The present embodiments relate to a leakage sensor for an absorption cooling device for a recreational vehicle, for example a camper, a caravan or a mobile home, a heating unit for an absorption cooling device for a recreational vehicle, an absorption cooling device for a recreational vehicle, a vehicle including the absorption cooling device and a method for operating an absorption cooling device.
Generally, leakage sensors for absorption cooling devices for recreational vehicles are known from the prior art and fulfil their purpose regarding the safety of the devices and governmental safety regulations. Commonly known leakage detection systems for such kind of absorption cooling devices use, for example, ammonia sensors, temperature sensors and/or software-based control devices. The leakage of cooling fluid from an absorption cooling device usually leads to increased temperature within the system and may also lead to other types of malfunction of the device. Known devices, thus, rely on methods monitoring the temperature preferably in the immediate vicinity of the absorption cooling device—for example, on the outer shell of the insulation or at the bottom of the absorption cooling device—or even within the cooling cycle itself to detect an occurring leakage. The cooling liquid usually contains ammonia. Hence, also the use of ammonia sensors to detect leaking cooling liquid is an applied principle.
The instant embodiments provide improved protection means for absorption cooling devices for recreational vehicles and to provide a reliable system for safely operating an absorption cooling device for a recreational vehicle.
These objectives are met by a leakage sensor, a heating unit, an absorption cooling device, a vehicle, and a method as defined in the independent claims.
The present embodiments use a new approach to detect leakage of cooling fluid from an absorption cooling device. The present embodiments make use of the fact that the conductivity of common insulation materials increases significantly as soon as any form of liquid is present within the insulation. In case cooling liquid leaks from the boiler of the heating unit of an absorption cooling device into the insulation surrounding these components, an increase in conductivity within the insulation can be measured and, thus, by detecting this increase in conductivity within the insulation a leakage can be quickly detected. The temperature and pressure within the boiler of the heating unit of an absorption cooling device make the boiler generally the most likely place for a leakage to occur.
Hence, according to the present embodiments a leakage sensor is provided which is measuring the resistance and/or conductivity within the insulation of a boiler of an absorption cooling device. The leakage sensor according to the present embodiments is, thus, capable of detecting a leakage in a quick and reliable manner. In addition, a heating unit for an absorption cooling device is provided which can be provided with leakage detection capabilities at low manufacturing complexity. Moreover, an absorption cooling device is provided which is equipped with low cost leakage detection capabilities. Additionally, a vehicle is provided which is safe from the risks accompanying a cooling liquid leakage. Finally, a method is provided for operating an absorption cooling device with mentioned leakage detection capabilities.
According to the present embodiments, a leakage sensor for an absorption cooling device for a recreational vehicle, and in particular for an absorption refrigerator for a recreational vehicle is provided. The absorption cooling device has a heating unit with a boiler. The leakage sensor has a voltage source and at least two sensor pins. Furthermore, the leakage sensor comprises a voltage detection unit connected in series with the two sensor pins or a thermistor connected in parallel with the sensor pins. At least one sensor pin is electrically connected to one pole of the voltage source and at least one other sensor pin is connected to the other pole of the voltage source or to ground. The sensor pins are configured to be located in a boiler insulation of the heating unit of the absorption cooling device. Thus, according to the present embodiments a leakage sensor is provided which is measuring the conductivity within the insulation of a boiler of an absorption cooling device and which is therefore capable of detecting a leakage of cooling liquid in a quick and reliable manner. Therefore, the risks involved with the leakage of cooling liquid such as overheating of the boiler and other types of malfunction of the absorption cooling device can be minimized. Such a leakage sensor can be easily applied due to its low complexity in manufacturing even to existing systems if desired. In combination with existing leakage detection systems, this leakage sensor can be used to create redundancy and, thus, the increase the product safety of the absorption cooling device.
In some optional embodiments, each sensor pin of the leakage sensor is combined with at least one other sensor pin to form a sensor unit. The sensor pins of a sensor unit are spaced at distances from each other. In particular, the distance the sensor pins are spaced from each other is less than 2.0 cm, for example less than 1.0 cm and further preferred less than 0.5 cm. However, the sensor pins are not in direct contact with each other. Thus, the pins of the leakage sensor are going to short circuit through the liquid in case of a leak which is significantly reducing the resistance between the two pins. The closer the sensor pins are located to each other, the more sensible the sensor is towards small amounts of leaking cooling liquid. Generally, it is desirable that the sensor pins forming the sensor units be distributed throughout the whole volume of the boiler insulation to cover all possible points of leakage and condensation of leaking cooling liquid to maximize the security of detection of a leakage.
In some embodiments, the voltage detection unit or the thermistor is configured in such a way that it detects a resistance. In particular the thermistor (when provided) and the voltage source are components of the absorption cooling device itself. The sensor pins and the voltage detection unit (when provided), are only connected to the thermistor (when provided) and the voltage source of the absorption cooling device. By detecting a resistance in the insulation, for example through the use of a commonly known voltage bridge, the leakage sensor is able to detect leakage of cooling liquid from the absorption cooling device by comparing the detected resistance to, for example, predetermined desired, reference and/or threshold values. Through the use of components that are commonly already present in absorption cooling devices, anyway—such as for example a voltage source or a thermistor—the costs and manufacturing complexity of the leakage sensor is minimized. The leakage sensor can be integrated into existing systems with a minimal use of additional components and minimum effort.
