pyrolyzation fluid or pyrolyzation product. As used herein, “pyrolysis zone” refers to a volume of a formation (for example, a relatively permeable formation such as a tar sands formation) that is reacted or reacting to form a pyrolyzation fluid.


“Rich layers” in a hydrocarbon containing formation are relatively thin layers (typically about 0.2 m to about 0.5 m thick). Rich layers generally have a richness of about 0.150 L/kg or greater. Some rich layers have a richness of about 0.170 L/kg or greater, of about 0.190 L/kg or greater, or of about 0.210 L/kg or greater. Lean layers of the formation have a richness of about 0.100 L/kg or less and are generally thicker than rich layers. The richness and locations of layers are determined, for example, by coring and subsequent Fischer assay of the core, density or neutron logging, or other logging methods. Rich layers may have a lower initial thermal conductivity than other layers of the formation. Typically, rich layers have a thermal conductivity 1.5 times to 3 times lower than the thermal conductivity of lean layers. In addition, rich layers have a higher thermal expansion coefficient than lean layers of the formation.


“Superposition of heat” refers to providing heat from two or more heat sources to a selected section of a formation such that the temperature of the formation at least at one location between the heat sources is influenced by the heat sources.


“Synthesis gas” is a mixture including hydrogen and carbon monoxide. Additional components of synthesis gas may include water, carbon dioxide, nitrogen, methane, and other gases. Synthesis gas may be generated by a variety of processes and feedstocks. Synthesis gas may be used for synthesizing a wide range of compounds.


“Tar” is a viscous hydrocarbon that generally has a viscosity greater than about 10,000 centipoise at 15° C. The specific gravity of tar generally is greater than 1.000. Tar may have an API gravity less than 10°.


A “tar sands formation” is a formation in which hydrocarbons are predominantly present in the form of heavy hydrocarbons and/or tar entrained in a mineral grain framework or other host lithology (for example, sand or carbonate). Examples of tar sands formations include formations such as the Athabasca formation, the Grosmont formation, and the Peace River formation, all three in Alberta, Canada; and the Faja formation in the Orinoco belt in Venezuela.


“Temperature limited heater” generally refers to a heater that regulates heat output (for example, reduces heat output) above a specified temperature without the use of external controls such as temperature controllers, power regulators, rectifiers, or other devices. Temperature limited heaters may be AC (alternating current) or modulated (for example, “chopped”) DC (direct current) powered electrical resistance heaters.


“Thickness” of a layer refers to the thickness of a cross section of the layer, wherein the cross section is normal to a face of the layer.


A “u-shaped wellbore” refers to a wellbore that extends from a first opening in the formation, through at least a portion of the formation, and out through a second opening in the formation. In this context, the wellbore may be only roughly in the shape of a “v” or “u”, with the understanding that the “legs” of the “u” do not need to be parallel to each other, or perpendicular to the “bottom” of the “u” for the wellbore to be considered “u-shaped”.


“Upgrade” refers to increasing the quality of hydrocarbons. For example, upgrading heavy hydrocarbons may result in an increase in the API gravity of the heavy hydrocarbons.


“Visbreaking” refers to the untangling of molecules in fluid during heat treatment and/or to the breaking of large molecules into smaller molecules during heat treatment, which results in a reduction of the viscosity of the fluid.


“Viscosity” refers to kinematic viscosity at 40° C. unless otherwise specified. Viscosity is as determined by ASTM Method D445.


“Wax” refers to a low melting organic mixture, or a compound of high molecular weight that is a solid at lower temperatures and a liquid at higher temperatures, and when in solid form can form a barrier to water. Examples of waxes include animal waxes, vegetable waxes, mineral waxes, petroleum waxes, and synthetic waxes.


The term “wellbore” refers to a hole in a formation made by drilling or insertion of a conduit into the formation. A wellbore may have a substantially circular cross section, or another cross-sectional shape. As used herein, the terms “well” and “opening,” when referring to an opening in the formation may be used interchangeably with the term “wellbore.”


A formation may be treated in various ways to produce many different products. Different stages or processes may be used to treat the formation during an in situ heat treatment process. In some embodiments, one or more sections of the formation are solution mined to remove soluble minerals from the sections. Solution mining minerals may be performed before, during, and/or after the in situ heat treatment process. In some embodiments, the average temperature of one or more sections being solution mined may be maintained below about 120° C.


In some embodiments, one or more sections of the formation are heated to remove water from the sections and/or to remove methane and other volatile hydrocarbons from the sections. In some embodiments, the average temperature may be raised from ambient temperature to temperatures below about 220° C. during removal of water and volatile hydrocarbons.


In some embodiments, one or more sections of the formation are heated to temperatures that allow for movement and/or visbreaking of hydrocarbons in the formation. In some embodiments, the average temperature of one or more sections of the formation are raised to mobilization temperatures of hydrocarbons in the sections (for example, to temperatures ranging from 100° C. to 250° C., from 120° C. to 240° C., or from 150° C. to 230° C.).


In some embodiments, one or more sections are heated to temperatures that allow for pyrolysis reactions in the formation. In some embodiments, the average temperature of one or more sections of the formation may be raised to pyrolysis temperatures of hydrocarbons in the sections (for example, temperatures ranging from 230° C. to 900° C., from 240° C. to 400° C. or from 250° C. to 350° C.).


Heating the hydrocarbon containing formation with a plurality of heat sources may establish thermal gradients around the heat sources that raise the temperature of hydrocarbons in the formation to desired temperatures at desired heating rates. The rate of temperature increase through the mobilization temperature range and/or the pyrolysis temperature range for desired products may affect the quality and quantity of the formation fluids produced from the hydrocarbon containing formation. Slowly raising the temperature of the formation through the mobilization temperature range and/or pyrolysis temperature range may allow for the production of high quality, high API gravity hydrocarbons from the formation. Slowly raising the temperature of the formation through the mobilization temperature range and/or pyrolysis temperature range may allow for the removal of a large amount of the hydrocarbons present in the formation as hydrocarbon product.


In some in situ heat treatment embodiments, a portion of the formation is heated to a desired temperature instead of slowly raising the temperature through a temperature range. In some embodiments, the desired temperature is 300° C., 325° C., or 350° C. Other temperatures may be selected as the desired temperature.


Superposition of heat from heat sources allows the desired temperature to be relatively quickly and efficiently established in the formation. Energy input into the formation from the heat sources may be adjusted to maintain the temperature in the formation substantially at a desired temperature.


Mobilization and/or pyrolysis products may be produced from the formation through production wells. In some embodiments, the average temperature of one or more sections is raised to mobilization temperatures and hydrocarbons are produced from the production wells. The average temperature of one or more of the sections may be raised to pyrolysis temperatures after production due to mobilization decreases below a selected value. In some embodiments, the average temperature of one or more sections may be raised to pyrolysis temperatures without significant production before reaching pyrolysis temperatures. Formation fluids including pyrolysis products may be produced through the production wells.


In some embodiments, the average temperature of one or more sections may be raised to temperatures sufficient to allow synthesis gas production after mobilization and/or pyrolysis. In some embodiments, hydrocarbons may be raised to temperatures sufficient to allow synthesis gas production without significant production before reaching the temperatures sufficient to allow synthesis gas production. For example, synthesis gas may be produced in a temperature range from about 400° C. to about 1200° C., about 500° C. to about 1100° C., or about 550° C. to about 1000° C. A synthesis gas generating fluid (for example, steam and/or water) may be introduced into the sections to generate synthesis gas. Synthesis gas may be produced from production wells.


Solution mining, removal of volatile hydrocarbons and water, mobilizing hydrocarbons, pyrolyzing hydrocarbons, generating synthesis gas, and/or other processes may be performed during the in situ heat treatment process. In some embodiments, some processes may be performed after the in situ heat treatment process. Such processes may include, but are not limited to, recovering heat from treated sections, storing fluids (for example, water and/or hydrocarbons) in previously treated sections, and/or sequestering carbon dioxide in previously treated sections.



FIG. 1 depicts a schematic view of an embodiment of a portion of the in situ heat treatment system for treating the hydrocarbon containing formation. The in situ heat treatment system may include barrier wells 190. Barrier wells are used to form a barrier around a treatment area. The barrier inhibits fluid flow into and/or out of the treatment area. Barrier wells include, but are not limited to, dewatering wells, vacuum wells, capture wells, injection wells, grout wells, freeze wells, or combinations thereof. In some embodiments, barrier wells 190 are dewatering wells. Dewatering wells may remove liquid water and/or inhibit liquid water from entering a portion of the formation to be heated, or to the formation being heated. In the embodiment depicted in FIG. 1, the barrier wells 190 are shown extending only along one side of heat sources 192, but the barrier wells typically encircle all heat sources 192 used, or to be used, to heat a treatment area of the formation.


Heat sources 192 are placed in at least a portion of the formation. Heat sources 192 may include heaters such as insulated conductors, conductor-in-conduit heaters, surface burners, flameless distributed combustors, and/or natural distributed combustors. Heat sources 192 may also include other types of heaters. Heat sources 192 provide heat to at least a portion of the formation to heat hydrocarbons in the formation. Energy may be supplied to heat sources 192 through supply lines 194. Supply lines 194 may be structurally different depending on the type of heat source or heat sources used to heat the formation. Supply lines 194 for heat sources may transmit electricity for electric heaters, may transport fuel for combustors, or may transport heat exchange fluid that is circulated in the formation. In some embodiments, electricity for an in situ heat treatment process may be provided by a nuclear power plant or nuclear power plants. The use of nuclear power may allow for reduction or elimination of carbon dioxide emissions from the in situ heat treatment process.


When the formation is heated, the heat input into the formation may cause expansion of the formation and geomechanical motion. The heat sources may be turned on before, at the same time, or during a dewatering process. Computer simulations may model formation response to heating. The computer simulations may be used to develop a pattern and time sequence for activating heat sources in the formation so that geomechanical motion of the formation does not adversely affect the functionality of heat sources, production wells, and other equipment in the formation.


Heating the formation may cause an increase in permeability and/or porosity of the formation. Increases in permeability and/or porosity may result from a reduction of mass in the formation due to vaporization and removal of water, removal of hydrocarbons, and/or creation of fractures. Fluid may flow more easily in the heated portion of the formation because of the increased permeability and/or porosity of the formation. Fluid in the heated portion of the formation may move a considerable distance through the formation because of the increased permeability and/or porosity. The considerable distance may be over 1000 m depending on various factors, such as permeability of the formation, properties of the fluid, temperature of the formation, and pressure gradient allowing movement of the fluid. The ability of fluid to travel considerable distance in the formation allows production wells 196 to be spaced relatively far apart in the formation.


Production wells 196 are used to remove formation fluid from the formation. In some embodiments, production well 196 includes a heat source. The heat source in the production well may heat one or more portions of the formation at or near the production well. In some in situ heat treatment process embodiments, the amount of heat supplied to the formation from the production well per meter of the production well is less than the amount of heat applied to the formation from a heat source that heats the formation per meter of the heat source. Heat applied to the formation from the production well may increase formation permeability adjacent to the production well by vaporizing and removing liquid phase fluid adjacent to the production well and/or by increasing the permeability of the formation adjacent to the production well by formation of macro and/or micro fractures.


More than one heat source may be positioned in the production well. A heat source in a lower portion of the production well may be turned off when superposition of heat from adjacent heat sources heats the formation sufficiently to counteract benefits provided by heating the formation with the production well. In some embodiments, the heat source in an upper portion of the production well may remain on after the heat source in the lower portion of the production well is deactivated. The heat source in the upper portion of the well may inhibit condensation and reflux of formation fluid.


In some embodiments, the heat source in production well 196 allows for vapor phase removal of formation fluids from the formation. Providing heating at or through the production well may: (1) inhibit condensation and/or refluxing of production fluid when such production fluid is moving in the production well proximate the overburden, (2) increase heat input into the formation, (3) increase production rate from the production well as compared to a production well without a heat source, (4) inhibit condensation of high carbon number compounds (C6 hydrocarbons and above) in the production well, and/or (5) increase formation permeability at or proximate the production well.


Subsurface pressure in the formation may correspond to the fluid pressure generated in the formation. As temperatures in the heated portion of the formation increase, the pressure in the heated portion may increase as a result of thermal expansion of in situ fluids, increased fluid generation and vaporization of water. Controlling rate of fluid removal from the formation may allow for control of pressure in the formation. Pressure in the formation may be determined at a number of different locations, such as near or at production wells, near or at heat sources, or at monitor wells.


In some hydrocarbon containing formations, production of hydrocarbons from the formation is inhibited until at least some hydrocarbons in the formation have been mobilized and/or pyrolyzed. Formation fluid may be produced from the formation when the formation fluid is of a selected quality. In some embodiments, the selected quality includes an API gravity of at least about 20°, 30°, or 40°. Inhibiting production until at least some hydrocarbons are mobilized and/or pyrolyzed may increase conversion of heavy hydrocarbons to light hydrocarbons. Inhibiting initial production may minimize the production of heavy hydrocarbons from the formation. Production of substantial amounts of heavy hydrocarbons may require expensive equipment and/or reduce the life of production equipment.


In some hydrocarbon containing formations, hydrocarbons in the formation may be heated to mobilization and/or pyrolysis temperatures before substantial permeability has been generated in the heated portion of the formation. An initial lack of permeability may inhibit the transport of generated fluids to production wells 196. During initial heating, fluid pressure in the formation may increase proximate heat sources 192. The increased fluid pressure may be released, monitored, altered, and/or controlled through one or more heat sources 192. For example, selected heat sources 192 or separate pressure relief wells may include pressure relief valves that allow for removal of some fluid from the formation.


In some embodiments, pressure generated by expansion of mobilized fluids, pyrolysis fluids or other fluids generated in the formation may be allowed to increase although an open path to production wells 196 or any other pressure sink may not yet exist in the formation. The fluid pressure may be allowed to increase towards a lithostatic pressure. Fractures in the hydrocarbon containing formation may form when the fluid approaches the lithostatic pressure. For example, fractures may form from heat sources 192 to production wells 196 in the heated portion of the formation. The generation of fractures in the heated portion may relieve some of the pressure in the portion. Pressure in the formation may have to be maintained below a selected pressure to inhibit unwanted production, fracturing of the overburden or underburden, and/or coking of hydrocarbons in the formation.


After mobilization and/or pyrolysis temperatures are reached and production from the formation is allowed, pressure in the formation may be varied to alter and/or control a composition of formation fluid produced, to control a percentage of condensable fluid as compared to non-condensable fluid in the formation fluid, and/or to control an API gravity of formation fluid being produced. For example, decreasing pressure may result in production of a larger condensable fluid component. The condensable fluid component may contain a larger percentage of olefins.


In some in situ heat treatment process embodiments, pressure in the formation may be maintained high enough to promote production of formation fluid with an API gravity of greater than 20°. Maintaining increased pressure in the formation may inhibit formation subsidence during in situ heat treatment. Maintaining increased pressure may reduce or eliminate the need to compress formation fluids at the surface to transport the fluids in collection conduits to treatment facilities.


Maintaining increased pressure in a heated portion of the formation may surprisingly allow for production of large quantities of hydrocarbons of increased quality and of relatively low molecular weight. Pressure may be maintained so that formation fluid produced has a minimal amount of compounds above a selected carbon number. The selected carbon number may be at most 25, at most 20, at most 12, or at most 8. Some high carbon number compounds may be entrained in vapor in the formation and may be removed from the formation with the vapor. Maintaining increased pressure in the formation may inhibit entrainment of high carbon number compounds and/or multi-ring hydrocarbon compounds in the vapor. High carbon number compounds and/or multi-ring hydrocarbon compounds may remain in a liquid phase in the formation for significant time periods. The significant time periods may provide sufficient time for the compounds to pyrolyze to form lower carbon number compounds.


Generation of relatively low molecular weight hydrocarbons is believed to be due, in part, to autogenous generation and reaction of hydrogen in a portion of the hydrocarbon containing formation. For example, maintaining an increased pressure may force hydrogen generated during pyrolysis into the liquid phase within the formation. Heating the portion to a temperature in a pyrolysis temperature range may pyrolyze hydrocarbons in the formation to generate liquid phase pyrolyzation fluids. The generated liquid phase pyrolyzation fluids components may include double bonds and/or radicals. Hydrogen (H2) in the liquid phase may reduce double bonds of the generated pyrolyzation fluids, thereby reducing a potential for polymerization or formation of long chain compounds from the generated pyrolyzation fluids. In addition, H2 may also neutralize radicals in the generated pyrolyzation fluids. H2 in the liquid phase may inhibit the generated pyrolyzation fluids from reacting with each other and/or with other compounds in the formation.


