The typical hard disk drive includes a head disk assembly (HDA) and a printed circuit board assembly (PCBA) attached to a disk drive base of the HDA. The HDA includes at least one disk (such as a magnetic disk, magneto-optical disk, or optical disk), a spindle motor for rotating the disk, and a head stack assembly (HSA). The PCBA includes electronics and firmware for controlling the rotation of the spindle motor and for controlling the position of the HSA, and for providing a data transfer channel between the disk drive and its host.
The spindle motor typically includes a rotor including one or more rotor magnets and a rotating hub on which disks are mounted and clamped, and a stator. If more than one disk is mounted on the hub, the disks are typically separated by spacer rings that are mounted on the hub between the disks. Various coils of the stator are selectively energized to form an electromagnetic field that pulls/pushes on the rotor magnet(s), thereby rotating the hub. Rotation of the spindle motor hub results in rotation of the mounted disks.
The HSA typically includes an actuator, at least one head gimbal assembly (HGA), and a flex cable assembly. During operation of the disk drive, the actuator must rotate to position the HGAs adjacent desired information tracks on the disk. The actuator includes a pivot-bearing cartridge to facilitate such rotational positioning. The pivot-bearing cartridge fits into a bore in the body of the actuator. One or more actuator arms extend from the actuator body. An actuator coil is supported by the actuator body, and is disposed opposite the actuator arms. The actuator coil is configured to interact with one or more fixed magnets in the HDA, to form a voice coil motor. The PCBA provides and controls an electrical current that passes through the actuator coil and results in a torque being applied to the actuator.
Each HGA includes a head for reading and writing data from and to the disk. In magnetic recording applications, the head typically includes a slider and a magnetic transducer that comprises a writer and a read element. In optical recording applications, the head may include a mirror and an objective lens for focusing laser light on to an adjacent disk surface. The slider is separated from the disk by a gas lubrication film that is typically referred to as an “air bearing.” The term “air bearing” is common because typically the lubricant gas is simply air. However, air bearing sliders have been designed for use in disk drive enclosures that contain an alternative gas (e.g. nitrogen) that may not degrade lubricants and protective carbon films as quickly as does a gas like air that contains oxygen.
Disk drive enclosures disclosed in the art to contain an alternative gas are typically hermetically sealed to prevent an unacceptable rate of leakage that might undesirably alter the tribochemistry of the head disk interface, possibly leading to degradation in reliability, head crashes, and associated data loss. Hermetically sealing a disk drive may also beneficially prevent large changes in moisture and humidity within the disk drive.
Various methods and structures that have been disclosed in the past to hermetically seal disk drive enclosures. The evaluation and further improvement of such methods and structures depends, in part, on practical and sensitive leakage testing. However, conventional methods to test for leakage from a hermetically sealed disk drive have required the addition of components and cost to the disk drive devices, and/or have not been sensitive enough to quickly and reliably identify slow or minor leaks that still might ultimately reduce disk drive lifespan months or years later.
Thus, there is a need in the art for an improved method to test for leakage of a hermetically sealed disk drive enclosure, which may be practically implemented and integrated in a high volume and low cost disk drive manufacturing process, and which is sensitive enough to ensure adequate post-manufacture product reliability and lifetime.
The foregoing tracer gas concentration ranges may provide a subtle dual advantage in the context of disk drive applications. Specifically, even if such a concentration of tracer gas were to undesirably leak away during protracted field use of a disk drive (that passed the initial leakage testing), the remaining main gas within the disk drive may still be sufficient for proper functioning of the hydrodynamic gas bearing between the read head and the disk. Hence, a tracer gas concentration in the forgoing range may be large enough to initially serve to facilitate leakage testing of adequate sensitivity, and also be small enough to—much later in the lifetime of the disk drive—help avoid a leakage-related “head crash” or data loss. In this way, the foregoing tracer gas concentration range may enhance disk drive data reliability in two ways, both initially during leak testing, and much later in the lifetime of the disk drive.
In step 214 of the embodiment of
Various embodiments of the present invention may optionally facilitate the testing and use of a non-oxygen internal disk drive gas mixture within the disk drive, which may improve the lifetime and reliability the disk drive—especially in disk drives that include EAMR technology. In disk drives that utilize EAMR technology, localized laser heating may otherwise cause oxygen in air to undesirably react with chemicals in the disk drive (e.g. oxidize and thereby deplete or undesirably change the chemical properties of lubricant on the disk surface). Because hydrogen gas is more reactive than helium gas, helium gas may be preferred in the embodiment of
In the foregoing specification, the invention is described with reference to specific exemplary embodiments, but those skilled in the art will recognize that the invention is not limited to those. It is contemplated that various features and aspects of the invention may be used individually or jointly and possibly in a different environment or application. The specification and drawings are, accordingly, to be regarded as illustrative and exemplary rather than restrictive. For example, the word “preferably,” and the phrase “preferably but not necessarily,” are used synonymously herein to consistently include the meaning of “not necessarily” or optionally. “Comprising,” “including,” and “having,” are intended to be open-ended terms.
Number | Name | Date | Kind |
---|---|---|---|
4419882 | Ishii et al. | Dec 1983 | A |
4608866 | Bergquist | Sep 1986 | A |
4776207 | Holme | Oct 1988 | A |
5454157 | Ananth et al. | Oct 1995 | A |
6959586 | Watts et al. | Nov 2005 | B2 |
7062387 | Burns et al. | Jun 2006 | B1 |
7274534 | Choy et al. | Sep 2007 | B1 |
7299681 | Cummings | Nov 2007 | B2 |
7434987 | Gustafson et al. | Oct 2008 | B1 |
20030021054 | Feliss et al. | Jan 2003 | A1 |
20030026033 | Fioravanti et al. | Feb 2003 | A1 |
20030179489 | Bernett et al. | Sep 2003 | A1 |
20100199748 | Martino | Aug 2010 | A1 |
20110212281 | Jacoby et al. | Sep 2011 | A1 |
20120137751 | Brown et al. | Jun 2012 | A1 |
Entry |
---|
U.S. Appl. No. 12/714,297, filed Feb. 26, 2010, 15 pages. |