1. Field of the Invention
The present invention relates to rotary piston x-ray radiators, and in particular to a leakage radiation shielding arrangement for such an x-ray radiator.
2. Description of the Prior Art
Rotary piston x-ray radiators, particularly for use in medical apparatuses, must be shielded corresponding to regulatory requirements. In the known x-ray radiator described in DE 196 12 698 C1, for this purpose the radiator housing is designed as a radiation protection housing in order to shield against escaping leakage x-ray radiation, in addition to allowing the usable radiation to exit the housing that is necessary for the actual exposure of a subject to be examined. Moreover, for rotary piston x-ray radiators it is known to apply a material that significantly attenuates the x-ray radiation (such as, for example, lead) on the inside of the x-ray radiator housing in the regions to be shielded.
An x-ray radiator with a cathode arrangement and an anode arrangement rotating in a uniform vacuum chamber is known from EP 0 935 812 B1, wherein the vacuum chamber is formed by a cylindrical side wall as well as a cover and a base wall. The side wall, cover wall and base wall are fashioned from radiation-shielding materials, making the vacuum chamber relatively heavy.
An object of the present invention is to provide a rotary piston x-ray radiator of the type described above that is relatively light-weight, but that still assures a sufficient shielding against leakage x-ray radiation in a simple manner.
In accordance with the invention, this object is achieved by a rotary piston x-ray radiator wherein a first region of the shielding is located on the rotating vacuum housing of the rotary piston x-ray tube. Thus, while maintaining an ensured shielding effect, a reduction of the volume of the shielding material and therewith a reduction of the weight of the rotary piston x-ray radiator is achieved by a substantially smaller vacuum housing surface being provided with the shielding material, and being located closer to the point of origin of the x-ray radiation in comparison with the conventional situation wherein shielding is provided exclusively at surfaces of the radiator housing. This additionally means less expenditure, a smaller mechanical load, a cost savings and a more compact design for the carrier device accommodating the x-ray radiator. This in particular means a reduction of the wear of the apparatus rotation bearing given a rotary piston x-ray radiator arranged on a gantry and rotating therewith.
In order to achieve a comprehensive shielding effect with optimally little shielding material, the aforementioned region of the vacuum housing of the rotary piston x-ray radiator is located only in the region of the vacuum housing that is irradiated by the leakage x-ray radiation.
In an embodiment of the invention, the vacuum housing itself in the aforementioned region of the shielding is fashioned from a material that significantly attenuates x-ray radiation. In an embodiment of the invention that is advantageous for a simpler design of the rotary piston x-ray radiator, the region of the shielding is fashioned as a coating of the vacuum housing with a material that significantly attenuates the x-ray radiation.
The material that significantly attenuates the x-ray radiation can be tantalum and/or tungsten and/or molybdenum and/or an alloy of tantalum and/or an alloy of tungsten and/or an alloy of molybdenum.
The inventive rotary piston x-ray radiator is particularly suitable for a gantry x-ray apparatus (such as, for example, a computed tomography apparatus) and for an x-ray apparatus with a carrier device, in particular a C-arm x-ray apparatus on which the one rotary piston x-ray radiator is supported but the invention is not limited to this particular.
The inventive rotary piston x-ray radiator 1 shown in
A cathode 9 that emits an electron beam 10 is located on the front side 23 of the rotary piston x-ray tube 2.1 that is opposite the rotary anode 6. The electron beam 10 is deflected by a deflection system 14 onto the target 20 of the rotary anode 6 and generates x-ray radiation at a focus 11 in the form of a usable ray 12 and in the form of leakage x-ray radiation. The usable ray 12 passes through a first usable ray exit 18 (arranged rotationally-symmetrically around the rotary piston x-ray tube 2 due to its rotation) from the rotary piston x-ray tube 2 and through a second usable ray exit 13 from the radiator housing 19.
The total shielding is formed by a shielding region 30 and a shielding region formed by a combination of shieldings 35 and 26 is for protection against the leakage x-ray radiation radiated in various directions. The total shielding is formed by the combined effect of the first region 30 on the vacuum housing 3 of the rotary piston x-ray tube 2 and the second region formed by shieldings 35 and 26 distributed on the radiator housing 19 of the rotary piston x-ray radiator 19, such that an optimal protection against escape of leakage x-ray radiation from the radiator housing 19 can be achieved with a lesser surface expenditure. In the exemplary embodiment, the first region 30 of the total shielding is arranged essentially rotationally-symmetric on the entire side wall of the vacuum housing 3 and prevents the exit of leakage x-ray radiation from the rotary piston x-ray tube 2.
According to an embodiment of the invention, the radiator housing 19 of the rotary piston x-ray radiator 1 has at least one second region of the shielding formed by shieldings 35 and 26. To optimally reduce the shielding, the radiator housing 19 of the rotary piston x-ray radiator 1 has the second region formed by the shieldings 35 and 26 only in its region irradiated by the leakage x-ray radiation. A circumferential shielding 35 of the second region the total shielding is arranged on the radiator housing 19 in order to prevent exit of leakage x-ray radiation due to the first usable ray exit 18 required in the vacuum housing 3 for the usable ray 12 and the rotation of the rotary piston x-ray tube 2 in the corresponding region. As shown in
A rotary piston x-ray radiator 1A with a further rotary piston x-ray tube 2 is shown in
Thus, each of the combination of the first shielding region 5 and the shieldings 25 and 26 of the second region of the total shielding, and the combination of the first shielding region 30 and the shieldings 35 and 26 of the second region of the total shielding, is fashioned such that a complete radiation protection of the rotary piston x-ray radiator 1 is ensured according to the required radiation protection regulations. The first region 5 or 30 of the total shielding shields the leakage x-ray radiation as much as possible in the region of the x-ray tube 2 that is irradiated by the leakage x-ray radiation. The second region formed by shieldings 25 and 26, or shieldings 35 and 26 is provided only for the portion of leakage x-ray radiation that can escape from the regions of the vacuum housing 3 that must be free of a shielding due to requirements such as an insulation layer for the cathode 9 or a first usable ray exit 18.
In addition to molybdenum, tantalum, tungsten and respective alloys of these materials, other good shielding materials having an atomic number above 40 in the periodic table can be used as a radiation-shielding material.
Although modifications and changes may be suggested by those skilled in the art, it is the intention of the inventors to embody within the patent warranted hereon all changes and modifications as reasonably and properly come within the scope of their contribution to the art.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 056 110 | Nov 2004 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4007376 | Zimmerman | Feb 1977 | A |
4234794 | Voinea et al. | Nov 1980 | A |
4788705 | Anderson | Nov 1988 | A |
5384820 | Burke | Jan 1995 | A |
5703926 | Bischof | Dec 1997 | A |
6084942 | Hell et al. | Jul 2000 | A |
6364527 | Kutschera | Apr 2002 | B1 |
6426998 | Hell et al. | Jul 2002 | B1 |
6709156 | Hell et al. | Mar 2004 | B1 |
6735283 | Kutschera et al. | May 2004 | B2 |
6907110 | Apel et al. | Jun 2005 | B2 |
7103146 | Lenz et al. | Sep 2006 | B2 |
Number | Date | Country |
---|---|---|
44 29 910 | Jul 1995 | DE |
198 60 115 | Nov 2000 | DE |
100 36 210 | Nov 2001 | DE |
0 935 812 | May 1998 | EP |
Number | Date | Country | |
---|---|---|---|
20060146985 A1 | Jul 2006 | US |