1. Field of the Invention
Our invention relates to an environmentally friendly burner assembly and method of using the burner assembly to combust mixtures of fuel and air and fuel, air and recirculated combustion gases. More specifically, our improved burner design uses rapid mixing of primary fuel and air in a venturi system to reduce the combustion temperature and minimize flame volume. Our burner may also recirculates combustion products to minimize the formation of NOx, which is a precursor for air borne pollutants.
2. The Prior Art
Industrial gas burners are designed to generate heat and produce high combustion temperatures, typically in the range of from 2500 to 3000° F. At such temperatures, thermal nitrogen oxides (NOx) can form as gaseous byproducts of the combustion of air and the gas used as the fuel in the burners. These NOx byproducts are a major source of air pollution and governmental authorities have instituted strict environmental regulations limiting the amount of NOx gases that can be emitted into the atmosphere. The art has recognized that reducing the peak flame temperature of industrial burners can minimize NOx formation. Increasing the air/fuel ratio reduces the peak flame temperature. Also, as taught in U.S. Pat. No. 5,073,105, lower flame temperatures may be achieved by recirculating a small portion of exhaust gases (also known as furnace or flue gases) into the combustion zone to mix with the fuel and combustion air. Specifically, the recirculated furnace gases are mixed with fuel gas followed by mixing with the combustion air before combustion. In our invention, the primary fuel mixes with the combustion air then the recirculated flue gas mixes with that mixture. The secondary fuel mixes with recirculated flue gas before it mixes with the air from the interior of the tile. U.S. Pat. Nos. 6,007,325 and 5,984,665 describe a burner design that-has three flame regions, where the first region is formed using a pre-mix burner tip to combust a lean fuel-air mixture. In U.S. Patent Application Nos. US 2002/0064740; US 200110034001; US 2002/0015930; and US 2002/0064740 a number of venturi type premix designs are disclosed, each with a specific tip design. The venturi tip designs restrict and disrupt the flow of the premix exiting the venturi. In addition to the pre-mix burner tip, these designs also use recirculated furnace gases. Previous burner designs have used staging of the air, staging of the fuel, a combination of air and fuel staging, and internal combustion product recirculation to limit the formation of NOx in the combustion process. All of these methods inhibit the mixing of the fuel and air, which results in larger flame volumes and in some cases poor stability. Other known burner designs use the rapid mixing of the primary fuel and air but suffer the problem of instability and “flashback” of the flame into the primary fuel and air mixer assembly.
Our invention solves all of these problems because it uses rapid mixing of the primary fuel and air in a venturi system to minimize the flame volume and eliminates flash back. A side benefit is the reduced size of the burner that permits it to fit existing openings for conventional burners. Our design generates low amounts of NOx gases, typically in amounts of less than 10 ppmv.
Accordingly, an object of our invention is to provide a burner design and method of using the burner for heating industrial furnaces, boilers, incinerators and other commercial equipment while generating low levels of NOx emissions.
As stated, our invention is directed to an improved burner design and method of using the burner to supply heat to industrial equipment through the combustion of air and fuel. