I. Field
This disclosure is related to leak detection. More particularly, this disclosure is related to leak detection for pressurized systems.
II. Background
Leak detection is important for several reasons, including for example loss of potable water from pressurized delivery lines and spills caused by pressurized sewage lines. Traditional methods of leak detection rely upon visual inspection of lines and evidence of leaks around the pipes, such as visible moisture, sink holes, smells from sewage spills, decreased water flow at the end point of the pipe, etc. Severe sewage spills indicate the need for a rapid assessment of pipe integrity and leakage from holes or cracks in pipes.
In view of the above needs, the present disclosure describes novel systems and methods to rapidly detect leaks in pressurized lines such that the existence, location, and severity of these leaks can be immediately relayed to appropriate authorities, thus minimizing the environmental and economic consequences of the leak.
The foregoing needs are met, to a great extent, by the present disclosure, wherein systems and methods are provided that in some embodiments facilitate a detection of leaks in a pressured pipe, comprising: one or a plurality of pressure sensors, placed at one or several locations along the pipe; a power source providing power to the one or plurality of pressure sensors; a computer; a communications device; and an algorithm to assess data received from the communications device, the data containing information from the one or plurality of pressure sensor(s), wherein the algorithm determines the presence of a pressure leak in the pressurized pipe based on a first pressure profile versus a second pressure profile.
The disclosed methods and systems below may be described generally, as well as in terms of specific examples and/or specific embodiments. For instances where references are made to detailed examples and/or embodiments, it should be appreciated that any of the underlying principals described are not to be limited to a single embodiment, but may be expanded for use with any of the other methods and systems described herein as will be understood by one of ordinary skill in the art unless otherwise stated specifically.
In certain embodiments, this instrumentation unit 140 has a power supply which for example without limitation may be a replaceable primary battery, as a non-limiting example, a lithium thionyl chloride battery package with long shelf life, connected to a separate environmental enclosure that contains the power electronics, the microprocessor, the A/D converter, and the wireless radio. The battery package may also be environmental, and may include circuitry that limits rapid discharge of the batteries in order to minimize or eliminate sparks if the battery is short-circuited, and may also include “smart-battery” circuitry that continuously measures the effective discharge of the battery package and enables the lifetime of the batteries to be determined externally and remotely. The connection between the battery package and the electronics enclosure may be achieved through a rugged waterproof connector, typically one that is used, for example, in the automobile industry. Other power sources may also be AC power, solar power, fuel cells, electromechanical power sources, or other power supplies.
Referring again to
The communications means 150 and 170 may comprise any form of wireless or wired communication protocol, device, mechanism, system, and so forth. Thus, digital and/or analog transmissions can be used via the communications means 15 and 170 according the design implementation. Depending on the resources available to the managing entity, various frequencies (either singly or multiply) may be used for communication information between the instrumentation unit 140, communications network 160 and local communications device 180.
Instrumentation unit 140 may operate in one or more of several modes. A first mode is an “alarm” mode, in which the microprocessor in the instrumentation unit 140 makes a determination that the pressure profile from the single or multiple sensors has generated a unique signature indicating that a leak has occurred. In this mode, an alarm is sent through wired or wireless means 150 to a communications network 160, which then further processes the data, for example determining the location from where the alarm originated and to where the alarm is to be sent, and sends this data via wired or wireless means 170 to a local two-way communications device 180 that allows the action to be taken to respond to a leak.
It should be noted that the communications network 160 may be connected to the Internet or other network resource. Similarly, the communications device 180 may be connected to the Internet or other network resource. Connection to the communications network 160 and communications device 180 may also be facilitated via a host or local server, according to design implementation. In this instance, the server may act as a central server and may parse information from the various devices attached to the network. Based on the “type” of device communicating to the server, the server may forward different status or different priority messages or use a different communication means to forward information to the communications device 180. Accordingly, information warranting a rapid response may be sent via a page, versus information that does not require a rapid response, for example.