Formation fluid produced from production wells 196 may be transported through collection piping 198 to treatment facilities 200. Formation fluids may also be produced from heat sources 192. For example, fluid may be produced from heat sources 192 to control pressure in the formation adjacent to the heat sources. Fluid produced from heat sources 192 may be transported through tubing or piping to collection piping 198 or the produced fluid may be transported through tubing or piping directly to treatment facilities 200. Treatment facilities 200 may include separation units, reaction units, upgrading units, fuel cells, turbines, storage vessels, and/or other systems and units for processing produced formation fluids. The treatment facilities may form transportation fuel from at least a portion of the hydrocarbons produced from the formation. In some embodiments, the transportation fuel may be jet fuel, such as JP-8.


In some in situ heat treatment process embodiments, a circulation system is used to heat the formation. Using the circulation system for in situ heat treatment of a hydrocarbon containing formation may reduce energy costs for treating the formation, reduce emissions from the treatment process, and/or facilitate heating system installation. In certain embodiments, the circulation system is a closed loop circulation system. The system may be used to heat hydrocarbons that are relatively deep in the ground and that are in formations that are relatively large in extent. In some embodiments, the hydrocarbons may be 100 m, 200 m, 300 m or more below the surface. The circulation system may also be used to heat hydrocarbons that are shallower in the ground. The hydrocarbons may be in formations that extend lengthwise up to 1000 m, 3000 m, 5000 m, or more. The heaters of the circulation system may be positioned relative to adjacent heaters such that superposition of heat between heaters of the circulation system allows the temperature of the formation to be raised at least above the boiling point of aqueous formation fluid in the formation.


In some embodiments, heaters are formed in the formation by drilling a first wellbore and then drilling a second wellbore that connects with the first wellbore. Piping may be positioned in the u-shaped wellbore to form u-shaped heaters. Heaters are connected to a heat transfer fluid circulation system by piping. In some embodiments, the heaters are positioned in triangular patterns. In some embodiments, other regular or irregular patterns are used. Production wells and/or injection wells may also be located in the formation. The production wells and/or the injection wells may have long, substantially horizontal sections similar to the heating portions of heaters, or the production wells and/or injection wells may be otherwise oriented (for example, the wells may be vertically oriented wells, or wells that include one or more slanted portions).


As depicted in FIG. 2, heat transfer fluid circulation system 202 may include heat supply 204, first heat exchanger 206, second heat exchanger 208, and fluid movers 210. Heat supply 204 heats the heat transfer fluid to a high temperature. Heat supply 204 may be a furnace, solar collector, chemical reactor, nuclear reactor, fuel cell, and/or other high temperature source able to supply heat to the heat transfer fluid. If the heat transfer fluid is a gas, fluid movers 210 may be compressors. If the heat transfer fluid is a liquid, fluid movers 210 may be pumps.


After exiting formation 212, the heat transfer fluid passes through first heat exchanger 206 and second heat exchanger 208 to fluid movers 210. First heat exchanger 206 transfers heat between heat transfer fluid exiting formation 212 and heat transfer fluid exiting fluid movers 210 to raise the temperature of the heat transfer fluid that enters heat supply 204 and reduce the temperature of the fluid exiting formation 212. Second heat exchanger 208 further reduces the temperature of the heat transfer fluid. In some embodiments, second heat exchanger 208 includes or is a storage tank for the heat transfer fluid. Heat transfer fluid passes from second heat exchanger 208 to fluid movers 210. Fluid movers 210 may be located before heat supply 204 so that the fluid movers do not have to operate at a high temperature.


In an embodiment, the heat transfer fluid is carbon dioxide. Heat supply 204 is a furnace that heats the heat transfer fluid to a temperature in a range from about 700° C. to about 920° C., from about 770° C. to about 870° C., or from about 800° C. to about 850° C. In an embodiment, heat supply 204 heats the heat transfer fluid to a temperature of about 820° C. The heat transfer fluid flows from heat supply 204 to heaters 201. Heat transfers from heaters 201 to formation 212 adjacent to the heaters. The temperature of the heat transfer fluid exiting formation 212 may be in a range from about 350° C. to about 580° C., from about 400° C. to about 530° C., or from about 450° C. to about 500° C. In an embodiment, the temperature of the heat transfer fluid exiting formation 212 is about 480° C. The metallurgy of the piping used to form heat transfer fluid circulation system 202 may be varied to significantly reduce costs of the piping. High temperature steel may be used from heat supply 204 to a point where the temperature is sufficiently low so that less expensive steel can be used from that point to first heat exchanger 206. Several different steel grades may be used to form the piping of heat transfer fluid circulation system 202.


In some embodiments, vertical, slanted, or L-shaped wellbores are used instead of u-shaped wellbores (for example, wellbores that have an entrance at a first location and an exit at another location). FIG. 3 depicts L-shaped heater 201. Heater 201 may be coupled to heat transfer fluid circulation system 202 and may include inlet conduit 214, and outlet conduit 216. Heat transfer fluid circulation system 202 may supply heat transfer fluid to multiple heaters. Heat transfer fluid from heat transfer fluid circulation system 202 may flow down inlet conduit 214 and back up outlet conduit 216. Inlet conduit 214 and outlet conduit 216 may be insulated through overburden 218. In some embodiments, inlet conduit 214 is insulated through overburden 218 and hydrocarbon containing layer 220 to inhibit undesired heat transfer between ingoing and outgoing heat transfer fluid.


In some embodiments, portions of wellbore 222 adjacent to overburden 218 are larger than portions of the wellbore adjacent to hydrocarbon containing layer 220. Having a larger opening adjacent to the overburden may allow for accommodation of insulation used to insulate inlet conduit 214 and/or outlet conduit 216. Some heat loss to the overburden from the return flow may not affect the efficiency significantly, especially when the heat transfer fluid is molten salt or another fluid that needs to be heated to remain a liquid. The heated overburden adjacent to heater 201 may maintain the heat transfer fluid as a liquid for a significant time should circulation of heat transfer fluid stop. Having some allowance for heat transfer to overburden 218 may eliminate the need for expensive insulation systems between outlet conduit 216 and the overburden. In some embodiments, insulative cement is used between overburden 218 and outlet conduit 216.


For vertical, slanted, or L-shaped heaters, the wellbores may be drilled longer than needed to accommodate non-energized heaters (for example, installed but inactive heaters). Thermal expansion of the heaters after energization may cause portions of the heaters to move into the extra length of the wellbores designed to accommodate the thermal expansion of the heaters. For L-shaped heaters, remaining drilling fluid and/or formation fluid in the wellbore may facilitate movement of the heater deeper into the wellbore as the heater expands during preheating and/or heating with heat transfer fluid.


For vertical or slanted wellbores, the wellbores may be drilled deeper than needed to accommodate the non-energized heaters. When the heater is preheated and/or heated with the heat transfer fluid, the heater may expand into the extra depth of the wellbore. In some embodiments, an expansion sleeve may be attached at the end of the heater to ensure available space for thermal expansion in case of unstable boreholes.



FIG. 4 depicts a schematic representation of an embodiment of a portion of vertical heater 201. Heat transfer fluid circulation system 202 may provide heat transfer fluid to inlet conduit 214 of heater 201. Heat transfer fluid circulation system 202 may receive heat transfer fluid from outlet conduit heat 216. Inlet conduit 214 may be secured to outlet conduit 216 by welds 228. Inlet conduit 214 may include insulating sleeve 224. Insulating sleeve 224 may be formed of a number of sections. Each section of insulating sleeve 224 for inlet conduit 214 is able to accommodate the thermal expansion caused by the temperature difference between the temperature of the inlet conduit and the temperature outside the insulating sleeve. Change in length of inlet conduit 214 and insulation sleeve 224 due to thermal expansion is accommodated in outlet conduit 216.


Outlet conduit 216 may include insulating sleeve 224′. Insulating sleeve 224′ may end near the boundary between overburden 218 and hydrocarbon layer 220. In some embodiments, insulating sleeve 224′ is installed using a coiled tubing rig. An upper first portion of insulating sleeve 224′ may be secured to outlet conduit 216 above or near wellhead 226 by weld 228. Heater 201 may be supported in wellhead 226 by a coupling between the outer support member of insulating sleeve 224′ and the wellhead. The outer support member of insulating sleeve 224′ may have sufficient strength to support heater 201.


In some embodiments, insulating sleeve 224′ includes a second portion (insulating sleeve portion 224″) that is separate and lower than the first portion of insulating sleeve 224′. Insulating sleeve portion 224″ may be secured to outlet conduit 216 by welds 228 or other types of seals that can withstand high temperatures below packer 230. Welds 228 between insulating sleeve portion 224″ and outlet conduit 216 may inhibit formation fluid from passing between the insulating sleeve and the outlet conduit. During heating, differential thermal expansion between the cooler outer surface and the hotter inner surface of insulating sleeve 224′ may cause separation between the first portion of the insulating sleeve and the second portion of the insulating sleeve (insulating sleeve portion 224″). This separation may occur adjacent to the overburden portion of heater 201 above packer 230. Insulating cement between casing 238 and the formation may further inhibit heat loss to the formation and improve the overall energy efficiency of the system.


Packer 230 may be a polished bore receptacle. Packer 230 may be fixed to casing 238 of wellbore 222. In some embodiments, packer 230 is 1000 m or more below the surface. Packer 230 may be located at a depth above 1000 m, if desired. Packer 230 may inhibit formation fluid from flowing from the heated portion of the formation up the wellbore to wellhead 226. Packer 230 may allow movement of insulating sleeve portion 224″ downwards to accommodate thermal expansion of heater 201. In some embodiments, wellhead 226 includes fixed seal 232. Fixed seal 232 may be a second seal that inhibits formation fluid from reaching the surface through wellbore 222 of heater 201.



FIG. 5 depicts a schematic representation of another embodiment of a portion of vertical heater 201 in wellbore 222. The embodiment depicted in FIG. 5 is similar to the embodiment depicted in FIG. 4, but fixed seal 232 is located adjacent to overburden 218, and sliding seal 234 is located in wellhead 226. The portion of insulating sleeve 224′ from fixed seal 232 to wellhead 226 is able to expand upward out of the wellhead to accommodate thermal expansion. The portion of heater located below fixed seal 232 is able to expand into the excess length of wellbore 222 to accommodate thermal expansion.


In some embodiments, the heater includes a flow switcher. The flow switcher may allow the heat transfer fluid from the circulation system to flow down through the overburden in the inlet conduit of the heater. The return flow from the heater may flow upwards through the annular region between the inlet conduit and the outlet conduit. The flow switcher may change the downward flow from the inlet conduit to the annular region between the outlet conduit and the inlet conduit. The flow switcher may also change the upward flow from the inlet conduit to the annular region. The use of the flow switcher may allow the heater to operate at a higher temperature adjacent to the treatment area without increasing the initial temperature of the heat transfer fluid provided to the heaters.


For vertical, slanted, or L-shaped heaters where the flow of heat transfer fluid is directed down the inlet conduit and returns through the annular region between the inlet conduit and the outlet conduit, a temperature gradient may form in the heater with the hottest portion being located at a distal end of the heater. For L-shaped heaters, horizontal portions of a set of first heaters may be alternated with the horizontal portions of a second set of heaters. The hottest portions used to heat the formation of the first set of heaters may be adjacent to the coldest portions used to heat the formation of the second set of heaters, while the hottest portions used to heat the formation of the second set of heaters are adjacent to the coldest portions used to heat the formation of the first set of heaters. For vertical or slanted heaters, flow switchers in selected heaters may allow the heaters to be arranged with the hottest portions used to heat the formation of first heaters adjacent to coldest portions used to heat the formation of second heaters. Having hottest portions used to heat the formation of the first set of heaters adjacent to coldest portions used to heat the formation of the second set of heaters may allow for more uniform heating of the formation.


In some embodiments, solar salt (for example, a salt containing 60 wt % NaNO3 and 40 wt % KNO3) is used as the heat transfer fluid in the circulated fluid system. Solar salt may have a melting point of about 230° C. and an upper working temperature limit of about 565° C. In some embodiments, LiNO3 (for example, between about 10% by weight and about 30% by weight LiNO3) may be added to the solar salt to produce tertiary salt mixtures with wider operating temperature ranges and lower melting temperatures with only a slight decrease in the maximum working temperature as compared to solar salt. The lower melting temperature of the tertiary salt mixtures may decrease the preheating requirements and allow the use of pressurized water and/or pressurized brine as a heat transfer fluid for preheating the piping of the circulation system. The corrosion rates of the metal of the heaters due to the tertiary salt compositions at 550° C. is comparable to the corrosion rate of the metal of the heaters due to solar salt at 565° C. TABLE 1 shows melting points and upper limits for solar salt and tertiary salt mixtures. Aqueous solutions of tertiary salt mixtures may transition into a molten salt upon removal of water without solidification, thus allowing the molten salt to be provided and/or stored as aqueous solutions.












TABLE 1








Upper working



Composition of NO3
Melting Point (° C.)
temperature limit


NO3 Salt
Salt (weight %)
of NO3 salt
(° C.) of NO3 salt







Na:K
60:40
230
600


Li:Na:K
12:18:70
200
550


Li:Na:K
20:28:52
150
550


Li:Na:K
27:33:40
160
550


Li:Na:K
30:18:52
120
550









Using molten salts as a heat transfer fluid for in situ heat treatment process has many advantages. Many molten salts will react with certain hydrocarbons, thus, if circulating molten salts are used to heat a portion of a treatment area, a leak in the system which allows molten salts to contact subsurface hydrocarbons may cause problems. Reaction of molten salts with hydrocarbons may disrupt heat transfer systems, decrease permeability in the treatment area, decrease hydrocarbon production, and/or impede the flow of hydrocarbons through at least a portion of the treatment area being heated by circulating molten salt heaters.


When a leak forms in one or more portions of a conduit of a circulating molten salt system, coke may form and/or infiltrate in the conduit adjacent to the leak. Coke deposits in one or more conduits in a heater may lead to several problems (for example, hot spots and/or heater failure). In some embodiments, an oxidizing fluid may be provided to one or more portions of the conduit. Oxidizing fluid may include, for example, air. Oxidizing fluid may oxidize any coke which has formed in the conduit.


In some embodiments, oxidizing fluid may be mixed with the molten salt before the molten salt is circulated through the heater in the formation. Mixing air with the molten salt may inhibit any significant coke formation in the conduits. As shown, heater 201 may be coupled to heat transfer fluid circulation system 202 and may include inlet conduit 214, and outlet conduit 216. Heat transfer fluid circulation system 202 may provide heat transfer fluid mixed with oxidizing fluid to inlet conduit 214 of L-shaped heater 201. In some embodiments, oxidizing fluid may be provided to one or more conduits of a heater intermittently and/or as needed.


In some embodiments, liner 240 (see FIG. 3) may be used in a wellbore and/or be coupled to a heater to inhibit fluids from mixing with circulating molten salts. In some embodiments, liner 240 may inhibit hydrocarbons from mixing with a heat transfer fluid (for example, one or more molten salts). Liner 240 may include one or more materials that are chemically resistant to corrosive materials (for example, metal or ceramic based materials).


As shown in FIG. 3, liner 240 is positioned in a wellbore. In some embodiments, liner 240 may be placed in the wellbore or the wellbore may be coated with chemically resistant material prior to positioning heater 201. In some embodiments, the liner may be coupled to the circulating molten salt heater. In some embodiments, the liner may include a coating on either the inner and/or outer surface of one or more of the conduits forming a circulating molten salt heater. In some embodiments, the liner may include a conduit substantially surrounding at least a portion of the conduit. In some embodiments, piping includes a liner that is resistant to corrosion by the fluid.


