The present disclosure relates generally to container lids, and more particularly, to a leak-proof container lid with foam insulation.
Container lids generally include mechanisms for sealing an aperture of a container through which fluid may enter and/or exit (e.g., a screw-on cap, a flip cap, a push cap, etc.). To access fluid within the container while the container lid engages the container, a user may typically move or remove a closure portion of the lid relative to the aperture of the container such that a fluid path into the container may be provided, allowing the user to drink through the lid. When the user wishes to seal the container (e.g., for transport), the user may adjust the closure portion of the lid such that the fluid path is sealed. Ideally, the closure portion seals the fluid path in a leak-proof manner so that leakage of fluid within the container is prevented.
Another important consideration with respect to container lids involves temperature control. Users often prefer to preserve the temperature of fluid within a container, particularly when the container has been filled with a hot or cold beverage. Problematically, modern container lid designs are effective either at preserving fluid temperature or preventing leaks, rather than effective at both.
The present disclosure provides a drink-through container lid that is both leak-proof by way of a pivoting closure mechanism that reversibly seals an opening in the container lid and insulated by way of foam insulation that fills a hollow body of the lid housing. The result is a container lid that prevents leakage of fluid within a container while also preserving the temperature of said fluid.
According to embodiments of the present disclosure, a container lid includes: a lid housing having a hollow body, an opening formed therethrough, and a thread pattern formed thereon for mating the container lid to a container; a closure mechanism coupled to the lid housing and operable to reversibly seal the opening; and foam insulation disposed within the hollow body.
The foam insulation can be formed so as to at least partially surround the opening, and can also be formed to substantially fill the hollow body. The opening may be disposed between the thread pattern and the foam insulation.
The thread pattern may be formed on the lid housing so as to face outwardly with respect to the container lid. Thus, the outwardly facing thread pattern may be operable to couple with an inwardly facing thread pattern of the container.
A proximal end of the closure mechanism can be connected to the lid housing at a connection point, and the closure mechanism can be operable to pivot about the connection point. The closure mechanism may be operable to pivot between an open position in which the opening is open and a closed position in which the opening is sealed.
The closure mechanism may include a hook portion disposed at a distal end of the closure mechanism that is configured to receive a rim of the lid housing, thereby reversibly holding the closure mechanism in place when the closure mechanism is in the closed position. The rim that is received by the hook portion may be disposed at a same side of the lid housing as the opening, and the hook portion may include a grip portion protruding outwardly from a distal end of the hook portion with respect to the container lid.
In addition, a recess portion can be formed near a distal end of the closure mechanism that is configured to mate with a protrusion portion of the lid housing, thereby reversibly holding the closure mechanism in place when the closure mechanism is in the open position. The protrusion portion may be formed on an end of the lid housing that is diametrically opposed to the opening.
The closure mechanism may further include an opening plug disposed near a distal end thereof that is configured to fit within the opening so as to reversibly seal the opening when the closure mechanism is in the closed position. Also, the closure mechanism may further include a vent plug that is configured to fit within a vent formed through the lid housing and through the foam insulation so as to reversibly seal the vent when the closure mechanism is in the closed position.
A range of movement of the closure mechanism between the open position and the closed position may be approximately 180 degrees.
Additionally, one or more air pockets can be disposed within the hollow body adjacent to the foam insulation. In this regard, one or more walls may extend outwardly from an inner surface of the hollow body and come into contact with the foam insulation, thereby forming the one or more air pockets.
Also, a thickness of a first region of the foam insulation can be less than a thickness of a second region of the foam insulation. The first region can be an end of the foam insulation proximate to the opening, and the second region can be an opposite end of the foam insulation.
The embodiments herein may be better understood by referring to the following description in conjunction with the accompanying drawings in which like reference numerals indicate identically or functionally similar elements, of which:
It should be understood that the above-referenced drawings are not necessarily to scale, presenting a somewhat simplified representation of various preferred features illustrative of the basic principles of the disclosure. The specific design features of the present disclosure, including, for example, specific dimensions, orientations, locations, and shapes, will be determined in part by the particular intended application and use environment.
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present disclosure. Further, throughout the specification, like reference numerals refer to like elements.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Referring now to embodiments of the present disclosure, the disclosed container lid features a drink-through design (i.e., a fluid path is formed through the lid allowing a user to drink fluid inside the container without removing the lid) that is both leak-proof by way of a pivoting closure mechanism that reversibly seals an opening in the container lid and insulated by way of foam insulation that fills a hollow body of the lid housing. The result is a container lid that prevents leakage of fluid within a container while also preserving the temperature of said fluid. The disclosed container lid also features a thread pattern which may be fashioned to face outwardly with respect to the lid, so as to couple with an inwardly facing thread pattern of the container, thereby creating a tight seal that increases leak prevention and insulative properties of the lid.
The foam insulation 130 may be inserted within one of the portions of the lid housing 110, and the top and bottom portions may then be adjoined (e.g., ultrasonically welded) to produce the foam insulation-filled lid housing 110. The foam insulation 130 may be disposed within the lid housing 110 using any suitable techniques known in the art. The foam insulation 130 can fill an entirety of the hollow body of the lid housing 110, thereby enhancing insulative properties of the lid 100.
