The present invention relates generally to a method for detecting leaks, and more particularly to a method for detecting, locating, and quantifying leaks in a chamber of a body.
The detection of leaks in oil and water circuits due to voids or cracks in manufactured castings has presented challenges to engine manufacturers, transmission manufacturers, casting suppliers and others. Many manufacturers and businesses have used various methodologies for detecting such leaks. For example, one method for detecting leaks in a fluid circuit of an engine block has been to seal all ports in the circuit and pressurize the circuit internally. The ability of the circuit to hold pressure without leaking above a predetermined threshold is then evaluated. However, the current method does not locate a leakage path within the circuit. Instead, once a leak has been detected, a manual troubleshooting process is typically initiated that can be expensive and time-consuming. This troubleshooting process, for example, may involve using a dye penetrant to search for voids in the casting of the engine block. Generally, the dye penetrant follows the flow of a fluid such as a gas or liquid through voids or cracks in the casting and the location of the leak can thereby be found by tracking the path traveled by the dye penetrant.
The problem, however, with using a dye penetrant is that often the path traveled by the dye penetrant is contaminated or obscured by a different gas or fluid within the casting. For example, in an oil circuit of the engine block, oil can contaminate and/or obscure the traveled path of the dye penetrant. Additionally, dye penetrants can be difficult to handle and inconvenient to use when attempting to detect a leak in a manufacturing plant or test stand. Shutting down a test stand, for instance, to use a dye penetrant for locating a detected leak can be impractical and time consuming.
Other leak detection methods include sealing all ports of a casting or cavitated body, dipping the casting or cavitated body into a tank of water, pressurizing an internal circuit within the casting or cavitated body, and searching for one or more gaseous bubbles that derive from a leak in the circuit. However, this method of leak testing can typically only indicate whether a leak is present, and does not locate the leak. Also, the time it takes to perform this type of leak test can be substantial, especially when a leak is found in a large device such as an assembled engine. Since this particular method often does not locate the leak, the large device may have to be disassembled before the leak can be found. As a result, manufacturing costs can be significantly affected by trying to detect and locate leaks via this method.
Therefore, what is needed is a method and system for detecting a leak in a chamber of a device and identifying the location and size of the leak by overcoming the shortcomings of the prior art.
The present invention provides a method and system for detecting a leak in a chamber of a body or casting. In one exemplary embodiment, the method includes providing an engine system or a portion thereof that has a chamber and inducing a fluid pressure response in the chamber to test for a breach in a boundary of the chamber. The method also includes measuring a dynamic pressure at each of a plurality of pressure measurement sites in the chamber and determining a location of a leak through the boundary of the chamber based on the dynamic pressure at each of the plurality of pressure measurement sites. This method can further include determining the size of the leak and that the leak is present in response to the leak having a size greater than a threshold. The size of the leak can include a value determined by a volume that leaks per unit of time at a specified pressure differential between the chamber and a surrounding environment.
The method can also include producing a frequency response function matrix from the dynamic pressure at each of the plurality of pressure measurement sites. The location of the leak can then be determined by analyzing the phase and/or magnitude from the frequency response function matrix, interpolating between two of the plurality of pressure measurement sites, triangulating between three of the plurality of pressure measurement sites, and/or analyzing a rate and profile at which the pressure decays at each of the plurality of pressure measurement sites to determine the location of the leak. Advantageously, because this method can detect and locate a leak in a single chamber of a body or casting, manufacturing and/or production costs can be reduced while enhancing product quality. The resulting design and manufacturability process can provide long-term improvements to address systemic casting defects.
In a different embodiment, a method is provided to detect, locate, and quantify a leak in a cavitated body having a plurality of ports such as an engine block or engine assembly. The method includes sealing the plurality of ports and pressurizing the cavitated body. The method further includes measuring a dynamic pressure at one or more of the plurality of ports for a period of time and analyzing the measured dynamic pressure to determine a presence, location, and size of the leak. The presence of the leak can be determined in response to the leak having a size greater than a threshold.