In some embodiments, electrical conductivity may be used to assess the inception, existence, and/or location of leaks in the heater using heat transfer fluids such as molten salts. A resistance across one or more conduits of, for example, a conduit-in-conduit heater may be monitored for any changes. Changes in the monitored resistance may indicate the inception and/or worsening of a leak in the conduit. The conduits forming the conduit-in-conduit heater may include a void in the walls forming the conduits. The void in the walls forming the conduit may include a thermal insulation material positioned in the void. If a breach forms in the conduit walls, heat transfer fluid may enter through the breach leaking through to the other side. Some heat transfer fluids, for example molten salts, leaking through the breach in the conduit may conduct electricity creating a short across the conduit wall. The electrical short created by the leaking molten salt may then modify the measured resistance across the conduit wall in which the breach has occurred.


In some embodiments, the electrical resistance of at least one of the conduits of the conduit-in-conduit heaters may be assessed. A presence of a leak in at least one of the conduits may be assessed based on the assessed resistance. The electrical resistance may be assessed intermittently or on a continuous basis. The electrical resistance may be assessed for either one or both conduits of the conduit-in-conduit heater. FIG. 6 depicts a schematic representation of an embodiment of vertical conduit-in-conduit heater 201 for use with a heat transfer fluid circulation system for heating a portion of a formation (for example, hydrocarbon layer 220). The heat transfer fluid circulation system may provide heat transfer fluid 242 to inlet conduit 214 of heater 201. The heat transfer fluid circulation system may receive heat transfer fluid 242 from outlet conduit heat 216. One or more portions of conduits 214 and 216 may include insulation 244 positioned between the inner and outer walls of the conduits. Multiple breaches 246 may occur in conduits 214 and 216 through which heat transfer fluid 242 leaks.


In some embodiments, a location of a breach in the conduit may be assessed. The location may be assessed due to the fact that the relationship between the electrical resistance and the depth at which the breach has occurred is very linear as is demonstrated in FIGS. 7 and 8. FIG. 7 depicts a graphical representation of the relationship (line 248) of the electrical resistance of an inner conduit of a conduit-in-conduit heater over a depth at which a breach has occurred in the inner conduit of the conduit-in-conduit heater. FIG. 8 depicts a graphical representation of the relationship (line 250) of the electrical resistance of an outer conduit of a conduit-in-conduit heater over a depth at which a breach has occurred in the outer conduit of the conduit-in-conduit heater. This linear relationship may allow the approximate depth of a breach in a conduit to be assessed and therefore the approximate location of the breach in the conduit. Once the location of a breach is assessed, options for dealing with the breach may be determined.



FIG. 9 depicts a graphical representation of the relationship of the electrical resistance of an inner conduit of a conduit-in-conduit heater (line 252) and the salt block height (line 254) over an amount of leaked molten salt. FIG. 10 depicts a graphical representation of the relationship of the electrical resistance of an outer conduit of a conduit-in-conduit heater (line 256) and the salt block height (line 258) over an amount of leaked molten salt. As demonstrated in FIGS. 9 and 10 a small leak in one or more of the conduits in the conduit-in-conduit heater may be detected. For example, a molten salt leak of as little as 0.038 liters may be detected by monitoring the electrical resistance across a wall of the conduit. FIGS. 9 and 10 also demonstrate (lines 254 and 258) that even a relatively small leak will fill a relatively large portion of the annulus space of the conduit-in-conduit heater. For example, 0.038 liters of leaked molten salt may fill approximately 2.04 m of the inner conduit or approximately 0.76 m of the outer conduit.



FIG. 11 depicts a graphical representation of the relationship (line 260) of the electrical resistance of a conduit of a conduit-in-conduit heater once a breach forms over an average temperature of the molten salt. As FIG. 11 demonstrates, if a breach in one of the conduits of the conduit-in-conduit heater does occur the impact on the temperature is relatively small.


In some embodiments, a gas in combination with, for example, a gas detection system may be used to detect a breach, and subsequent leaks, in one or more conduits of a conduit-in-conduit heater. One or more gases may be dissolved in the heat transfer fluid, for example a molten salt. The gas may be dissolved in the molten salt before the molten salt is transferred to the conduit-in-conduit heater (for example, in a storage tank used to store the molten salt). The gas may be dissolved in the molten salt as the molten salt is injected in the heater. The dissolved gas may circulate through the heater along with the molten salt.


In some embodiments, one or more of the gases may include an inert gas (for example, nitrogen, argon, helium, or mixtures thereof). In some embodiments, the gas detection system may include a pressure transducer or a gas analyzer. A breach in a conduit of the heater may result in a leak of at least some of the circulating molten salts in the annulus space of the conduit. Once the molten salt leaks in the annular space of the conduit, at least some of the gas dissolved in the molten salt may be released from the molten salt in the annular space of the conduit. The annular space may be under reduced pressure (for example, in order to provide more insulation value) and reduced temperature. The reduced pressure of the annular space may further facilitate the release of the dissolved gas from any molten salts which have leaked in the annular space. Table 2 shows the solubility of several inert gases including helium, argon, and nitrogen in molten nitrates. Solubility of the gas in the salt may generally scale substantially linearly with partial pressure according to Henry's Law.













TABLE 2







T
kH
DH



[° C.]
[mol/ml bar]
[kJ/mol]





















He + NaNO3
332
1.86
13.4




391
2.32




441
2.80



Ar + NaNO3
331
0.64
15.8




410
0.90




440
1.04



N2 + NaNO3
331
0.50
16.0




390
0.64




449
0.84



He + LiNO3
270
1.51



Ar + LiNO3
273
0.91
14.0



N2 + LiNO3
277
0.73










The gas released from the heater may be detected by the gas detection system. The gas detection system may be coupled to one or more openings in fluid communication with the annular space of the conduit. Heaters currently in use may have preexisting openings which may be adapted to accommodate the gas detection system. Heaters currently in use may be retrofitted for the currently described leak detection system. FIG. 12 depicts a schematic representation of an embodiment of vertical heater 201 for use with a heat transfer fluid circulation system for heating a portion of a formation (for example, hydrocarbon layer 220) which is coupled to an inert gas based leak detection system (not depicted).


In some embodiments, the gas detection system may be coupled to a plurality of heaters. Once a heater has formed a breach in one of the conduits, the heater in question may be identified by sequentially isolating each heater coupled to the gas detection system. In some embodiments, a leak detection system based upon detection of gases in annular spaces may not be able to assist in assessing the location of the breach (as the electrical resistance leak detection system may allow). In some embodiments, a leak detection system based upon detection of gases in annular spaces may not be able to assist in assessing the formation of breaches in one or more conduits along any horizontal portions.


The use of circulating molten salts to heat underground hydrocarbon containing formations has many advantages relative to other known methods of heating a formation. It would be advantageous to be able to shut down a heating system using circulating molten salts in a more controlled manner. As opposed to other types of heating systems one cannot simply turn off a heat transfer fluid based heating system. Heat transfer fluid must be removed from the conduits of the conduit-in-conduit heaters during a shut-down procedure. When the heat transfer fluid is molten salt, removal of the salts presents different challenges. If the circulating pumps are turned off the molten salt will begin to cool and solidify clogging the conduits. Due to the fact that salts are typically soluble in one or more solvents, one strategy for removing the salt from the heater conduits is to flush the conduits with an aqueous solution. However, flushing the conduits with an aqueous solution may take anywhere from days to months depending on the temperature of the formation. In some embodiments, secondary fluids (for example, fluids produced during in situ heat treatment and/or conversion processes) may be used to flush out salts from the conduits. Due to the typically higher boiling point of secondary fluids, removing remaining salts from the conduits may be accomplished faster than using an aqueous solution (for example, from hours to days instead of days to months). In some embodiments, a “pig” may be used to push the salts out of the conduits. A pig may include any material or device which will fit within the confines of the conduit in conduit heaters such that the pig will move through the conduit while allowing a minimal amount of salt to pass around the pig as it is conveyed through the conduit. Typically a pig is conveyed through a conduit using hydraulic pressure. Using a pig to remove heat transfer fluids may reduce the shut-down time for the circulating molten salt heater to a time period measured in hours. Using a pig to shut-down the heater may include the use of additional specialized surface equipment (for example, modified wellheads, specially designed pigging system for high temperature applications). In certain embodiments, only U-shaped heaters may use a pig during a shut-down procedure. All three shut-down methods have different advantages.


Fluids may be used to shut-down circulating molten salt heaters. In some embodiments, compressed gases may be used to shut-down circulating molten salt heaters. Compressed gases may combine many of the different advantages of the other three shut-down methods.


Using compressed gases to shut-down circulating molten salt heaters may have several advantages over using aqueous solutions or secondary fluids. Using compressed gases may be faster, require fewer surfaces resources, more mobile, and allow for emergency shutdown relative to using aqueous solutions or secondary fluids. Using compressed gases to shut-down circulating molten salt heaters has several advantages over using a pig and compressed gases to convey the pig. Using compressed gases may require fewer surfaces resources and have fewer limitations on what types of heaters may be shut down relative to using a pig and compressed gases to convey the pig.


Some of the disadvantages of using compressed gases include reduced efficiency of salt displacement relative to using aqueous solutions or secondary fluids. In some embodiments, a displacement efficiency of the conveyance of molten salts moving through a conduit heater may be changed by varying the transient pressure profile. Using compressed gases to convey molten salts may result in different types of flow profiles. Varying transient pressure profiles may result in various pressure profiles including, for example, Taylor flow, dispersed bubble flow, churn flow, or annular flow. Taylor flow may be generally described as a two phase flow pattern such that the gas and molten salt move through the conduit as separate portions (except for a thin film of molten salts along the walls of the conduit between the walls and the portions of gases). Dispersed bubble flow may be generally described as a multiphase flow profile in which the compressed gas moves as small dispersed bubbles through the molten salt. Churn flow may be generally described as a multiphase flow profile (typically observed in near-vertical pipes) in which large, irregular slugs of gas move up the approximate center of the conduit, usually carrying droplets of molten salt with them. Most of the remaining molten salt flows up along the conduit walls. As opposed to Taylor flow, neither phase is continuous and the gas portions are relatively unstable, and take on large, elongated shapes. Churn flow may occur at relatively high gas velocity and as the gas velocity increases, it changes into annular flow. Annular flow may be generally described as a multiphase flow profile in which the compressed gas flows in the approximate center of the conduit, and the molten salt is substantially contained in a thin film on the conduit wall. Annular flow typically occurs at high velocities of the compressed gas, and may be observed in both vertical and horizontal wells.


Taylor flow may result in maximum displacement efficiency. In some embodiments, modifying the transient pressure profile of compressed gases may allow a maximum displacement efficiency (for example, a Taylor flow profile) to be achieved during shut-down of circulating molten salt heaters. FIGS. 13-17 depict graphical representations on the effect of varying the compressed air mass flow rate (from 1 lb/s (lines 262) to 2 lb/s (lines 264) to 10 lb/s (lines 266)) when using compressed gas to shut-down circulating molten salt heaters. FIG. 13 depicts a graphical representation of the relationship of the salt displacement efficiency over time for three different compressed air mass flow rates. FIG. 14 depicts a graphical representation of the relationship of the air volume flow rate at inlet of a conduit over time for the three different compressed air mass flow rates. FIG. 15 depicts a graphical representation of the relationship of the compressor discharge pressure over time for the three different compressed air mass flow rates. FIG. 16 depicts a graphical representation of the relationship of the salt volume fraction at outlet of a conduit over time for the three different compressed air mass flow rates. FIG. 17 depicts a graphical representation of the relationship of the salt volume flow rate at outlet of a conduit over time for the three different compressed air mass flow rates. FIGS. 13-17 show that higher compressed air mass flow rates are desirable as regards quickly and efficiently shutting down circulating molten salt heaters.



FIG. 18 depicts a schematic representation of an embodiment of compressed gas shut-down system 268. In some embodiments, compressed gas shut-down system 268 may include storage tanks 270A-C, heat exchangers 272, compressors 274, pumps 276, and piping 278A-B. Compressor 274 may compress gas to be used in shut-down system 268. Gases may include air, inert gases, byproducts of subsurface treatment processes, or mixtures thereof. Compressed gases are transferred from compressor 274 to storage tank 270A. Compressed air may be transferred from storage tank 270A using piping 278A to a first end of U-shaped circulating molten salt heaters 201 positioned in formation 212. The compressed air pushes molten salt out of a second end of U-shaped circulating molten salt heaters 201 through piping 278B to storage tank 270B. In some embodiments, storage tank 270B may include a surge vessel which functions to absorb process disturbance and/or momentary unexpected flow changes. The surge vessel may allow compressed air to escape while inhibiting removed salts from escaping. Molten salts may be conveyed from storage tank 270B through heat exchanger 272 to storage tank 270C. Salts in storage tanks 270C may be conveyed using pumps 276 to a second set of U-shaped circulating molten salt heaters to heat another formation and/or a second portion of the formation. Compressed gas shut-down system 268 depicted in FIG. 18 includes two independent systems. The two shut-down systems may be operated independently of each other.


In some embodiments, the molten salt includes a carbonate salt or a mixture of carbonate salts. Examples of different carbonate salts may include lithium, sodium, and/or potassium carbonate salts. The molten salt may include about 40% to about 60% by weight lithium carbonate, from about 20% to about 40% by weight sodium carbonate salt and about 20% to about 30% by weight potassium carbonate. In some embodiments, the molten salt is a eutectic mixture of carbonate salts. The eutectic carbonate salt mixture may be a mixture of carbonate salts having a melting point above 390° C., or from about 390° C. to about 700° C., or about 600° C. The composition of the carbonate molten salt may be varied to produce a carbonate molten salt having a desired melting point using for example, known phase diagrams for eutectic carbonate salts. For example, a carbonate molten salt containing 44% by weight lithium carbonate, 31% by weight sodium carbonate, and 25% by weight potassium carbonate has a melting point of about 395° C. Due to higher melting points, heat transfer from hot carbonate molten salts to the formation may be enhanced. Higher temperature may reduce the time necessary to heat the formation to a desired temperature.


In some in situ heat treatment process embodiments, a circulation system containing carbonate molten salts is used to heat the formation. Using the carbonate molten salt circulation system for in situ heat treatment of a hydrocarbon containing formation may reduce energy costs for treating the formation, reduce the need for leakage surveillance, and/or facilitate heating system installation.


In some embodiments, a carbonate molten salt is used to heat the formation. In some embodiments, a carbonate molten salt is provided to piping in a formation after the formation has been heated using a heat transfer fluid described herein. The use of a carbonate molten salt may allow the formation to be heated if piping in the formation develops leakage. In some embodiments, disposable piping may be used in the formation. In some embodiments, carbonate molten salts are used in circulation systems that have been abandoned. For example, a carbonate molten salt may be circulated in piping in a formation that has developed leaks.



FIG. 19 depicts a schematic representation of a system for heating a formation using carbonate molten salt. FIG. 20 depicts a schematic representation of an embodiment of a section of the formation after heating the formation with a carbonate molten salt over a period of time. FIG. 21 depicts a cross-sectional representation of an embodiment of a section of the formation after heating the formation with a carbonate molten salt. Piping may be positioned in the u-shaped wellbore to form u-shaped heater 201. Heater 201 is positioned in wellbores 222 and connected to heat transfer fluid circulation system 202 by piping. Wellbore 222 may be an open wellbore. In some embodiments, the vertical or overburden portions 280 of wellbore 222 are cemented with non-conductive cement or foam cement. Portions 282 of heater 201 in the overburden may be made of material chemically resistant to hot carbonate salts (for example, stainless steel tubing). Portion 286 of heater 201 may be manufactured from materials that degrade over time. For example, carbon steel, or alloys having a low chromium content. Carbonate molten salt 284 may enter one end of heater 201 and exit another end of the heater. Flow of hot carbonate molten salt 284 provides heat to at least a portion of hydrocarbon layer 220.