In some embodiments, the leakage sensor has only one sensor unit with two sensor pins, wherein one of the sensor pins is provided as electrode sheet and the other one of the sensor pins is provided as wire mesh. The sensor pin provided as wire mesh is oriented parallel with respect to the sensor pin provided as electrode sheet. Between the sensor pin provided as electrode sheet and the sensor pin provided as wire mesh a layer of non-conducting and liquid permeable material is provided. Moreover, the wire mesh is may be oriented pointing towards a position of expected leakage. With the sensor pin provided as wire mesh pointed towards a position of expected leakage, the leaking cooling fluid coming from the boiler, passes through the wire mesh and the adjoining liquid permeable material to come into contact with the sensor pin provided as electrode sheet. The electrode sheet will not only function as an electrode but also as a trap for the leaking cooling liquid, thus, further increasing the probability of creating a liquid conducting bridge between the two sensor pins. The sensor pin provided as a wire mesh can have any other geometrical form allowing transition of leaking cooling liquid therethrough.
In some embodiments, at least two sensor pins forming a sensor unit are provided as wires being intertwined with each other, wherein one of the two sensor pins is covered with a layer of non-conducting and liquid permeable material. Thus, a sensor unit is provided which can be flexibly deployed throughout the insulation of the boiler. This way, locations of the boiler with an increased risk of leakage, such as welding areas, can be targeted specifically.
In some embodiments, at least two sensor pins forming a sensor unit are provided in a fork-like manner. That means the sensor pins are positioned to interlock with each other and to be separated from each other by a layer of non-conducting and liquid permeable material. Thus, this sensor unit provides close-knit coverage of large volumes of insulation to further decrease the probability of leakage without detection.
In some embodiments, one of the sensor pins is an actual carbon steel cooling unit. Thus, a configuration is provided with which one of the sensor pins is already part of the absorption cooling device and the complexity of the leakage sensor is further reduced.
The sensor pins may be made of galvanized steel and/or the non-conducting and liquid permeable material has sufficient heat resistance and in particular is made of glass fiber or paper. Thus, the leakage sensor is provided with durable components preventing material failure, false alarms and other kinds of malfunctions.
In some embodiments, the layer of non-conducting and liquid permeable material has a thickness of less than 10 mm and particularly less than 5 mm. Thus, the pins can be located close to each other, increasing sensibility of the sensor towards small amounts of leaking cooling liquid.
Also according to the present embodiments, a heating unit for an absorption cooling device for a recreational vehicle, and in particular for an absorption refrigerator for a recreational vehicle is provided. The heating unit has a boiler provided with a boiler insulation and a heating element, wherein the heating element is in particular an electrical heating element. The boiler is configured to be coupled to an absorber and a condenser of the absorption cooling device. The heating unit has a leakage sensor as described above, wherein the sensor pins of the leakage sensor are located in the boiler insulation of the heating unit. Thus, the component of the heating unit where a material failure causing leakage is most likely to occur, the boiler, is equipped with leakage detection capabilities. Such a heating unit fulfils safety requirements at reduced cost and with minimized manufacturing complexity.
In some embodiments, the boiler insulation surrounds the boiler and the heating element in radial direction with respect to the longitudinal axis of the boiler. Thus, the boiler is entirely covered in insulation with leakage detection capabilities to ensure reliable detection of any occurring leakage.
In some embodiments, the leakage sensor is provided as described above, the sensor having only one sensor unit with two sensor pins, wherein one of the sensor pins is provided as electrode sheet and the other one of the sensor pins is provided as wire mesh. The sensor pin provided as wire mesh is surrounding the boiler in the radial direction with respect to the longitudinal axis of the boiler. Between the sensor pin provided as wire mesh and the boiler a layer of non-conducting and liquid permeable material is provided. Furthermore, the sensor pin provided as electrode sheet is surrounding the sensor pin provided as wire mesh in the radial direction with respect to the longitudinal axis of the boiler. In particular, the boiler is covered with some mineral wool. With the sensor pin provided as wire mesh surrounding the boiler in the radial direction, the leaking cooling fluid coming from the boiler, passes through the wire mesh and the adjoining liquid permeable material to come into contact with the sensor pin provided as electrode sheet. The electrode sheet will therefore not only function as an electrode but also as a trap for the leaking cooling liquid thus further increasing the probability of creating a liquid conducting bridge between the two sensor pins. The sensor pin provided as a wire mesh can have any other geometrical form allowing transition of leaking cooling liquid therethrough.
In some embodiments, the heating unit is provided with various sensor units. The sensor units are distributed in the boiler insulation along the length and the depth of the boiler insulation. In particular the sensor units are provided also in an area of the boiler insulation in which the occurring temperature is expected to be of about 100° C. and less. Thus, the probability of undetected leakage is further reduced due to the dense deployment of sensor units throughout the boiler insulation.