Additionally, the method can include a step of producing a frequency response function matrix from the measured dynamic pressures. The location of the leak can then be determined by analyzing the phase and/or magnitude values from the frequency response function matrix, interpolating between two of the plurality of measured dynamic pressures, triangulating between three of the plurality of measured dynamic pressures, and/or analyzing a rate and profile at which the pressure decays at each of the measured dynamic pressures to determine the location of the leak. The presence of the leak can also be determined by analyzing relative magnitude values from the frequency response function matrix.
In another embodiment, a leak detection service method includes providing a leak detection apparatus for detecting and locating a leak in a device having a chamber. The device can be an engine, engine block, or other device having a chamber. The leak detection apparatus can include a fluid pressure response inducer, a plurality of pressure sensors, and a controller. The method includes connecting the leak detection apparatus to the device such that the fluid pressure response inducer and the plurality of pressure sensors are in fluid communication with the chamber. The chamber is substantially sealed and a fluid pressure response is induced in the chamber. The controller can receive dynamic pressure data from the plurality of pressure sensors in response to the induced fluid pressure response and determine a leak location according to the dynamic pressure data.
The controller can produce a frequency response function matrix from the dynamic pressure at each of the plurality of sensors. The location of the leak can be determined by analyzing the phase and/or magnitude values from the frequency response function matrix, interpolating between two of the pressure sensors, triangulating between three of the plurality of pressure sensors, and/or analyzing a rate and profile at which the pressure decays at each of the plurality of pressure sensors to determine the location of the leak. The leak detection service method can also provide output data structured to display the presence, location, and size of the leak.
In an alternative embodiment, a system for determining a location of a leak includes an engine related device, e.g., an engine block, having a substantially sealed chamber, a fluid pressure response inducer and a plurality of pressure sensors being in fluid communication with the chamber, and a controller. The fluid pressure response inducer can be a pump or other fluid supply device that can induce a fluid pressure response in the chamber. The controller can be configured to receive dynamic pressure data from the plurality of pressure sensors in response to the induced fluid pressure response and determine a location of a leak according to the dynamic pressure data. The controller is also configured to produce a frequency response function matrix from the dynamic pressure at each of the plurality of pressure sensors. Accordingly, the controller can then determine the location of the leak by analyzing the phase and/or magnitude values from the frequency response function matrix, interpolating between two of the plurality of pressure sensors, triangulating between three of the plurality of pressure sensors, and/or analyzing a rate and profile at which the pressure decays at each of the plurality of pressure sensors to determine the location of the leak.
The embodiments of the present invention are also advantageous because the method and system can be implemented into an existing test stand and used for detecting, locating, and quantifying leaks in engine blocks and other devices that have a chamber. The detection and location of the leak can be determined by analyzing magnitude and phase values of a frequency response function, interpolating between two pressure measurement locations, triangulating between three pressure measurement locations, or analyzing a rate and profile at which pressure decays at one or more pressure measurement locations within the chamber of, for example, an engine block. Furthermore, a lumped parameter model of an oil or water circuit leak can be used to detect, locate, and quantify an existing leak in an engine block or engine assembly.
Besides engine blocks, other types of blocks or cavitated bodies could benefit from any of the embodiments. While one or more of the methods can detect leaks in an engine block, they can also advantageously be used to detect, locate, and quantify leaks at the system level such as when an engine is being assembled. Also, one or more of the embodiments can be used earlier in the machining process when ports are drilled and/or tapped in the casting. While one or more of the methods can be performed on engine blocks and assemblies, one of ordinary skill in the art will appreciate the methods can be used with other components and assemblies including transmissions and undercarriages of exhaust systems.
The above-mentioned aspects of the present invention and the manner of obtaining them will become more apparent and the invention itself will be better understood by reference to the following description of the embodiments of the invention, taken in conjunction with the accompanying drawings, wherein:
Corresponding reference numerals are used to indicate corresponding parts throughout the several views.
The embodiments of the present invention described below are not intended to be exhaustive or to limit the invention to the precise forms disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art may appreciate and understand the principles and practices of the present invention.