In certain embodiments, the instrumentation unit 140 sends messages though a two-way paging network 150, such as those operated by Skytel (Clinton, Mo.), USA Mobility (Plano, Tex.) or Space Data (Chandler, Ariz.), as non-limiting examples of commercial/private providers, to a dedicated server 160, which sends data through the internet to portable devices 180 such as pagers, cell phones, PDAs, and so forth, and also posts this data on a secure web site to be viewed by users of the system, in which the communications devices 180 are computers with Internet access.
A second mode is a “reporting” mode, in which pressure data is taken on a periodic basis from each of the pressure sensors 120 and stored in the instrumentation unit 140. On a periodic basis, the instrumentation unit 140 spontaneously transmits the stored data through communication means 150 to the communications network 160 and finally through communications means 170, to a user communications device 180.
A third mode is a “control” mode in which commands may be sent in the “reverse” direction from communications device 180 through the communications means 170 and network 160 to instrumentation unit 140. These commands are processed by the microprocessor in instrumentation unit 140 and cause the instrumentation unit to modify some aspect of operations.
Examples of a control mode could include, without limitation: turning sensors on or off; changing the frequency at which the sensors take pressure measurements; changing the internal operating software of the instrumentation unit; changing the frequency at which the instrumentation package sends historical data; changing the algorithms that determine if a leak has occurred; and changing the content of the data that is sent from the instrumentation unit periodically.
A fourth mode is a “maintenance” mode in which maintenance data representing environmental parameters such as, for example, temperature and humidity or operating parameters of the system, including, for example, pressure sensor 120 operations, power supply voltage, communications level (e.g. received signal strength indicator); and other diagnostic operation parameters are sent from the instrumentation unit 140 to the user communication device 180 on either an alarm basis or a periodic basis.
A fifth mode is a “request” mode in which a user, through the communications device 180, may request current pressure, environmental, operational performance and/or maintenance parameter values or other data in the “reverse” direction through communications means 170 to the communications network 160, through another communications means 150, finally to the instrumentation unit 140. Software in the instrumentation unit 140 can cause a real-time measurement of requested parameters and sends the results immediately back through the communications means to the data collection/reception device 180.
Since indication that a leak has occurred or is occurring is one of the most important aspects, the means by which a leak is detected is a critical part in addressing this issue. Two cases are considered: a static case in which the fluid in the pipe is quiescent (not pumped), and a second in which the fluid in the pipe is experiencing normal or typical pumping conditions.
A pressure profile like that shown in 210 in
Analysis of the dynamic pressure conditions may also include contemporary data collected directly from the pumps used to pressurize the pipe, in order to minimize false positives and increase the fidelity of the decision-making process. Optimization of an applicable algorithm can be performed to reduce the number of false positives or false negatives.
It should therefore be appreciated that given the teachings provided herein, one of ordinary skill may be able to monitor the integrity of a sealed transport systems, such as pressurized pipes, for example. As such, methods and systems have been disclosed that enable the described embodiments to be applicable for fluid conveying systems as well as gas conveying systems, or a combination of the two. Also, while the context of the embodiments are described in terms of pipes, other vessels or conveying constructs may be used according to design preference. It should also be noted that while
Additionally, the methods and systems may be implemented by various devices. For example, the identification algorithm 420 of
Additionally, each or several of the various elements of the embodiments described may be contained in an environmentally secure enclosure. In some instances, the embodiments may have selective elements within the enclosure and selective elements outside the enclosure. For example, the pressure sensors may be exterior to the enclosure while the instrumentation unit 140 and/or the communications means 150 may be interior to the enclosure, for example. Thus, elements that need to be protected can be protected via the environmental enclosure.
As varied as the hardware implementation can be, modifications or variations of the software algorithm 420 may be similarly performed without departing from the spirit and scope. Therefore, improvements to or combinations of the listed signal processing and pattern recognition techniques may be used, according to design implementation. As the listed techniques are not intended to exhaustive, but to illustrate the breath of applicable techniques, other techniques not described herein can also be used.
What has been described above includes examples of one or more embodiments. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the aforementioned embodiments, but one of ordinary skill in the art may recognize that many further combinations and permutations of various embodiments are possible. Accordingly, the described embodiments are intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the term “includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.
This is a Non-Provisional Application of U.S. Provisional Patent Application Ser. No.: 60/932,074, filed on May 29, 2007, the entire content of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60932074 | May 2007 | US |