Furthermore, according to the present embodiments an absorption cooling device for a recreational vehicle, in particular an absorption refrigerator for a recreational vehicle is provided. The absorption cooling device according to the present embodiments has a heating unit as described above, a condenser, an evaporator, an absorber coupled to each other, and a control system. Thus, in accordance with the present embodiments an absorption cooling device is provided which is equipped with reliable, quick leakage detection capabilities at minimized technical effort and minimized costs.
In some embodiments, the control system is connected to the voltage detection unit or to the thermistor. The control system transmits an error signal and/or shutting down the absorption cooling device, in particular the heating unit of the absorption cooling device when determining the occurrence of leakage based on the signals received from the voltage detection unit or from the thermistor. Thus, the safety of the user of the absorption cooling device can be increased even in the unlikely event of a leakage of cooling liquid.
Also according to the present embodiments, a vehicle, in particular a recreational vehicle is provided. The vehicle is provided with an absorption cooling device according to the present embodiments and as described above. Thus, the user can enjoy the benefits of the absorption cooling device while being reliably safe from risks accompanying leakage of cooling liquid from the boiler of the heating unit of the absorption cooling device.
Furthermore, a method for operating an absorption cooling device according to the present embodiments, in particular an absorption cooling device as described above comprises the following steps:
Thus, the comparison of the measured data with at least one predetermined desired value, threshold value and/or reference value allows reliable detection of leakages. The absorption cooling device is, hence, controlled in a safe manner. The at least one predetermined desired value, threshold value and/or reference value is chosen to avoid false alarms thereby ensuring stable operation of the absorption cooling device.
In some embodiments, measuring the electrical resistance and/or conductivity in the periphery of the boiler is performed continuously, periodically and/or selectively. Thus, reliable monitoring of the system can be adapted to safety and other requirements and safe and stable operation of the absorption cooling device is ensured.
In some embodiments, the measured periphery of the boiler is in the inner of the boiler insulation of the absorption cooling device. Thus, quick detection of any occurring leakage and swift application of corresponding counter measures are provided.
In some embodiments, besides the electrical resistance and/or the conductivity, also other properties and/or parameters of the absorption cooling device are measured and considered in the conducted comparison. Thus, redundancy is established to further increase the security of the system.
In some embodiments, at least one of the other properties and/or parameters of the absorption cooling device is a flow rate, velocity and/or current and/or other similar of these characteristics indicating properties and/or parameters of the absorption cooling device. Thus, by providing insight into properties and/or parameters of the absorption cooling device, redundant control measures can be easily implemented to ensure safety of the absorption cooling device.
In some embodiments, the absorption cooling device, and in particular the heating unit of the absorption cooling device is shut down, when a result of the conducted comparison indicates a non-negligible leakage for the absorption cooling device and/or a secure continuation of the operation of the absorption cooling device cannot be guaranteed. Thus, risks accompanying the leakage of cooling fluid from the absorption cooling device can be minimized and a safe and stable operation of the device is ensured.
A more complete appreciation of the present embodiments and many of its detailed features and attendant advantages will be readily obtained as the same becomes better understood with reference to the following detailed description when considered in connection with the accompanying figures, wherein:
Selected embodiments will now be described with reference to the accompanying figures, wherein like reference characters designate corresponding or identical elements throughout the various figures.
In
The present embodiments use the finding that the conductivity of dry insulation material is significantly lower than that of commonly used cooling liquids. In case of leakage at the boiler, cooling liquid enters into the insulation material surrounding the boiler, thus, increasing the electric conductivity of the insulation material. By measuring the resistance and/or the electric conductivity within the boiler insulation of the heating unit of an absorption cooling device, the detection of leaking cooling liquid is possible.
A point of leakage is, naturally, not known before the leakage occurs. It is therefore desirable, that as broad a range of potential points of leakage at the boiler B of the heating unit of the absorption cooling device be covered by a leakage sensor to maximize the likelihood of leakage detection.
The cross section in
The electrical circuit of a leakage sensor 1 illustrated in
The two sensor pins 2 in
In
Another possible arrangement of sensor pins is schematically shown in
A further preferable arrangement of sensor pins can be seen in
Step S1 is performed continuously, periodically and/or selectively. The periphery of the boiler B of the absorption cooling device is the inner of the boiler insulation BI of the absorption cooling device. During step S1 also other properties and/or parameters of the absorption cooling device can be measured and then considered in step S2 besides the electrical resistance and/or conductivity. These other properties and/or parameters may contain a flow rate, velocity and/or current and/or other similar of these characteristics indicating properties and/or parameters of the absorption cooling device.
In case the comparison conducted in step S2 indicates a non-negligible leakage for the absorption cooling device and/or a secure continuation of the operation of the absorption cooling device cannot be guaranteed, the absorption cooling device, and in particular the heating unit H of the absorption cooling device is shut down and/or not restarted in step S3.
Number | Date | Country | Kind |
---|---|---|---|
1020192059082 | Apr 2019 | DE | national |