Over time contact of carbonate molten salt 284 may degrade or decompose parts of portion 286 of heater 201 to form openings in the portion (as shown in FIG. 20). In some embodiments, portion 286 may include perforations that may be opened or have coverings made of material that degrades over time that allows carbonate molten salt 284 to flow into hydrocarbon layer 220. As hot carbonate molten salt contacts cooler portions of hydrocarbon layer 220, the hot carbonate molten salt may cool and solidify. Formation of openings in portion 286 may allow carbonate molten salt 284 to flow into a second portion of hydrocarbon layer 220. As carbonate molten salt 284 enters a cooler section of the formation, the carbonate molten salt may become solid or partially solidify. The solidified carbonate molten salt may liquefy or melt when contacted with new hot molten carbonate salt flowing through heater 201. Melting of the solid molten carbonate salt may move more carbonate molten salt into hydrocarbon layer 220. The cycle of solidification and melting of the carbonate molten salt may create permeable heater 290 that surrounds portion 286 of heater 201, (as shown in FIG. 21). Permeable heater 290 may have a diameter at least about 1 diameter or about 2 diameters greater than portion 286 of heater 201. Formation of permeable heater 290 in situ may allow the carbonate molten salt flow through the permeable heater and heat additional portions of hydrocarbon layer 220. The ability to heat additional portion of hydrocarbon layer 220 with a permeable heater may reduce the amount of heaters required and/or time necessary to heat the formation.


In some embodiments, permeability or injectivity in a hydrocarbon containing formation is created by selectively fracturing portions of the formation. A solid salt composition may be injected into a section of the formation (for example, a lithium/sodium/potassium nitrate salts and/or lithium/sodium/potassium carbonate salts). In some embodiments, the solid salt composition is moved through the formation using a gas, for example, carbon dioxide, or hydrocarbon gas. In some embodiments, the solid salt composition may be provided to the formation as an aqueous slurry. Heat may be provided from one or more heaters to heat the portion to about a melting point of the salt. The heaters may be temperature limited heaters. As the solid salt composition becomes molten or liquid, the pressure in the formation may increase from expansion of the melting solid salt composition. The expansion pressure may be at a pressure effective to fracture the formation, but below the fracture pressure of the overburden. Fracturing of the section may increase permeability of the formation. In some embodiments, at least a portion of the heated solid salt compositions contacts at least some hydrocarbons causes an increase in pressure in the section and create fractures in the formation.


The molten salt may move through the formation towards cooler portions of the formation and solidify. In some embodiments, heaters may be positioned in some of the fractures in the section and heat is provided to a second section of the formation. In some embodiments, heat from the heaters in the fractures may melt or liquefy the solid salt composition and more fractures may be formed in the formation. In some embodiments, the heaters melt the molten salt and heat from the molten salt is transferred to the formation. In some embodiments, fluid is injected into at least some of fractures formed in the section. Use of molten salts to increase permeability in formations may allow heating of relatively shallow formations with low overburden fracture pressures.


It is to be understood the invention is not limited to particular systems described which may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. As used in this specification, the singular forms “a”, “an” and “the” include plural referents unless the content clearly indicates otherwise. Thus, for example, reference to “a core” includes a combination of two or more cores and reference to “a material” includes mixtures of materials.


In this patent, certain U.S. patents and U.S. patent applications have been incorporated by reference. The text of such U.S. patents and U.S. patent applications is, however, only incorporated by reference to the extent that no conflict exists between such text and the other statements and drawings set forth herein. In the event of such conflict, then any such conflicting text in such incorporated by reference U.S. patents and U.S. patent applications is specifically not incorporated by reference in this patent.


Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims.

Claims
  • 1. A method of treating a subsurface formation, comprising: circulating a heated carbonate molten salt through at least one conduit of a conduit-in-conduit heater positioned in a wellbore located in the formation;heating hydrocarbons in at least a portion of the formation with heat from the circulating heated carbonate molten salt, wherein the hydrocarbons are heated to a mobilization temperature of the hydrocarbons; andproducing at least some of the heated hydrocarbons from the formation.
  • 2. The method of claim 1, wherein the heated carbonate molten salt comprises sodium, potassium, and lithium carbonate salts.
  • 3. The method of claim 1, wherein the heated carbonate molten salt has a melting point of at least 390° C.
  • 4. The method of claim 1, wherein the heated carbonate molten salt has a melting point of about 600° C.
  • 5. The method of claim 1, wherein the heated carbonate molten salt comprises a eutectic mixture of sodium, potassium and lithium carbonate salts.
  • 6. The method of claim 1, further comprising allowing at least a portion of the heated carbonate molten salt to flow through openings in the conduit-in-conduit heater and into the formation.
  • 7. The method of claim 6, wherein the openings in the conduit-in-conduit heater are formed by degradation over time of portions of the conduit-in-conduit heater by the heated carbonate molten salt.
  • 8. The method of claim 6, wherein the openings in the conduit-in-conduit heater comprise coverings that degrade over time in the presence of the heated carbonate molten salt.
  • 9. The method of claim 1, wherein the wellbore comprises an open wellbore.
  • 10. A method of treating a subsurface formation, comprising: circulating a heated carbonate molten salt through at least one conduit of a conduit-in-conduit heater positioned in a wellbore located in the formation;heating hydrocarbons in at least a first portion of the formation with heat from the circulating heated carbonate molten salt, wherein the hydrocarbons are heated to a mobilization temperature of the hydrocarbons;allowing at least a portion of the carbonate molten salt to flow through openings in the conduit-in-conduit heater and into a second portion of the formation;allowing at least some carbonate molten salt in the second portion to cool and at least partially solidify in the second portion, wherein the solidified carbonate molten salt forms a permeable heater in the second portion that surrounds a portion of the conduit-in-conduit heater;providing at least some additional heated molten carbonate salt through the permeable heater to heat at least one additional portion of the formation, wherein the at least one additional portion is adjacent the permeable heater; andproducing at least some of the heated hydrocarbons from the formation.
  • 11. The method of claim 10, wherein the heated carbonate molten salt has a melting point of at least 390° C.
  • 12. The method of claim 10, further comprising forming the openings in the conduit-in-conduit heater by degrading portions of the conduit-in-conduit heater with the heated carbonate molten salt over time.
  • 13. The method of claim 10, wherein the openings in the conduit-in-conduit heater comprise openings with coverings that degrade over time in the presence of the heated carbonate molten salt.
  • 14. The method of claim 10, wherein the permeable heater allows molten carbonate salt to flow through the permeable heater.
  • 15. The method of claim 10, wherein the permeable heater has a diameter greater than a diameter of the conduit-in-conduit heater.
  • 16. The method of claim 10, wherein the permeable heater has a diameter of about 2 times a diameter of the conduit-in-conduit heater.
  • 17. The method of claim 10, wherein the conduit-in-conduit heater comprises an abandoned circulation system located in the formation.
  • 18. The method of claim 10, wherein the permeable heater is formed by performing a cycle of: allowing at least some molten carbonate salt to cool and at least partially solidify in the second portion;providing additional heated molten carbonate salt into the second portion to melt at least some of the solidified molten carbonate salt; andallowing at least some of the melted molten carbonate salt to cool and solidify in the second portion.
  • 19. The method of claim 10, wherein the wellbore comprises an open wellbore.
PRIORITY CLAIM

This patent application is a continuation of U.S. patent application Ser. No. 14/160,031 entitled “LEAK DETECTION IN CIRCULATED FLUID SYSTEMS FOR HEATING SUBSURFACE FORMATIONS” to Nguyen filed on Apr. 8, 2011, which is a divisional of U.S. patent application Ser. No. 13/083,246 (now U.S. Pat. No. 8,631,866 issued on Jan. 21, 2014) entitled “LEAK DETECTION IN CIRCULATED FLUID SYSTEMS FOR HEATING SUBSURFACE FORMATIONS” to Nguyen filed on Apr. 8, 2011, which claims priority to U.S. Provisional Patent No. 61/322,643 entitled “CIRCULATED FLUID SYSTEMS FOR HEATING SUBSURFACE FORMATIONS” to Nguyen et al. filed on Apr. 9, 2010; U.S. Provisional Patent No. 61/322,513 entitled “TREATMENT METHODOLOGIES FOR SUBSURFACE HYDROCARBON CONTAINING FORMATIONS” to Bass et al. filed on Apr. 9, 2010; and International Patent Application No. PCT/US11/31553 entitled “LEAK DETECTION IN CIRCULATED FLUID SYSTEMS FOR HEATING SUBSURFACE FORMATIONS” to Nguyen filed on Apr. 7, 2011, all of which are incorporated by reference in their entirety. This patent application incorporates by reference in its entirety each of U.S. Pat. No. 6,688,387 to Wellington et al.; U.S. Pat. No. 6,991,036 to Sumnu-Dindoruk et al.; U.S. Pat. No. 6,698,515 to Karanikas et al.; U.S. Pat. No. 6,880,633 to Wellington et al.; U.S. Pat. No. 6,782,947 to de Rouffignac et al.; U.S. Pat. No. 6,991,045 to Vinegar et al.; U.S. Pat. No. 7,073,578 to Vinegar et al.; U.S. Pat. No. 7,121,342 to Vinegar et al.; U.S. Pat. No. 7,320,364 to Fairbanks; U.S. Pat. No. 7,527,094 to McKinzie et al.; U.S. Pat. No. 7,584,789 to Mo et al.; U.S. Pat. No. 7,533,719 to Hinson et al.; U.S. Pat. No. 7,562,707 to Miller; U.S. Pat. No. 7,841,408 to Vinegar et al.; and U.S. Pat. No. 7,866,388 to Bravo; U.S. Patent Application Publication Nos. 2010-0071903 to Prince-Wright et al. and 2010-0096137 to Nguyen et al.