In an exemplary embodiment, the present invention includes a method for using dynamic pressure measurements to determine a presence, location, and size of a leak in a chamber of a body such as an engine-related device. The method includes measuring a dynamic pressure at one or more pressure measurement sites at a boundary of the chamber. During the measurement of dynamic pressures at the one or more pressure measurement sites, the chamber is substantially sealed. Substantially sealed is typically an indication that the signal to noise ratio of leakage through a minimal detection size leak (i.e., signal leakage) relative to leakage through a partially or incompletely sealed area of the chamber (i.e., noise leakage) is acceptably high. Where small leaks are to be detected, the sealing should be more complete.
In various embodiments, a chamber of a device having a plurality of ports is sealed as a dynamic pressure is measured at one or more of the plurality of ports. The device can be an engine block, an engine assembly, a casting, a cavitated body, or any other body known to one skilled in the art to which a method for detecting a leak can apply. The method of using dynamic pressure measurements to determine the presence, location, and size of a leak can also include producing a frequency response function matrix and analyzing the magnitude and phase values, interpolating between two of the plurality of ports of the chamber, triangulating between three of the plurality of ports, and/or analyzing a rate and profile at which the pressure decays at each of the plurality of ports.
In
To create a leak in the model, a pin or thumb tack was used to puncture a small hole in the tape that covered one of the holes in the tube 8. This test was repeated a total of eight times so that a leak was created at each of the eight locations along the tube. The dynamic pressure was measured at both ends 26, 28 of the tube 8 during each test by the pressure sensors 6 and several methods were used to determine the presence, location, and size of the leak. A frequency response function matrix for each of the dynamic pressure measurements was produced and compared to the results of a preliminary lumped parameter model of a similar circuit. Each of the different methods of analyzing the leak will now be described in more detail.
An embodiment of a chamber of a device such as a cavitated body or casting is shown in
As described above with reference to
In other embodiments, however, if there is a leak, the rate and profile with which the pressure decays at each port can indicate the location of the leakage path. A frequency response function can be generated for the measured dynamic pressure at each of the plurality of ports. Accordingly, the magnitude and phase of each frequency response function can be compared to determine the location of the leak. In
The free decay of pressure is equivalent to an initial condition response, which can involve all of the dynamic characteristics of a pneumatic chamber or circuit throughout a frequency range. Advantageously, this measurement process can be completed relatively quickly, such as during a manufacturing process or in a test apparatus already installed on an engine block assembly line at an engine manufacturing facility.
In the embodiment shown in
Also, as the location of the leak is moved along the length of the tube, for example from location D1 to location D2, the phase of the frequency response function shifts along the frequency axis. In
In another embodiment, triangulation of a chamber, such as for a chamber in an engine assembly or engine block, can also be used to determine the location of a leak in the chamber. In this embodiment, pressure can be measured at two different ports of the chamber. The location of the leak can advantageously be determined through linear interpolation in a single step with only one set of measurements. With multiple measurements in a predefined space, triangulation can be used to determine the location of the leak between two ports of the chamber. While this can be done on an engine stand, one of ordinary skill in the art will also appreciate that this same measurement can be made on other chambers or castings such as in transmissions and undercarriages of exhaust systems.
In certain embodiments, the location of a leak is determined according to the dynamic pressures measured at one or more pressure measurement sites. The location of the leak can be determined by interpolating between a pair of pressure measurements whereby the space between the pressure measurement sites is approximately linear or has a two-dimensional path that is curved. The location can also be determined by interpolating between three measurements whereby the space between the pressure measurement sites has a three-dimensional character. Additional pressure measurement sites can be used in a calculation to increase a confidence value of the location determination or for other purposes. In other embodiments, dynamic pressure values that appear more responsive to a potential leak can be utilized in the calculation, with other dynamic pressure values not utilized in the calculation or utilized with lesser significance.