The foam insulation 130 may be made of a constant thickness or, in some cases, the foam insulation 130 may be made of variable thickness, as shown in
An opening 150 is formed in the lid housing 110 to provide a fluid path from the container 180 through the lid housing 110, allowing a user to drink through the lid housing 110. The opening 150, shown in greater detail in
In addition, a closure mechanism 120 is coupled to the lid housing 110 and operable to reversibly seal the opening 150, thereby preventing leakage of fluid within the container 180 while the closure mechanism 120 is in a position to seal the opening 150, regardless of the temperature of the fluid inside the container 180. As shown in
As shown in
As further shown in
In one example, a proximal end of the closure mechanism 120 may be coupled to the lid housing 110 at a connection point P, and a distal end of the closure mechanism 120 may include a hook portion 122. The hook portion 122 may be configured to receive a rim 114 of the lid housing 110, thereby reversibly holding the closure mechanism 120 in place when the closure mechanism 120 is in the closed position demonstrated in
Additionally, the closure mechanism 120 may include a recess portion 126 formed near the distal end of the closure mechanism 120. In one example, the recess portion 126 may be formed into the hook portion 122, as shown in
An opening plug 160 may be disposed near a distal end of the closure mechanism 120. The opening plug 160 can be formed with a shape and depth to fit within the opening 150 so as to seal the opening 150 when the closure mechanism 120 is in the closed position (see, e.g.,
In addition, a vent 152 may be formed through the lid housing 110 and the foam insulation 130. The vent 152 may ensure a smooth flow of fluid through the opening 150, as is generally known in the art. To prevent leakage through the vent 152, the closure mechanism 120 may further include a vent plug 162 that is formed with a shape and depth to fit within the vent 152 so as to seal the vent 152 when the closure mechanism 120 is in the closed position. Like the opening plug 160, the vent plug 162 can be made of any material suitable for ensuring a leak-proof seal of the vent 152, such as a resilient material like a TPE or thermoplastic rubber. The opening plug 160 and vent plug 162 may be independently fashioned and affixed to the closure mechanism 120, or fashioned as a single unit (see, e.g.,
A range of motion of the closure mechanism 120 between the open position and the closed position may be approximately 180 degrees. That is, the closure mechanism 120 when in the open position is offset by approximately 180 degrees from the closure mechanism 120 when in the closed position, as shown in
Additional views of the container lid 100 are provided in
The container lid 100 may include an alternative insulation arrangement, as shown in
Instead of filling an entirety of the hollow body of the lid housing 110 with the foam insulation 130, a combination of foam insulation 130 and one or more air pockets can fill the hollow body of the lid housing 110. For instance, the bottom portion 112 of the lid housing 110 can be replaced with bottom portion 190 which may include an arrangement of walls 192 forming multiple air pockets 194, such that the air pockets 194 are disposed within the lid housing 110 in conjunction with the foam insulation 130. When paired with the foam insulation 130, the resulting air pockets 194 act as an additional barrier helping to prevent the transfer of heat energy from a liquid within the container 180 to the body of the lid 100.
As shown in
Although specific materials are mentioned above, any and all portions of the container lid 100 described herein may be made of any suitable material such as, but not limited to, plastic, metal, ceramic, or combinations thereof. Plastics of the present disclosure may include, for example, polyethylene terephthalate (PET), high density polyethylene, low density polyethylene, vinyl, polypropylene, and polystyrene. Additionally, suitable metals of the present disclosure may include aluminum and iron (e.g., steel, stainless steel, and cast iron). Any seal herein disclosed may be made of any suitable sealing material such as, but not limited to rubber, plastic, soft plastic and/or foam.
Accordingly, the container lid disclosed herein features a drink-through design that combines leak-proofness and insulation. A pivoting closure mechanism reversibly seals an opening in the container lid to eliminate leaks through the opening. Foam insulation fills a hollow body of the lid housing to insulate the contents of a container. The result is a container lid that prevents leakage of fluid within a container while also preserving the temperature of said fluid. The disclosed container lid also features a thread pattern which may be fashioned to face outwardly with respect to the lid, so as to couple with an inwardly facing thread pattern of the container, thereby creating a tight seal that increases leak prevention and insulative properties of the lid.
While there have been shown and described illustrative embodiments that provide for a leak-proof container lid with foam insulation, it is to be understood that various other adaptations and modifications may be made within the spirit and scope of the embodiments herein. For example, the embodiments have been primarily shown and described herein with relation to a pivoting closure mechanism that rotates between an open and closed position. However, the embodiments in their broader sense are not as limited, as the closure mechanism may be replaced with another mechanism capable of sealing the lid opening, such as a push-button mechanism or a slide mechanism. Thus, the embodiments may be modified in any suitable manner in accordance with the scope of the present claims.
The foregoing description has been directed to embodiments of the present disclosure. It will be apparent, however, that other variations and modifications may be made to the described embodiments, with the attainment of some or all of their advantages. Accordingly, this description is to be taken only by way of example and not to otherwise limit the scope of the embodiments herein. Therefore, it is the object of the appended claims to cover all such variations and modifications as come within the true spirit and scope of the embodiments herein.
This application claims the benefit of priority to U.S. Provisional Application No. 62/540,693, filed in the U.S. Patent and Trademark Office on Aug. 3, 2017, the entire contents of which are incorporated by reference as if fully set forth herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/045130 | 8/3/2018 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62540693 | Aug 2017 | US |