US Referenced Citations (1149)
Number Name Date Kind
48994 Parry Jul 1865 A
94813 Dickey Sep 1885 A
326439 McEachen Sep 1885 A
345586 Hall Jul 1886 A
760304 Butler May 1904 A
1269747 Rogers Jun 1918 A
1342741 Day Jun 1920 A
1457479 Wolcott Jun 1923 A
1510655 Clark Jun 1924 A
1634236 Ranney Jun 1927 A
1646599 Schaefer Oct 1927 A
1660818 Ranney Feb 1928 A
1666488 Crawshaw Apr 1928 A
1681523 Downey et al. Aug 1928 A
1811560 Ranney Jun 1931 A
1913395 Karrick Jun 1933 A
2144144 Crickmer Jan 1939 A
2244255 Looman Jun 1941 A
2244256 Looman Jun 1941 A
2319702 Moon May 1943 A
2365591 Ranney Dec 1944 A
2381256 Callaway Aug 1945 A
2390770 Barton et al. Dec 1945 A
2423674 Agren Jul 1947 A
2444755 Steffen Jul 1948 A
2466945 Greene Apr 1949 A
2472445 Sprong Jun 1949 A
2481051 Uren Sep 1949 A
2484063 Ackley Oct 1949 A
2497868 Dalin Feb 1951 A
2548360 Germain Apr 1951 A
2593477 Newman et al. Apr 1952 A
2595979 Pevere et al. May 1952 A
2623596 Whorton et al. Dec 1952 A
2630306 Evans Mar 1953 A
2630307 Martin Mar 1953 A
2634961 Ljungstrom Apr 1953 A
2642943 Smith et al. Jun 1953 A
2670802 Ackley Mar 1954 A
2685930 Albaugh Aug 1954 A
2695163 Pearce et al. Nov 1954 A
2703621 Ford Mar 1955 A
2714930 Carpenter Aug 1955 A
2732195 Ljungstrom Jan 1956 A
2734579 Elkins Feb 1956 A
2743906 Coyle May 1956 A
2757739 Douglas et al. Aug 1956 A
2759877 Eron Aug 1956 A
2761663 Gerdetz Sep 1956 A
2771954 Jenks et al. Nov 1956 A
2777679 Ljungstrom Jan 1957 A
2780449 Fisher et al. Feb 1957 A
2780450 Ljungstrom Feb 1957 A
2786660 Alleman Mar 1957 A
2789805 Ljungstrom Apr 1957 A
2793696 Morse May 1957 A
2794504 Carpenter Jun 1957 A
2799341 Maly Jul 1957 A
2801089 Scott, Jr. Jul 1957 A
2803305 Behning et al. Aug 1957 A
2804149 Kile Aug 1957 A
2819761 Popham et al. Jan 1958 A
2825408 Watson Mar 1958 A
2841375 Salomonsson Jul 1958 A
2857002 Pevere et al. Oct 1958 A
2647306 Stewart et al. Dec 1958 A
2862558 Dixon Dec 1958 A
2889882 Schleicher Jun 1959 A
2890754 Hoffstrom et al. Jun 1959 A
2890755 Eurenius et al. Jun 1959 A
2902270 Salomonsson et al. Sep 1959 A
2906337 Henning Sep 1959 A
2906340 Herzog Sep 1959 A
2914309 Salomonsson Nov 1959 A
2923535 Ljungstrom Feb 1960 A
2932352 Stegemeier Apr 1960 A
2939689 Ljungstrom Jun 1960 A
2942223 Lennox et al. Jun 1960 A
2954826 Sievers Oct 1960 A
2958519 Hurley Nov 1960 A
2969226 Huntington Jan 1961 A
2970826 Woodruff Feb 1961 A
2974937 Kiel Mar 1961 A
2991046 Yahn Jul 1961 A
2994376 Crawford et al. Aug 1961 A
2997105 Campion et al. Aug 1961 A
2998457 Paulsen Aug 1961 A
3004601 Bodine Oct 1961 A
3004603 Rogers et al. Oct 1961 A
3007521 Trantham et al. Nov 1961 A
3010513 Gerner Nov 1961 A
3010516 Schleicher Nov 1961 A
3016053 Medovick Jan 1962 A
3017168 Carr Jan 1962 A
3026940 Spitz Mar 1962 A
3032102 Parker May 1962 A
3036632 Koch et al. May 1962 A
3044545 Tooke Jul 1962 A
3048221 Tek Aug 1962 A
3050123 Scott Aug 1962 A
3051235 Banks Aug 1962 A
3057404 Berstrom Oct 1962 A
3061009 Shirley Oct 1962 A
3062282 Schleicher Nov 1962 A
3095031 Eurenius et al. Jun 1963 A
3097690 Terwilliger et al. Jul 1963 A
3105545 Prats et al. Oct 1963 A
3106244 Parker Oct 1963 A
3110345 Reed et al. Nov 1963 A
3113619 Reichle Dec 1963 A
3113620 Hemminger Dec 1963 A
3113623 Krueger Dec 1963 A
3114417 McCarthy Dec 1963 A
3116792 Purre Jan 1964 A
3120264 Barron Feb 1964 A
3127935 Poettmann et al. Apr 1964 A
3127936 Eurenius Apr 1964 A
3131763 Kunetka et al. May 1964 A
3132692 Marx et al. May 1964 A
3137347 Parker Jun 1964 A
3138203 Weiss et al. Jun 1964 A
3139928 Broussard Jul 1964 A
3142336 Doscher Jul 1964 A
3149670 Grant Sep 1964 A
3149672 Orkiszewski et al. Sep 1964 A
3150715 Dietz Sep 1964 A
3163745 Boston Dec 1964 A
3164207 Thessen et al. Jan 1965 A
3165154 Santourian Jan 1965 A
3170842 Kehler Feb 1965 A
3181613 Krueger May 1965 A
3182721 Hardy May 1965 A
3183675 Schroeder May 1965 A
3191679 Miller Jun 1965 A
3205942 Sandberg Sep 1965 A
3205944 Walton Sep 1965 A
3205946 Prats et al. Sep 1965 A
3207220 Williams Sep 1965 A
3208531 Tamplen Sep 1965 A
3209825 Alexander et al. Oct 1965 A
3221505 Goodwin et al. Dec 1965 A
3221811 Prats Dec 1965 A
3233668 Hamilton et al. Feb 1966 A
3237689 Justheim Mar 1966 A
3241611 Dougan Mar 1966 A
3246695 Robinson Apr 1966 A
3250327 Crider May 1966 A
3267680 Schlumberger Aug 1966 A
3272261 Morse Sep 1966 A
3273640 Huntington Sep 1966 A
3275076 Sharp Sep 1966 A
3284281 Thomas Nov 1966 A
3285335 Reistle, Jr. Nov 1966 A
3288648 Jones Nov 1966 A
3294167 Vogel Dec 1966 A
3302707 Slusser Feb 1967 A
3303883 Slusser Feb 1967 A
3310109 Marx et al. Mar 1967 A
3316344 Kidd et al. Apr 1967 A
3316962 Lange May 1967 A
3332480 Parrish Jul 1967 A
3338306 Cook Aug 1967 A
3342258 Prats Sep 1967 A
3342267 Cotter et al. Sep 1967 A
3346044 Slusser Oct 1967 A
3349845 Holbert et al. Oct 1967 A
3352355 Putman Nov 1967 A
3358756 Vogel Dec 1967 A
3362751 Tinlin Jan 1968 A
3372754 McDonald Mar 1968 A
3379248 Strange Apr 1968 A
3380913 Henderson Apr 1968 A
3386508 Bielstein et al. Jun 1968 A
3389975 Van Nostrand Jun 1968 A
3399623 Creed Sep 1968 A
3410796 Hull Nov 1968 A
3410977 Ando Nov 1968 A
3412011 Lindsay Nov 1968 A
3434541 Cook et al. Mar 1969 A
3455383 Prats et al. Jul 1969 A
3465819 Dixon Sep 1969 A
3477058 Vedder et al. Nov 1969 A
3480082 Gilliland Nov 1969 A
3485300 Engle Dec 1969 A
3492463 Wringer et al. Jan 1970 A
3501201 Closmann et al. Mar 1970 A
3502372 Prats Mar 1970 A
3513913 Bruist May 1970 A
3515213 Prats Jun 1970 A
3515837 Ando Jun 1970 A
3526095 Peck Sep 1970 A
3528501 Parker Sep 1970 A
3529682 Coyne et al. Sep 1970 A
3537528 Herce et al. Nov 1970 A
3542131 Walton et al. Nov 1970 A
3547192 Claridge et al. Dec 1970 A
3547193 Gill Dec 1970 A
3554285 Meldau Jan 1971 A
3562401 Long Feb 1971 A
3565171 Closmann Feb 1971 A
3578080 Closmann May 1971 A
3580987 Priaroggia May 1971 A
3593789 Prats Jul 1971 A
3595082 Miller Jul 1971 A
3599714 Messman et al. Aug 1971 A
3605890 Holm Sep 1971 A
3614986 Gill Oct 1971 A
3617471 Schlinger et al. Nov 1971 A
3618663 Needham Nov 1971 A
3629551 Ando Dec 1971 A
3647358 Greenberg Mar 1972 A
3661423 Garret May 1972 A
3675715 Speller, Jr. Jul 1972 A
3679812 Owens Jul 1972 A
3680633 Bennett Aug 1972 A
3700280 Papadopoulos et al. Oct 1972 A
3757860 Pritchett Sep 1973 A
3759328 Ueber et al. Sep 1973 A
3759574 Beard Sep 1973 A
3761599 Beatty Sep 1973 A
3766982 Justheim Oct 1973 A
3770398 Abraham et al. Nov 1973 A
3779602 Beard et al. Dec 1973 A
3794113 Strange et al. Feb 1974 A
3794116 Higgins Feb 1974 A
3804169 Closmann Apr 1974 A
3804172 Closmann et al. Apr 1974 A
3809159 Young et al. May 1974 A
3812913 Hardy et al. May 1974 A
3853185 Dahl et al. Dec 1974 A
3881551 Terry et al. May 1975 A
3882941 Pelofsky May 1975 A
3892270 Lindquist Jul 1975 A
3893918 Favret, Jr. Jul 1975 A
3894769 Tham et al. Jul 1975 A
3907045 Dahl et al. Sep 1975 A
3922148 Child Nov 1975 A
3924680 Terry Dec 1975 A
3933447 Pasini, III et al. Jan 1976 A
3941421 Burton, III et al. Mar 1976 A
3943160 Farmer, III et al. Mar 1976 A
3946812 Gale et al. Mar 1976 A
3947683 Schultz et al. Mar 1976 A
3948319 Pritchett Apr 1976 A
3948755 McCollum et al. Apr 1976 A
3950029 Timmins Apr 1976 A
3952802 Terry Apr 1976 A
3954140 Hendrick May 1976 A
3972372 Fisher et al. Aug 1976 A
3973628 Colgate Aug 1976 A
3986349 Egan Oct 1976 A
3986556 Haynes Oct 1976 A
3986557 Striegler et al. Oct 1976 A
3987851 Tham Oct 1976 A
3992474 Sobel Nov 1976 A
3993132 Cram et al. Nov 1976 A
3994340 Anderson et al. Nov 1976 A
3994341 Anderson et al. Nov 1976 A
3999607 Pennington et al. Dec 1976 A
4005752 Cha Feb 1977 A
4006778 Redford et al. Feb 1977 A
4008762 Fisher et al. Feb 1977 A
4010800 Terry Mar 1977 A
4014575 French et al. Mar 1977 A
4016239 Fenton Apr 1977 A
4018280 Daviduk et al. Apr 1977 A
4019575 Pisio et al. Apr 1977 A
4026357 Redford May 1977 A
4029360 French Jun 1977 A
4031956 Terry Jun 1977 A
4037655 Carpenter Jul 1977 A
4037658 Anderson Jul 1977 A
4042026 Pusch et al. Aug 1977 A
4043393 Fisher et al. Aug 1977 A
4048637 Jacomini Sep 1977 A
4049053 Fisher et al. Sep 1977 A
4057293 Garrett Nov 1977 A
4059308 Pearson et al. Nov 1977 A
4064943 Cavin Dec 1977 A
4065183 Hill et al. Dec 1977 A
4067390 Camacho et al. Jan 1978 A
4069868 Terry Jan 1978 A
4076761 Chang et al. Feb 1978 A
4077471 Shupe et al. Mar 1978 A
4083604 Bohn et al. Apr 1978 A
4084637 Todd Apr 1978 A
4085803 Butler Apr 1978 A
4087130 Garrett May 1978 A
4089372 Terry May 1978 A
4089373 Reynolds et al. May 1978 A
4089374 Terry May 1978 A
4091869 Hoyer May 1978 A
4093025 Terry Jun 1978 A
4093026 Ridley Jun 1978 A
4096163 Chang et al. Jun 1978 A
4099567 Terry Jul 1978 A
4114688 Terry Sep 1978 A
4119349 Albulescu et al. Oct 1978 A
4125159 Vann Nov 1978 A
4130575 Jorn et al. Dec 1978 A
4133825 Stroud et al. Jan 1979 A
4138442 Chang et al. Feb 1979 A
4140180 Bridges et al. Feb 1979 A
4140181 Ridley et al. Feb 1979 A
4144935 Bridges et al. Mar 1979 A
4148359 Laumbach et al. Apr 1979 A
4151068 McCollum et al. Apr 1979 A
4151877 French May 1979 A
RE30019 Lindquist Jun 1979 E
4158467 Larson et al. Jun 1979 A
4162707 Yan Jul 1979 A
4169506 Berry Oct 1979 A
4183405 Magnie Jan 1980 A
4184548 Ginsburgh et al. Jan 1980 A
4185692 Terry Jan 1980 A
4186801 Madgavkar et al. Feb 1980 A
4193451 Dauphine Mar 1980 A
4197911 Anada Apr 1980 A
4199024 Rose et al. Apr 1980 A
4199025 Carpenter Apr 1980 A
4216079 Newcombe Aug 1980 A
4228853 Harvey et al. Oct 1980 A
4228854 Sacuta Oct 1980 A
4234230 Weichman Nov 1980 A
4243101 Grupping Jan 1981 A
4243511 Allred Jan 1981 A
4248306 Van Huisen et al. Feb 1981 A
4250230 Terry Feb 1981 A
4250962 Madgavkar et al. Feb 1981 A
4252191 Pusch et al. Feb 1981 A
4256945 Carter et al. Mar 1981 A
4258955 Habib, Jr. Mar 1981 A
4260192 Shafer Apr 1981 A
4265307 Elkins May 1981 A
4273188 Vogel et al. Jun 1981 A
4274487 Hollingsworth et al. Jun 1981 A
4277416 Grant Jul 1981 A
4282587 Silverman Aug 1981 A
4285547 Weichman Aug 1981 A
RE30738 Bridges et al. Sep 1981 E
4299086 Madgavkar et al. Nov 1981 A
4299285 Tsai et al. Nov 1981 A
4303126 Blevins Dec 1981 A
4305463 Zakiewicz Dec 1981 A
4306621 Boyd et al. Dec 1981 A
4324292 Jacobs et al. Apr 1982 A
4344483 Fisher et al. Aug 1982 A
4353418 Hoekstra et al. Oct 1982 A
4359687 Vinegar et al. Nov 1982 A
4363361 Madgavkar et al. Dec 1982 A
4366668 Madgavkar et al. Jan 1983 A
4366864 Gibson et al. Jan 1983 A
4378048 Madgavkar et al. Mar 1983 A
4380930 Podhrasky et al. Apr 1983 A
4381641 Madgavkar et al. May 1983 A
4382469 Bell et al. May 1983 A
4384613 Owen et al. May 1983 A
4384614 Justheim May 1983 A
4385661 Fox May 1983 A
4390067 Willman Jun 1983 A
4390973 Rietsch Jun 1983 A
4396062 Iskander Aug 1983 A
4397732 Hoover et al. Aug 1983 A
4398151 Vinegar et al. Aug 1983 A
4399866 Dearth Aug 1983 A
4401099 Collier Aug 1983 A
4401162 Osborne Aug 1983 A
4401163 Elkins Aug 1983 A
4407973 van Dijk et al. Oct 1983 A
4409090 Hanson et al. Oct 1983 A
4410042 Shu Oct 1983 A
4412124 Kobayashi Oct 1983 A
4412585 Bouck Nov 1983 A
4415034 Bouck Nov 1983 A
4417782 Clarke et al. Nov 1983 A
4418752 Boyer et al. Dec 1983 A
4423311 Varney, Sr. Dec 1983 A
4425967 Hoekstra Jan 1984 A
4428700 Lennemann Jan 1984 A
4429745 Cook Feb 1984 A
4437519 Cha et al. Mar 1984 A
4439307 Jaquay et al. Mar 1984 A
4440224 Kreinin et al. Apr 1984 A
4442896 Reale et al. Apr 1984 A
4444255 Geoffrey et al. Apr 1984 A
4444258 Kalmar Apr 1984 A
4445574 Vann May 1984 A
4446917 Todd May 1984 A
4448251 Stine May 1984 A
4449594 Sparks May 1984 A
4452491 Seglin et al. Jun 1984 A
4455215 Jarrott et al. Jun 1984 A
4456065 Heim et al. Jun 1984 A
4457365 Kasevich et al. Jul 1984 A
4457374 Hoekstra et al. Jul 1984 A
4458757 Bock et al. Jul 1984 A
4458767 Hoehn, Jr. Jul 1984 A
4460044 Porter Jul 1984 A
4463988 Bouck et al. Aug 1984 A
4474236 Kellett Oct 1984 A
4474238 Gentry et al. Oct 1984 A
4479541 Wang Oct 1984 A
4485868 Sresty et al. Dec 1984 A
4485869 Sresty et al. Dec 1984 A
4487257 Dauphine Dec 1984 A
4489782 Perkins Dec 1984 A
4491179 Pirson et al. Jan 1985 A
4498531 Vrolyk Feb 1985 A
4498535 Bridges Feb 1985 A
4499209 Hoek et al. Feb 1985 A
4501326 Edmunds Feb 1985 A
4501445 Gregoli Feb 1985 A
4513816 Hubert Apr 1985 A
4518548 Yarbrough May 1985 A
4524826 Savage Jun 1985 A
4524827 Bridges et al. Jun 1985 A
4530401 Hartman et al. Jul 1985 A
4537252 Puri Aug 1985 A
4538682 McManus et al. Sep 1985 A
4540882 Vinegar et al. Sep 1985 A
4542648 Vinegar et al. Sep 1985 A
4544478 Kelley Oct 1985 A
4545435 Bridges et al. Oct 1985 A
4549396 Garwood et al. Oct 1985 A
4552214 Forgac et al. Nov 1985 A
4570715 Van Meurs et al. Feb 1986 A
4571491 Vinegar et al. Feb 1986 A
4572299 Van Egmond et al. Feb 1986 A
4573530 Audeh et al. Mar 1986 A
4576231 Dowling et al. Mar 1986 A
4577503 Imaino et al. Mar 1986 A
4577690 Medlin Mar 1986 A
4577691 Huang et al. Mar 1986 A
4583046 Vinegar et al. Apr 1986 A
4583242 Vinegar et al. Apr 1986 A