An analytical method for detecting, locating, and quantifying a leak in a circuit of a casting or cavitated body is illustrated in
In the circuit diagram, “R” refers to the resistance of fluid flow in the circuit. In other words, at a certain point within the circuit between ports P1 and P2, there is a no slip condition, which is essentially the same as viscous friction acting on a gas or liquid as it flows in the circuit. Therefore, energy is being dissipated as the gas or liquid flows in the circuit.
When a leak is detected, the resistance to flow, R, should be much less than the resistance to leak, RL. The resistance to leak, RL, is a function of the geometry of a crack or void in the casting or cavitated body. In general, quantifying the leak is a function of the pressure decay over a period of time. For example, at each port, the pressure is measured by a sensor and the pressure outside the casting or cavitated body (e.g., of an engine block) is known to be atmospheric pressure. Therefore, the pressure differential between the casting or cavitated body and surrounding environment can be determined. Accordingly, by estimating the volumetric velocity of the leak, the resistance to leak, RL, can be determined as
R
L
=ΔP/q
L
where ΔP is the pressure differential between ports P1 and P2 and qL is the volumetric velocity.
Based on lumped parameter modeling of the circuit shown in
One or more of the above-described methods can be used to detect and locate a leak in an engine block casting or engine assembly. To do so, an embodiment of a leak detection apparatus, as shown in
The leak detection apparatus can include a fluid response inducer 20, which can be a pump or other fluid source. The fluid response inducer 20 is connected via a fluid supply line 24 to the chamber 14. The apparatus can also include a plurality of pressure sensors 6 connected to the plurality of ports 22 of the chamber 14. The fluid response inducer 20 and plurality of pressure sensors are in fluid communication with the chamber 14 such that the chamber 14 can be pressurized and the plurality of pressure sensors can measure the pressure at the plurality of ports 22. The types of fluid which can be used to pressurize the chamber include air, water, and oil, although other fluids can be used in other embodiments as understood by one of ordinary skill in the art. The embodiment of the leak detection apparatus shown in
In the embodiment of
After sealing each open port of the chamber, the chamber of the body can be pressurized. In this step 34, the chamber can be pressurized at various pressures. For example, in one embodiment, the chamber is pressurized at 30 psi. In other embodiments, the applied pressure can be selected according to the size of the chamber being pressurized as would be understood by a skilled artisan. Also, the chamber is pressurized for a period of time. For chambers having relatively smaller volumes, the period of time can be less than about 1 minute. For other chambers having larger volumes the period of time can be between about 1-10 minutes. The pressures and periods of time given above are not intended to be limiting, and one skilled in the art can appreciate that different pressures and periods of time can be more advantageous for different chambers and test applications.
Once the chamber is pressurized, the method includes a measuring step 36 and analyzing step 38. In the measuring step 36, the dynamic pressure at each of the plurality of ports of the chamber can be measured by the plurality of pressure sensors of the leak detection apparatus. In the analyzing step 38, the measured dynamic pressure at each of the plurality of ports can be analyzed to determine a presence, location, and/or size of a leak. For example, in the embodiment of
In certain embodiments, the size of the leak can be determined. The size of a pressure loss anomaly can be utilized to determine the presence of the leak such as, for example, a “leak” below a certain size or threshold may be determined to be an acceptable leak or “non-leak.” In other embodiments, the size of the leak can be determined according to a volume loss per unit of time at a given pressure differential between the chamber and a surrounding environment. The surrounding environment can be any ambient environment and/or a controlled environment.
While the methods and systems have been described relative to an engine-related device, such as an engine block or chamber, a leak can be detected, located, and quantified in any chamber, casting, cavitated body, or the like according to the above-described methods. Likewise, one or more of these methods can be used with transmissions, undercarriages of exhaust systems, and other castings or cavitated bodies known to one of ordinary skill in the art.
While exemplary embodiments incorporating the principles of the present invention have been disclosed hereinabove, the present invention is not limited to the disclosed embodiments. Instead, this application is intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
This application claims priority to U.S. Provisional Patent Application No. 60/985,665, filed Nov. 6, 2007, which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60985665 | Nov 2007 | US |