4585066 Moore et al. Apr 1986 A
4592423 Savage et al. Jun 1986 A
4597441 Ware et al. Jul 1986 A
4597444 Hutchinson Jul 1986 A
4598392 Pann Jul 1986 A
4598770 Shu et al. Jul 1986 A
4598772 Holmes Jul 1986 A
4605489 Madgavkar Aug 1986 A
4605680 Beuther et al. Aug 1986 A
4608818 Goebel et al. Sep 1986 A
4609041 Magda Sep 1986 A
4613754 Vinegar et al. Sep 1986 A
4616705 Stegemeier et al. Oct 1986 A
4620592 Perkins Nov 1986 A
4623401 Derbyshire et al. Nov 1986 A
4623444 Che et al. Nov 1986 A
4626665 Fort, III Dec 1986 A
4634187 Huff et al. Jan 1987 A
4635197 Vinegar et al. Jan 1987 A
4637464 Forgac et al. Jan 1987 A
4640352 Van Meurs et al. Feb 1987 A
4640353 Schuh Feb 1987 A
4643256 Dilgren et al. Feb 1987 A
4644283 Vinegar et al. Feb 1987 A
4645906 Yagnik et al. Feb 1987 A
4651825 Wilson Mar 1987 A
4658215 Vinegar et al. Apr 1987 A
4662437 Renfro et al. May 1987 A
4662438 Taflove et al. May 1987 A
4662439 Puri May 1987 A
4662443 Puri et al. May 1987 A
4663711 Vinegar et al. May 1987 A
4669542 Venkatesan Jun 1987 A
4671102 Vinegar et al. Jun 1987 A
4682652 Huang et al. Jul 1987 A
4691771 Ware et al. Sep 1987 A
4694907 Stahl et al. Sep 1987 A
4695713 Krumme Sep 1987 A
4696345 Hsueh Sep 1987 A
4698149 Mitchell Oct 1987 A
4698583 Sandberg Oct 1987 A
4701587 Carter et al. Oct 1987 A
4704514 Van Edmond et al. Nov 1987 A
4706751 Gondouin Nov 1987 A
4716960 Eastlund et al. Jan 1988 A
4717814 Krumme Jan 1988 A
4719423 Vinegar et al. Jan 1988 A
4728892 Vinegar et al. Mar 1988 A
4730162 Vinegar et al. Mar 1988 A
4733057 Stanzel et al. Mar 1988 A
4734115 Howard et al. Mar 1988 A
4743854 Vinegar et al. May 1988 A
4744245 White May 1988 A
4752673 Krumme Jun 1988 A
4756367 Puri et al. Jul 1988 A
4762425 Shakkottai et al. Aug 1988 A
4766958 Faecke Aug 1988 A
4769602 Vinegar et al. Sep 1988 A
4769606 Vinegar et al. Sep 1988 A
4772634 Farooque Sep 1988 A
4776638 Hahn Oct 1988 A
4778586 Bain et al. Oct 1988 A
4785163 Sandberg Nov 1988 A
4787452 Jennings, Jr. Nov 1988 A
4793409 Bridges et al. Dec 1988 A
4794226 Derbyshire Dec 1988 A
4808925 Baird Feb 1989 A
4814587 Carter Mar 1989 A
4815791 Schmidt et al. Mar 1989 A
4817711 Jeambey Apr 1989 A
4818370 Gregoli et al. Apr 1989 A
4821798 Bridges et al. Apr 1989 A
4823890 Lang Apr 1989 A
4827761 Vinegar et al. May 1989 A
4828031 Davis May 1989 A
4842448 Koerner et al. Jun 1989 A
4848460 Johnson, Jr. et al. Jul 1989 A
4848924 Nuspl et al. Jul 1989 A
4849611 Whitney et al. Jul 1989 A
4856341 Vinegar et al. Aug 1989 A
4856587 Nielson Aug 1989 A
4860544 Krieg et al. Aug 1989 A
4866983 Vinegar et al. Sep 1989 A
4883582 McCants Nov 1989 A
4884455 Vinegar et al. Dec 1989 A
4885080 Brown et al. Dec 1989 A
4886118 Van Meurs et al. Dec 1989 A
4893504 OMeara, Jr. et al. Jan 1990 A
4895206 Price Jan 1990 A
4912971 Jeambey Apr 1990 A
4913065 Hemsath Apr 1990 A
4926941 Glandt et al. May 1990 A
4927857 McShea, III et al. May 1990 A
4928765 Nielson May 1990 A
4940095 Newman Jul 1990 A
4974425 Krieg et al. Dec 1990 A
4982786 Jennings, Jr. Jan 1991 A
4983319 Gregoli et al. Jan 1991 A
4984594 Vinegar et al. Jan 1991 A
4985313 Penneck et al. Jan 1991 A
4987368 Vinegar Jan 1991 A
4994093 Wetzel et al. Feb 1991 A
5008085 Bain et al. Apr 1991 A
5011329 Nelson et al. Apr 1991 A
5020596 Hemsath Jun 1991 A
5027896 Anderson Jul 1991 A
5032042 Schuring et al. Jul 1991 A
5041210 Merril, Jr. et al. Aug 1991 A
5042579 Glandt et al. Aug 1991 A
5043668 Vail, III Aug 1991 A
5046559 Glandt Sep 1991 A
5046560 Teletzke et al. Sep 1991 A
5050386 Krieg et al. Sep 1991 A
5054551 Duerksen Oct 1991 A
5059303 Taylor et al. Oct 1991 A
5060287 Van Egmond Oct 1991 A
5060726 Glandt et al. Oct 1991 A
5064006 Waters et al. Nov 1991 A
5065501 Henschen et al. Nov 1991 A
5065818 Van Egmond Nov 1991 A
5066852 Willbanks Nov 1991 A
5070533 Bridges et al. Dec 1991 A
5073625 Derbyshire Dec 1991 A
5082054 Kiamanesh Jan 1992 A
5082055 Hemsath Jan 1992 A
5085276 Rivas et al. Feb 1992 A
5097903 Wilensky Mar 1992 A
5099918 Bridges et al. Mar 1992 A
5103909 Morgenthaler et al. Apr 1992 A
5103920 Patton Apr 1992 A
5109928 McCants May 1992 A
5126037 Showalter Jun 1992 A
5133406 Puri Jul 1992 A
5145003 Duerksen Sep 1992 A
5152341 Kaservich Oct 1992 A
5168927 Stegemeier et al. Dec 1992 A
5182427 McGaffigan Jan 1993 A
5182792 Goncalves Jan 1993 A
5189283 Carl, Jr. et al. Feb 1993 A
5190405 Vinegar et al. Mar 1993 A
5193618 Loh et al. Mar 1993 A
5201219 Bandurski et al. Apr 1993 A
5207273 Cates et al. May 1993 A
5209987 Penneck et al. May 1993 A
5211230 Ostapovich et al. May 1993 A
5217075 Wittrisch Jun 1993 A
5217076 Masek Jun 1993 A
5226961 Nahm et al. Jul 1993 A
5229583 van Egmond et al. Jul 1993 A
5236039 Edelstein et al. Aug 1993 A
5246071 Chu Sep 1993 A
5255740 Talley Oct 1993 A
5255742 Mikus Oct 1993 A
5261490 Ebinuma Nov 1993 A
5285071 LaCount Feb 1994 A
5285846 Mohn Feb 1994 A
5289882 Moore Mar 1994 A
5295763 Stenborg et al. Mar 1994 A
5297626 Vinegar et al. Mar 1994 A
5305239 Kinra Apr 1994 A
5305829 Kumar Apr 1994 A
5306640 Vinegar et al. Apr 1994 A
5316664 Gregoli et al. May 1994 A
5318116 Vinegar et al. Jun 1994 A
5318709 Wuest et al. Jun 1994 A
5325918 Berryman et al. Jul 1994 A
5332036 Shirley et al. Jul 1994 A
5339897 Leaute Aug 1994 A
5339904 Jennings, Jr. Aug 1994 A
5340467 Gregoli et al. Aug 1994 A
5349859 Kleppe Sep 1994 A
5358045 Sevigny et al. Oct 1994 A
5360067 Meo, III Nov 1994 A
5363094 Staron et al. Nov 1994 A
5366012 Lohbeck Nov 1994 A
5377756 Northrop et al. Jan 1995 A
5388640 Puri et al. Feb 1995 A
5388641 Yee et al. Feb 1995 A
5388642 Puri et al. Feb 1995 A
5388643 Yee et al. Feb 1995 A
5388645 Puri et al. Feb 1995 A
5391291 Winquist et al. Feb 1995 A
5392854 Vinegar et al. Feb 1995 A
5400430 Nenniger Mar 1995 A
5404952 Vinegar et al. Apr 1995 A
5409071 Wellington et al. Apr 1995 A
5411086 Burcham et al. May 1995 A
5411089 Vinegar et al. May 1995 A
5411104 Stanley May 1995 A
5415231 Northrop et al. May 1995 A
5431224 Laali Jul 1995 A
5433271 Vinegar et al. Jul 1995 A
5435666 Hassett et al. Jul 1995 A
5437506 Gray Aug 1995 A
5439054 Chaback et al. Aug 1995 A
5454666 Chaback et al. Oct 1995 A
5456315 Kisman et al. Oct 1995 A
5491969 Cohn et al. Feb 1996 A
5497087 Vinegar et al. Mar 1996 A
5498960 Vinegar et al. Mar 1996 A
5512732 Yagnik et al. Apr 1996 A
5517593 Nenniger et al. May 1996 A
5525322 Willms Jun 1996 A
5541517 Hartmann et al. Jul 1996 A
5545803 Heath et al. Aug 1996 A
5553189 Stegemeier et al. Sep 1996 A
5554453 Steinfeld et al. Sep 1996 A
5566755 Seidle et al. Oct 1996 A
5566756 Chaback et al. Oct 1996 A
5569845 Butcher et al. Oct 1996 A
5571403 Scott et al. Nov 1996 A
5579575 Lamome et al. Dec 1996 A
5589775 Kuckes Dec 1996 A
5621844 Bridges Apr 1997 A
5621845 Bridges et al. Apr 1997 A
5624188 West Apr 1997 A
5632336 Notz et al. May 1997 A
5652389 Schaps et al. Jul 1997 A
5656239 Stegemeier et al. Aug 1997 A
RE35696 Mikus Dec 1997 E
5713415 Bridges Feb 1998 A
5723423 VanSlyke Mar 1998 A
5751895 Bridges May 1998 A
5759022 Koppang et al. Jun 1998 A
5760307 Latimer et al. Jun 1998 A
5769569 Hosseini Jun 1998 A
5777229 Geier et al. Jul 1998 A
5782301 Neuroth et al. Jul 1998 A
5802870 Arnold et al. Sep 1998 A
5826653 Rynne et al. Oct 1998 A
5826655 Snow et al. Oct 1998 A
5828797 Minott et al. Oct 1998 A
5861137 Edlund Jan 1999 A
5862858 Wellington et al. Jan 1999 A
5868202 Hsu Feb 1999 A
5879110 Carter Mar 1999 A
5899269 Wellington et al. May 1999 A
5899958 Dowell et al. May 1999 A
5911898 Jacobs et al. Jun 1999 A
5923170 Kuckes Jul 1999 A
5926437 Ortiz Jul 1999 A
5935421 Brons et al. Aug 1999 A
5958365 Liu Sep 1999 A
5968349 Duyvesteyn et al. Oct 1999 A
5984010 Elias et al. Nov 1999 A
5984578 Hanesian et al. Nov 1999 A
5984582 Schwert Nov 1999 A
5985138 Humphreys Nov 1999 A
5997214 de Rouffignac et al. Dec 1999 A
6015015 Lull et al. Jan 2000 A
6016867 Gregoli et al. Jan 2000 A
6016868 Gregoli et al. Jan 2000 A
6019172 Wellington et al. Feb 2000 A
6022834 Hsu et al. Feb 2000 A
6023554 Vinegar et al. Feb 2000 A
6026914 Adams et al. Feb 2000 A
6035701 Lowry et al. Mar 2000 A
6039121 Kisman Mar 2000 A
6049508 Deflandre Apr 2000 A
6056057 Vinegar et al. May 2000 A
6065538 Reimers et al. May 2000 A
6078868 Dubinsky Jun 2000 A
6079499 Mikus et al. Jun 2000 A
6084826 Leggett, III Jul 2000 A
6085512 Agee et al. Jul 2000 A
6088294 Leggett, III et al. Jul 2000 A
6094048 Vinegar et al. Jul 2000 A
6099208 McAlister Aug 2000 A
6102122 de Rouffignac Aug 2000 A
6102137 Ward et al. Aug 2000 A
6102622 Vinegar et al. Aug 2000 A
6110358 Aldous et al. Aug 2000 A
6112808 Isted Sep 2000 A
6152987 Ma et al. Nov 2000 A
6155117 Stevens et al. Dec 2000 A
6172124 Wolflick et al. Jan 2001 B1
6173775 Elias et al. Jan 2001 B1
6192748 Miller Feb 2001 B1
6193010 Minto Feb 2001 B1
6196350 Minto Mar 2001 B1
6257334 Cyr et al. Jul 2001 B1
6269310 Wash bourne Jul 2001 B1
6269881 Chou et al. Aug 2001 B1
6283230 Peters Sep 2001 B1
6288372 Sandberg et al. Sep 2001 B1
6318469 Patel Nov 2001 B1
6328104 Graue Dec 2001 B1
6353706 Bridges Mar 2002 B1
6354373 Vercaemer et al. Mar 2002 B1
6357526 Abdei-Halim et al. Mar 2002 B1
6388947 Washbourne et al. May 2002 B1
6412559 Gunter et al. Jul 2002 B1
6422318 Rider Jul 2002 B1
6427124 Dubinsky et al. Jul 2002 B1
6429784 Beique et al. Aug 2002 B1
6467543 Talwani et al. Oct 2002 B1
6485232 Vinegar et al. Nov 2002 B1
6499536 Ellingsen Dec 2002 B1
6516891 Dallas Feb 2003 B1
6540018 Vinegar Apr 2003 B1
6581684 Wellington et al. Jun 2003 B2
6584406 Harmon et al. Jun 2003 B1
6585046 Neuroth et al. Jul 2003 B2
6588266 Tubel et al. Jul 2003 B2
6588503 Karanikas et al. Jul 2003 B2
6588504 Wellington et al. Jul 2003 B2
6591906 Wellington et al. Jul 2003 B2
6591907 Zhang et al. Jul 2003 B2
6607033 Wellington et al. Aug 2003 B2
6609570 Wellington et al. Aug 2003 B2
6679332 Vinegar et al. Jan 2004 B2
6684948 Savage Feb 2004 B1
6688387 Wellington et al. Feb 2004 B1
6698515 Karanikas et al. Mar 2004 B2
6702016 de Rouffignac et al. Mar 2004 B2
6708758 de Rouffignac et al. Mar 2004 B2
6712135 Wellington et al. Mar 2004 B2
6712136 de Rouffignac et al. Mar 2004 B2
6712137 Vinegar et al. Mar 2004 B2
6715546 Vinegar et al. Apr 2004 B2
6715547 Vinegar et al. Apr 2004 B2
6715548 Wellington et al. Apr 2004 B2
6715550 Vinegar et al. Apr 2004 B2
6715553 Reddy et al. Apr 2004 B2
6719047 Fowler et al. Apr 2004 B2
6722429 de Rouffignac et al. Apr 2004 B2
6722430 Vinegar et al. Apr 2004 B2
6722431 Karanikas et al. Apr 2004 B2
6725920 Zhang et al. Apr 2004 B2
6725928 Vinegar et al. Apr 2004 B2
6729395 Shahin, Jr. et al. May 2004 B2
6729396 Vinegar et al. May 2004 B2
6729397 Zhang et al. May 2004 B2
6729401 Vinegar et al. May 2004 B2
6732794 Wellington et al. May 2004 B2
6732795 de Rouffignac et al. May 2004 B2
6732796 Vinegar et al. May 2004 B2
6736215 Maher et al. May 2004 B2
6739393 Vinegar et al. May 2004 B2
6739394 Vinegar et al. May 2004 B2
6742587 Vinegar et al. Jun 2004 B2
6742588 Wellington et al. Jun 2004 B2
6742589 Berchenko et al. Jun 2004 B2
6742593 Vinegar et al. Jun 2004 B2
6745831 de Rouffignac et al. Jun 2004 B2
6745832 Wellington et al. Jun 2004 B2
6745837 Wellington et al. Jun 2004 B2
6749021 Vinegar et al. Jun 2004 B2
6752210 de Rouffignac et al. Jun 2004 B2
6755251 Thomas et al. Jun 2004 B2
6758268 Vinegar et al. Jul 2004 B2
6761216 Vinegar et al. Jul 2004 B2
6763886 Schoeling et al. Jul 2004 B2
6769483 de Rouffignac et al. Aug 2004 B2
6769485 Vinegar et al. Aug 2004 B2
6782947 de Rouffignac et al. Aug 2004 B2
6789625 de Rouffignac et al. Sep 2004 B2
6805194 Davidson et al. Oct 2004 B2
6805195 Vinegar et al. Oct 2004 B2
6820688 Vinegar et al. Nov 2004 B2
6854534 Livingstone Feb 2005 B2
6854929 Vinegar et al. Feb 2005 B2
6866097 Vinegar et al. Mar 2005 B2
6871707 Karanikas et al. Mar 2005 B2
6877554 Stegemeier et al. Apr 2005 B2
6877555 Karanikas et al. Apr 2005 B2
6880633 Wellington et al. Apr 2005 B2
6880635 Vinegar et al. Apr 2005 B2
6889769 Wellington et al. May 2005 B2
6896053 Berchenko et al. May 2005 B2
6902003 Maher et al. Jun 2005 B2
6902004 de Rouffignac et al. Jun 2005 B2
6910536 Wellington et al. Jun 2005 B2
6910537 Brown et al. Jun 2005 B2
6913078 Shahin, Jr. et al. Jul 2005 B2
6913079 Tubel Jul 2005 B2
6915850 Vinegar et al. Jul 2005 B2
6918442 Wellington et al. Jul 2005 B2
6918443 Wellington et al. Jul 2005 B2
6918444 Passey Jul 2005 B2
6923257 Wellington et al. Aug 2005 B2
6923258 Wellington et al. Aug 2005 B2
6929067 Vinegar et al. Aug 2005 B2
6932155 Vinegar et al. Aug 2005 B2
6942032 La Rovere et al. Sep 2005 B2
6942037 Arnold Sep 2005 B1
6948562 Wellington et al. Sep 2005 B2
6948563 Wellington et al. Sep 2005 B2
6951247 de Rouffignac et al. Oct 2005 B2
6951250 Reddy et al. Oct 2005 B2
6953087 de Rouffignac et al. Oct 2005 B2
6958704 Vinegar et al. Oct 2005 B2
6959761 Berchenko et al. Nov 2005 B2
6964300 Vinegar et al. Nov 2005 B2
6966372 Wellington et al. Nov 2005 B2
6966374 Vinegar et al. Nov 2005 B2
6969123 Vinegar et al. Nov 2005 B2
6973967 Stegemeier et al. Dec 2005 B2
6981548 Wellington et al. Jan 2006 B2
6981553 Stegemeier et al. Jan 2006 B2
6991032 Berchenko et al. Jan 2006 B2
6991033 Wellington et al. Jan 2006 B2
6991036 Sumnu-Dindoruk et al. Jan 2006 B2
6991045 Vinegar et al. Jan 2006 B2
6994160 Wellington et al. Feb 2006 B2
6994168 Wellington et al. Feb 2006 B2
6994169 Zhang et al. Feb 2006 B2
6995646 Fromm et al. Feb 2006 B1
6997255 Wellington et al. Feb 2006 B2
6997518 Vinegar et al. Feb 2006 B2
7004247 Cole et al. Feb 2006 B2
7004251 Ward et al. Feb 2006 B2
7011154 Maher et al. Mar 2006 B2
7013972 Vinegar et al. Mar 2006 B2
RE39077 Eaton Apr 2006 E
7032660 Vinegar et al. Apr 2006 B2
7032809 Hopkins Apr 2006 B1
7036583 de Rouffignac et al. May 2006 B2
7040397 de Rouffignac et al. May 2006 B2
7040398 Wellington et al. May 2006 B2
7040399 Wellington et al. May 2006 B2
7040400 de Rouffignac et al. May 2006 B2
7048051 McQueen May 2006 B2
7051807 Vinegar et al. May 2006 B2
7051808 Vinegar et al. May 2006 B1
7051811 de Rouffignac et al. May 2006 B2
7055600 Messier et al. Jun 2006 B2
7055602 Shpakoff et al. Jun 2006 B2
7063145 Veenstra et al. Jun 2006 B2
7066254 Vinegar et al. Jun 2006 B2
7066257 Wellington et al. Jun 2006 B2
7073578 Vinegar et al. Jul 2006 B2
7077198 Vinegar et al. Jul 2006 B2
7077199 Vinegar et al. Jul 2006 B2
RE39244 Eaton Aug 2006 E
7086465 Wellington et al. Aug 2006 B2
7086468 de Rouffignac et al. Aug 2006 B2
7090013 Wellington et al. Aug 2006 B2
7096941 de Rouffignac et al. Aug 2006 B2
7096942 de Rouffignac et al. Aug 2006 B1
7096953 de Rouffignac et al. Aug 2006 B2
7100994 Vinegar et al. Sep 2006 B2
7104319 Vinegar et al. Sep 2006 B2
7114566 Vinegar et al. Oct 2006 B2
7114880 Carter Oct 2006 B2
7121341 Vinegar et al. Oct 2006 B2
7121342 Vinegar et al. Oct 2006 B2
7128150 Thomas et al. Oct 2006 B2
7128153 Vinegar et al. Oct 2006 B2
7147057 Steele et al. Dec 2006 B2
7147059 Vinegar et al. Dec 2006 B2
7153373 Maziasz et al. Dec 2006 B2
7156176 Vinegar et al. Jan 2007 B2
7165615 Vinegar et al. Jan 2007 B2
7170424 Vinegar et al. Jan 2007 B2
7204327 Livingstone Apr 2007 B2
7219734 Bai et al. May 2007 B2
7225866 Berchenko et al. Jun 2007 B2
7259688 Hirsch et al. Aug 2007 B2
7320364 Fairbanks Jan 2008 B2
7331385 Symington et al. Feb 2008 B2
7353872 Sandberg et al. Apr 2008 B2
7357180 Vinegar et al. Apr 2008 B2
7360588 Vinegar et al. Apr 2008 B2
7370704 Harris May 2008 B2
7383877 Vinegar et al. Jun 2008 B2
7424915 Vinegar et al. Sep 2008 B2
7431076 Sandberg et al. Oct 2008 B2
7435037 McKinzie, II Oct 2008 B2
7461691 Vinegar et al. Dec 2008 B2
7481274 Vinegar et al. Jan 2009 B2
7490665 Sandberg et al. Feb 2009 B2
7500528 McKinzie et al. Mar 2009 B2
7510000 Pastor-Sanz et al. Mar 2009 B2
7527094 McKinzie et al. May 2009 B2
7533719 Hinson et al. May 2009 B2
7540324 de Rouffignac et al. Jun 2009 B2
7546873 Kim Jun 2009 B2
7549470 Vinegar et al. Jun 2009 B2
7556095 Vinegar Jul 2009 B2
7556096 Vinegar et al. Jul 2009 B2
7559367 Vinegar et al. Jul 2009 B2
7559368 Vinegar Jul 2009 B2
7562706 Li et al. Jul 2009 B2
7562707 Miller Jul 2009 B2
7575052 Sandberg et al. Aug 2009 B2
7575053 Vinegar et al. Aug 2009 B2
7581589 Roes et al. Sep 2009 B2
7584789 Mo et al. Sep 2009 B2
7591310 Minderhoud et al. Sep 2009 B2
7597147 Vitek et al. Oct 2009 B2
7604052 Roes et al. Oct 2009 B2
7610962 Fowler Nov 2009 B2
7631689 Vinegar et al. Dec 2009 B2
7631690 Vinegar et al. Dec 2009 B2
7635023 Goldberg et al. Dec 2009 B2
7635024 Karanikas et al. Dec 2009 B2
7635025 Vinegar et al. Dec 2009 B2
7640980 Vinegar et al. Jan 2010 B2
7644765 Stegemeier et al. Jan 2010 B2
7673681 Vinegar et al. Mar 2010 B2
7673786 Menotti Mar 2010 B2
7677310 Vinegar et al. Mar 2010 B2
7677314 Hsu Mar 2010 B2
7681647 Mudunuri et al. Mar 2010 B2
7683296 Brady et al. Mar 2010 B2
7703513 Vinegar et al. Apr 2010 B2
7717171 Stegemeier et al. May 2010 B2
7730945 Pieterson et al. Jun 2010 B2
7730946 Vinegar et al. Jun 2010 B2
7730947 Stegemeier et al. Jun 2010 B2
7735935 Vinegar et al. Jun 2010 B2
7743826 Harris Jun 2010 B2
7785427 Maziasz et al. Aug 2010 B2
7793722 Vinegar et al. Sep 2010 B2
7798220 Vinegar et al. Sep 2010 B2
7798221 Vinegar et al. Sep 2010 B2
7831133 Vinegar et al. Nov 2010 B2
7831134 Vinegar et al. Nov 2010 B2
7832484 Nguyen et al. Nov 2010 B2
7841401 Kuhlman et al. Nov 2010 B2
7841408 Vinegar Nov 2010 B2
7841425 Mansure et al. Nov 2010 B2
7845411 Vinegar et al. Dec 2010 B2
7849922 Vinegar et al. Dec 2010 B2
7860377 Vinegar et al. Dec 2010 B2
7866385 Lambirth Jan 2011 B2
7866386 Beer Jan 2011 B2
7866388 Bravo Jan 2011 B2
7931086 Nguyen et al. Apr 2011 B2
7986869 Vinegar et al. Jul 2011 B2
8027571 Vinegar et al. Sep 2011 B2
8042610 Harris et al. Oct 2011 B2
8113272 Vinegar Feb 2012 B2
8146661 Bravo et al. Apr 2012 B2
8162059 Nguyen et al. Apr 2012 B2
8177305 Burns et al. May 2012 B2
8191630 Stegemeier et al. Jun 2012 B2
8196658 Miller et al. Jun 2012 B2
8200072 Vinegar et al. Jun 2012 B2
8220539 Vinegar et al. Jul 2012 B2
8224164 Sandberg et al. Jul 2012 B2
8224165 Vinegar et al. Jul 2012 B2
8225866 de Rouffignac Jul 2012 B2
8230927 Fairbanks et al. Jul 2012 B2
8233782 Vinegar et al. Jul 2012 B2
8238730 Sandberg et al. Aug 2012 B2
8240774 Vinegar et al. Aug 2012 B2
8256512 Stanecki Sep 2012 B2
8257112 Tilley Sep 2012 B2
8261832 Ryan Sep 2012 B2
8267185 Ocampos et al. Sep 2012 B2
8276661 Costello et al. Oct 2012 B2
8281861 Nguyen et al. Oct 2012 B2
8327932 Karanikas Dec 2012 B2
8355623 Vinegar et al. Jan 2013 B2
8356935 Drora et al. Jan 2013 B2
8381815 Karanikas et al. Feb 2013 B2
8434555 Bos et al. May 2013 B2
8450540 Roes et al. May 2013 B2
8459359 Vinegar Jun 2013 B2
8485252 de Rouffignac Jul 2013 B2
8485847 Tilley Jul 2013 B2
8502120 Bass et al. Aug 2013 B2
8536497 Kim Sep 2013 B2
8562078 Burns et al. Oct 2013 B2
8606091 John et al. Dec 2013 B2
8627887 Vinegar et al. Jan 2014 B2
8631866 Nguyen Jan 2014 B2
8636323 Prince-Wright et al. Jan 2014 B2
8662175 Karanikas et al. Mar 2014 B2
8701768 Marino et al. Apr 2014 B2
8701769 Beer Apr 2014 B2
9022109 Nguyen May 2015 B2
20020027001 Wellington et al. Mar 2002 A1
20020028070 Holen Mar 2002 A1
20020033253 de Rouffignac et al. Mar 2002 A1
20020036089 Vinegar et al. Mar 2002 A1
20020038069 Wellington et al. Mar 2002 A1
20020040779 Wellington et al. Apr 2002 A1
20020040780 Wellington et al. Apr 2002 A1
20020053431 Wellington et al. May 2002 A1
20020076212 Zhang et al. Jun 2002 A1
20020112890 Wentworth et al. Aug 2002 A1
20020112987 Hou et al. Aug 2002 A1
20020153141 Hartman et al. Oct 2002 A1
20030029617 Brown et al. Feb 2003 A1
20030066642 Wellington et al. Apr 2003 A1
20030079877 Wellington et al. May 2003 A1
20030085034 Wellington et al. May 2003 A1
20030131989 Zakiewicz Jul 2003 A1
20030146002 Vinegar et al. Aug 2003 A1
20030157380 Assarabowski et al. Aug 2003 A1
20030183390 Veenstra et al. Oct 2003 A1
20030196789 Wellington et al. Oct 2003 A1
20030201098 Karanikas et al. Oct 2003 A1
20040035582 Zupanick Feb 2004 A1
20040140096 Sandberg et al. Jul 2004 A1
20040144540 Sandberg et al. Jul 2004 A1
20040146288 Vinegar et al. Jul 2004 A1
20050006097 Sandberg et al. Jan 2005 A1
20050045325 Yu Mar 2005 A1
20050269313 Vinegar et al. Dec 2005 A1
20060052905 Pfingsten et al. Mar 2006 A1
20060116430 Wentink Jun 2006 A1
20060151166 Montgomery et al. Jul 2006 A1
20060289536 Vinegar et al. Dec 2006 A1
20070044957 Watson et al. Mar 2007 A1
20070045267 Vinegar et al. Mar 2007 A1
20070045268 Vinegar et al. Mar 2007 A1
20070108201 Vinegar et al. May 2007 A1
20070119098 Diaz et al. May 2007 A1
20070127897 John et al. Jun 2007 A1
20070131428 den Boestert et al. Jun 2007 A1
20070133959 Vinegar et al. Jun 2007 A1
20070133960 Vinegar et al. Jun 2007 A1
20070137856 McKinzie et al. Jun 2007 A1
20070137857 Vinegar et al. Jun 2007 A1
20070144732 Kim et al. Jun 2007 A1
20070193743 Harris et al. Aug 2007 A1
20070246994 Kaminsky et al. Oct 2007 A1
20080006410 Looney et al. Jan 2008 A1
20080017380 Vinegar et al. Jan 2008 A1
20080017416 Watson et al. Jan 2008 A1
20080035346 Nair et al. Feb 2008 A1
20080035347 Brady et al. Feb 2008 A1
20080035705 Menotti Feb 2008 A1
20080038144 Maziasz et al. Feb 2008 A1
20080048668 Mashikian Feb 2008 A1
20080078551 De Vault et al. Apr 2008 A1
20080078552 Donnelly et al. Apr 2008 A1
20080128134 Mudunuri et al. Jun 2008 A1
20080135253 Vinegar et al. Jun 2008 A1
20080135254 Vinegar et al. Jun 2008 A1
20080142216 Vinegar et al. Jun 2008 A1
20080142217 Pieterson et al. Jun 2008 A1
20080173442 Vinegar et al. Jul 2008 A1
20080173444 Stone et al. Jul 2008 A1
20080174115 Lambirth Jul 2008 A1
20080185147 Vinegar et al. Aug 2008 A1
20080217003 Kuhlman et al. Sep 2008 A1
20080217016 Stegemeier et al. Sep 2008 A1
20080217321 Vinegar et al. Sep 2008 A1
20080236831 Hsu et al. Oct 2008 A1
20080277113 Stegemeier et al. Nov 2008 A1
20080283241 Kaminsky et al. Nov 2008 A1
20090014180 Stegemeier et al. Jan 2009 A1
20090014181 Vinegar et al. Jan 2009 A1
20090038795 Kaminsky Feb 2009 A1
20090071652 Vinegar et al. Mar 2009 A1
20090078461 Mansure et al. Mar 2009 A1
20090084547 Farmayan et al. Apr 2009 A1
20090090158 Davidson et al. Apr 2009 A1
20090090509 Vinegar et al. Apr 2009 A1
20090095476 Nguyen et al. Apr 2009 A1
20090095477 Nguyen et al. Apr 2009 A1
20090095478 Karanikas et al. Apr 2009 A1
20090095479 Karanikas et al. Apr 2009 A1
20090095480 Vinegar et al. Apr 2009 A1
20090101346 Vinegar et al. Apr 2009 A1
20090113995 Golding et al. May 2009 A1
20090120646 Kim et al. May 2009 A1
20090126929 Vinegar May 2009 A1
20090139716 Brock et al. Jun 2009 A1
20090189617 Burns et al. Jul 2009 A1
20090194269 Vinegar Aug 2009 A1
20090194282 Beer et al. Aug 2009 A1
20090194286 Mason Aug 2009 A1
20090194287 Nguyen et al. Aug 2009 A1
20090194329 Guimerans et al. Aug 2009 A1
20090194333 MacDonald Aug 2009 A1
20090194524 Kim et al. Aug 2009 A1
20090200022 Bravo et al. Aug 2009 A1
20090200023 Costello et al. Aug 2009 A1
20090200025 Bravo et al. Aug 2009 A1
20090200031 Miller Aug 2009 A1
20090200290 Cardinal et al. Aug 2009 A1
20090200854 Vinegar Aug 2009 A1
20090228222 Fantoni Sep 2009 A1
20090260823 Prince-Wright et al. Oct 2009 A1
20090260824 Burns et al. Oct 2009 A1
20090272526 Burns et al. Nov 2009 A1
20090272535 Burns et al. Nov 2009 A1
20090272536 Burns et al. Nov 2009 A1
20090272578 McDonald Nov 2009 A1
20090321417 Burns et al. Dec 2009 A1
20100071903 Prince-Wright et al. Mar 2010 A1
20100071904 Burns et al. Mar 2010 A1
20100089584 Burns Apr 2010 A1
20100089586 Stanecki Apr 2010 A1
20100096137 Nguyen et al. Apr 2010 A1
20100101783 Vinegar et al. Apr 2010 A1
20100101784 Vinegar et al. Apr 2010 A1
20100101794 Ryan Apr 2010 A1
20100108310 Fowler et al. May 2010 A1
20100108379 Edbury et al. May 2010 A1
20100147521 Xie et al. Jun 2010 A1
20100147522 Xie et al. Jun 2010 A1
20100155070 Roes et al. Jun 2010 A1
20100206570 Ocampos et al. Aug 2010 A1
20100258265 Karanikas et al. Oct 2010 A1
20100258290 Bass Oct 2010 A1
20100258291 de St. Remey et al. Oct 2010 A1
20100258309 Ayodele et al. Oct 2010 A1
20100288497 Burnham et al. Nov 2010 A1
20110042085 Diehl Feb 2011 A1
20110132600 Kaminsky et al. Jun 2011 A1
20110247806 Harris et al. Oct 2011 A1
20110247807 Harris et al. Oct 2011 A1
20110247811 Beer Oct 2011 A1
20110247819 Nguyen et al. Oct 2011 A1
20110247820 Marino et al. Oct 2011 A1
20120018421 Parman et al. Jan 2012 A1
20130087337 Gonzalez et al. Apr 2013 A1
Foreign Referenced Citations (26)
Number Date Country
899987 May 1972 CA
1168283 May 1984 CA
1196594 Nov 1985 CA
1253555 May 1989 CA
1288043 Aug 1991 CA
2015460 Oct 1991 CA
107927 May 1984 EP
130671 Sep 1985 EP
0940558 Sep 1999 EP
156396 Jan 1921 GB
674082 Jul 1950 GB
1010023 Nov 1965 GB
1204405 Sep 1970 GB
1454324 Nov 1976 GB
121737 May 1948 SE
123136 Nov 1948 SE
123137 Nov 1948 SE
123138 Nov 1948 SE
126674 Nov 1949 SE
1836876 Dec 1990 SU
9506093 Mar 1995 WO
9723924 Jul 1997 WO
9901640 Jan 1999 WO
0019061 Apr 2000 WO
0181505 Nov 2001 WO
2008048448 Apr 2008 WO
Non-Patent Literature Citations (106)
Entry
“IEEE Recommended Practice for Electrical Impedance, Induction, and Skin Effect Heating of Pipelines and Vessels”, IEEE Std. 844-200, 2000, 6 pages.
Moreno et al., Sandia National Laboratories, “Methods and Energy Sources for Heating Subsurface Geological Formations, Task 1: Heat Delivery Systems”, Nov. 20, 2002, 166 pages.
Burnham, “Reaction Kinetics Between C02 and Oil Shale Char”, Mar. 22, 1978, 18 pages.
Burnham, “Reaction Kinetics Between C02 and Oil Shale Residual Carbon. I. Effect of Heating Rate on Reactivity”, Jul. 11, 1978, 21 pages.
Burnham et al., “High-Pressure Pyrolysis of Colorado Oil Shale”, Oct. 1982, 23 pages.
Burnham et al., “A Possible Mechanism of Alkene/Alkane Production in Oil Shale Retorting”, Nov. 26, 1980, 20 pages.
Camp, “Enthalpy Relations for Eastern Oil Shale”, Nov. 1987, 13 pages.
Coburn et al., “Oil Shale Retorting: Part 3 A Correlation of Shale Oil 1-Alkene/n-Alkane Ratios With Yield”, Aug. 1, 1977, 18 pages.
Cook et al., “The Composition of Green River Shale Oils”, 1968, 12 pages.
Cummins et al., “Thermal Degradation of Green River Kerogen at 150o to 350o C; Rate of Production Formation”, 1972, 18 pages.
Larue et al., “Retorting of Green River Oil Shale Under High-Pressure Hydrogen Atmospheres”, Jun., 1977, 38 pages.
Lewis et al., “Retorting and Combustion Processes in Surface Oil-Shale Retorts”, May 2, 1980, 12 pages.
Lewis et al., “Oil Shale Retorting Processes: A Technical Overview”, Mar. 1984, 18 pages.
Oh et al., “Study of Gas Evolution During Oil Shale Pyrolysis by TQMS”, Feb. 1988, 10 pages.
Piwinskii et al., “The Permittivity and Electrical Conductivity of Oil Shale”, Apr. 28, 1975, 12 pages.
Raley et al., “Oil Degradation During Oil Shale Retorting”, May 24, 1976, 14 pages.
Reynolds et al., “Kinetic Analysis of California Oil Shale by Programmed Temperature Micropyrolysis”, Dec. 9, 1991, 13 pages.
Reynolds et al., “Analysis of Oil Shale and Petroleum Source Rock Pyrolysis by Triple Quadrupole Mass Spectrometry: Comparisons of Gas Evolution at the Heating Rate of 10oC/Min.”, Oct. 5, 1990, 57 pages.
Richardson et al., “Fluidized-Bed Pyrolysis of Oil Shale”, Oct. 1981, 27 pages.
Richardson et al., “Retorting Kinetics for Oil Shale From Fluidized-Bed Pyrolysis”, Dec. 1981, 30 pages.
Rothman, “Recent Experimental Developments in Retorting Oil Shale at the Lawrence Livermore Laboratory”, Aug. 1978, 32 pages.
Sandholtz et al., “The Lawrence Livermore Laboratory Oil Shale Retorts”, Sep. 18, 1978, 29 pages.
Sandholtz et al., “Operating Laboratory Oil Shale Retorts in an In-Situ Mode”, Aug. 18, 1977, 16 pages.
Sandholtz, “Some Relationships of Thermal Effects to Rubble-Bed Structure and Gas-Flow Patterns in Oil Shale Retorts”, Mar. 1980, 19 pages.
Singleton et al., “Assay Products from Green River Oil Shale”, Feb. 18, 1986, 213 pages.
Singleton et al., “Biomarkers in Oil Shale: Occurrence and Applications”, Oct. 1982, 28 pages.
Singleton et al., “Occurrence of Biomarkers in Green River Shale Oil”, Mar. 1983, 29 pages.
Sisemore, “An Instrumentation Proposal for Retorts in the Demonstration Phase of Oil Shale Development”, Apr. 19, 1977, 34 pages.
Burnham et al., “Pyrolysis Kinetics for Green River Oil Shale From the Saline Zone”, Feb. 1982, 33 pages.
Taylor et al., “S02 Emissions from the Oxidation of Retorted Oil Shale”, Nov. 1981, 9 pages.
Taylor et al., “Nitric Oxide (NO) Reduction by Retorted Oil Shale”, Oct. 1983, 16 pages.
Wallman, “Coproduction of Oil and Electric Power from Colorado Oil Shale”, Sep. 24, 1991, 20 pages.
Ward et al., “13C NMR Studies of Shale Oil”, Aug. 1982, 22 pages.
Ward et al., “Identification by 13C NMR of Carbon Types in Shale Oil and their Relationship to Pyrolysis Conditions”, Sep. 1983, 27 pages.
Wise et al., “A Laboratory Study of Green River Oil Shale Retorting Under Pressure in a Nitrogen Atmosphere”, Sep. 1976, 24 pages.
Wong et al., “Quantitative Analysis and Evolution of Sulfur-Containing Gases from Oil Shale Pyrolysis by Triple Quadrupole Mass Spectrometry”, Nov. 1983, 34 pages.
Wong et al., “Quantitative Analysis & Kinetics of Trace Sulfur Gas Species from Oil Shale Pyrolysis by Triple Quadrupole Mass Spectrometry (TQMS)”, Jul. 5-7, 1983, 34 pages.
Wong et al., “Application of Self-Adaptive Detector System on a Triple Quadrupole MS/MS to High Explosives and Sulfur-Containing Pyrolysis Gases from Oil Shale”, Oct. 1983, 17 pages.
Wong et al., “An Evaluation of Triple Quadrupole MS/MS for On-Line Gas Analyses of Trace Sulfur Compounds from Oil Shale Processing”, Jan. 1985, 30 pages.
Burnham et al., “General Model of Oil Shale Pyrolysis”, Nov. 1983, 22 pages.
“Proposed Field Test of the Lins Method Thermal Oil Recovery Process”, in Athabasca, McMurray Tar Sands, McMurray, Alberta, Husky Oil Company cody, Wyoming, circa 1960.
Berchenko et al., “In-Situ Measurement of Some Thermoporoelastic Parameters of a Granite”, Poromechanics, A Tribute to Maurice Biot, 1998, 6 pages.
Collin et al., “Tar and Pitch”, Ullmann's Encyclopedia of Industrial Chemistry, vol. A 26, 1995, 39 pages.
Hyne, “Geology for Petroleum Exploration, Drilling, and Production”, McGraw-Hill Book Company, 1984, 2 pages.
Burnham, “Oil Shale Retorting; Dependence of timing and composition on temperature and heating rate”, Jan. 27, 1995, 25 pages.
Campbell et al., “Kinetics of oil generation from Colorado Oil Shale”, IPC Business Press, Fuel, 1978, 3 pages.
Bae, “Some Effects of Pressure on Oil-Shale Retorting”, Society of Petroleum Engineers Journal, Sep. 1969, 7 pages.
“New in situ shale-oil recovery process uses hot natural gas”, The Oil & Gas Journal, May 16, 1966, 1 page.
Bosch et al., “Evaluation of Downhole Electric Impedance Heating Systems for Paraffin Control in Oil Wells”, Industry Applications Society 37th Annual Petroleum and Chemical Industry Conference, The Institute of Electrical and Electronics Engineers Inc., Sep. 1990, 4 pages.
Eastlund et al., “New System Stops Paraffin Build-up”, Petroleum Engineer, Jan. 1989, 3 pages.
Campbell et al., “Oil Shale Retorting: Effects of Particle Size and Heating Rate on Oil Evolution and Intraparticle Oil Degradation”, In Situ 2(1), 1978, 47 pages.
Dougan et al., “The Potential for in Situ Retorting of Oil Shale in the Piceance Creek Basin of Northwestern Colorado”, Quarterly of the Colorado School of Mines, 16 pages, 1970.
Grant, “Retorting Oil Shale Underground-Problems & Possibilities”, Qtly of Colorado School of Mines, 10 pages, 1960.
Hershkowitz et al., “Molecular Mechanism of Oil Shale Pyrolysis in Nitrogen and Hydrogen Atmospheres”, Geochemistry and Chemistry of Oil Shales, American Chemical Society, May, 1983, 16 pages.
Hill et al., “The Characteristics of a Low Temperature in Situ Shale Oil”, Quarterly of the Colorado School of Mines, 1967, 16 pages.
Hill et al., “Direct Production of a Low Pour Point High Gravity Shale Oil”, I & EC Product Research and Development, 6(1), Mar. 1967, 8 pages.
Lundquist, “Refining of Swedish Shale Oil”, 7 pages, 1951.
Kuhlman, “The Benefits of In Situ Upgrading Reactions to the Integrated Operations of the Orinoco Heavy-Oil Fields and Downstream Facilities”, Society of Petroleum Engineers, Jun. 2000, 14 pages.
Raley, “Monitoring Oil Shale Retorts by Off-Gas Alkene/Alkane Ratios”, Fuel, vol. 59, Jun. 1980, 6 pages.
Ljungstrom, “The Shale Oil Question, Old and New Viewpoints”, A Lecture in the Engineering Science Academy, Feb. 23, 1950, published in Teknisk Trdskrift, Jan. 1951, 30 pages.
“Underground Shale Oil Pyrolysis According to the Ljungstroem Method”, Svenska Skifferolje Aktiebolaget (Swedish Shale Oil Corp.), IVA, vol. 24, 1953, No. 3, 13 pages.
Sresty et al., “Kinetics of Low-Temperature Pyrolysis of Oil Shale by the IITRI RF Process”, 15th Oil Shale Symposium, Colorado School of Mines, Apr. 1982, 13 pages.
Thorne, “Bureau of Mines Oil-Shale Research”, Quarterly of the Colorado School of Mines, 14 pages, 1964.
Weitkamp et al., “Application of a Microretort to Problems in Shale Pyrolysis”, Ind. Eng. Chern. Process Des. Develop, vol. 9, No. 3, 1970, 11 pages.
Yen et al., “Oil Shale”, Developments in Petroleum Science 5, 1976, 6 pages.
Cook et al., “The Composition of Green River Shale Oils”, United Nations Symposium on the Development and Utilization of Oil Shale Resources, 1968, 12 pages.
Burnham et al., “High-Pressure Pyrolysis of Green River Oil Shale”, Geochemistry and Chemistry of Oil Shales, American Chemical Society, 1983, 17 pages.
Tissot et al., “Geochemistry and Pyrolysis of Oil Shales”, Geochemistry and Chemistry of Oil Shales, American Chemical Society, 1983, 11 pages.
Burnham et al., “A Possible Mechanism of Alkene/Alkane Production”, Oil Shale, Tar Sands, and Related Materials, American Chemical Society, 1981, 8 pages.
Salomonsson, “The Ljungstroem In-Situ Method for Shale Oil Recovery”, Oil Shale and Cannel Coal, vol. 2, Proceedings of the Second Oil Shale and Cannel Coal Conference, Institute of Petroleum, 1951, London, 21 pages.
Dinneen et al., “Developments in Technology for Green River Oil Shale”, United Nations Symposium on the Development and Utilization of Oil Shale Resources, Laramie Petroleum Research Center, Bureau of Mines, 1968, 11 pages.
Glass, “The Thermal and Structural Properties of a Hanna Basin Coal”, Transactions of the ASME, vol. 106, Jun. 1984, 6 pages.
Burnham et al., “On the Mechanism of Kerogen Pyrolysis”, Jan. 10, 1984, 17 pages.
Burnham et al., “Comparison of Methods for Measuring Kerogen Pyrolysis Rates and Filling Kinetic Parameters”, Mar. 23, 1987, 29 pages.
Burnham et al., “Further Comparison of Methods for Measuring Kerogen Pyrolysis Rates and Fitting Kinetic Parameters”, Sep. 1987, 15 pages.
Bissell et al., “Shale Oil Cracking Kinetics and Diagnostics”, Nov. 1983, 28 pages.
Braun, “Mathematical Modeling of Modified In Situ and Aboveground Oil Shale Retorting”, Jan. 1981, 45 pages.
Braun et al., “Progress Report on Computer Model for in Situ Oil Shale Retorting”, Jul. 14, 1977, 34 pages.
Burnham, “Chemical Kinetics and Oil Shale Process Design”, Jul. 1993, 14 pages.
Burnham, “Reaction Kinetics and Diagnostics for Oil Shale Retorting”, Oct. 19, 1981, 32 pages.
Burnham, “Reaction Kinetics Between Steam and Oil Shale Char”, Oct. 1978, 8 pages.
Burnham et al., “General Kinetic Model of Oil Shale Pyrolysis”, Dec. 1984, 25 pages.
Chinese Office Action for Application 200980140452.7, mailed Dec. 13, 2012.
Non-final Office Action, U.S. Appl. No. 12/901,257, mailed Dec. 22, 2011, 9 pages.
International Search Report and Written Opinion, International Application No. PCT/US2011/031553, mailed Jun. 8, 2011, 6 pages.
Rangel-German et al., “Electrical-Heating-Assisted Recovery for Heavy Oil”, 43 pages, Feb. 1, 2013, Henrique Oliveira.
Kovscek, “Reservoir Engineering analysis of Novel Thermal Oil Recovery Techniques applicable to Alaskan North Slope Heavy Oils”, 6 pages, circa 2004.
Bosch et al. “Evaluation of Downhole Electric Impedance Heating Systems for Paraffin Control in Oil Wells,” IEEE Transactions on Industrial Applications, Jan.-Feb. 1992, vol. 28, No. 1, 6 pages.
McGee et al., “Electrical Heating with Horizontal Wells, The Heat Transfer Problem”, International Conference on Horizontal Well Technology, Calgary, Alberta, Canada, Nov. 18-20, 1996, 14 pages.
Hill et al., “The Characteristics of a Low Temperature in Situ Shale Oil” American Institute of Mining, Metallurgical & Petroleum Engineers, Feb. 19-23, 1967, 15 pages.
Rouffignac, “In Situ Resistive Heating of Oil Shale for Oil Production—A Summary of the Swedish Data” 4 pages, published prior to Oct. 2001.
SSAB report, “A Brief Description of the Ljungstrom Method for Shale Oil Production,” 1950, 13 pages.
Salomonsson, SSAB report, “The Lungstrom In Situ-Method for Shale Oil Recovery”, 1950, 30 pages.
“Swedish shale oil; Production methods in Sweden,” Organisation for European Economic Co-operation, 1952, Paris, France, 43 pages.
SSAB report, “Kvarn Torp”, 1958, 35 pages.
SSAB report, “Kvarn Torp”', 1951, 34 pages.
SSAB report, “Summary study of the shale oil works at Narkes Kvarntorp”, 15 pages, published prior to Oct. 2001.
Vogel et al., “An Analog Computer for Studying Heat Transfer during a Thermal Recovery Process,” AIME Petroleum Transactions, vol. 204, 1955, 8 pages.
SAAB report, “The Swedish Shale Oil Industry,” 1948, 8 pages.
Gejrot et al., “The Shale Oil Industry in Sweden,” Carlo Colombo Publishers-Rome, Proceedings of the Fourth World Petroleum Congress, Jun. 6-15, 1955, Rome, Italy, 8 pages.
Hedback, “The Swedish Shale as Raw Material for Production of Power, Oil and Gas”, XIth Sectional Meeting World Power Conference, 1957, 10 pages.
SAAB, “Santa Cruz, California, Field Test of the Lins Method for the Recovery of Oil from Tar Sand”, 1955, vol. 1, 145 pages.
SAAB, “Santa Cruz, California, Field Test of the Lins Method for the Recovery of Oil from Tar Sand-Figures”, 1955 vol. 2, 161 pages.
Helander, “Field Test of Carbon Steel Burner Casings for the Lins Method of Oil Recovery”, Santa Cruz, California, Oct. 9, 1959, 38 pages.
Helander et al., “Field Test of Fluidized Bed Burners for the Lins Method of Oil Recovery”, Oct. 5, 1959, Santa Cruz, California, 86 pages.
“Burner Test Results-English”, 1959-1960, 148 pages.
Related Publications (1)
Number Date Country
20160053609 A1 Feb 2016 US
Provisional Applications (2)
Number Date Country
61322643 Apr 2010 US
61322513 Apr 2010 US
Divisions (1)
Number Date Country
Parent 13083246 Apr 2011 US
Child 14160031 US
Continuations (1)
Number Date Country
Parent 14160031 Jan 2014 US
Child 14703350 US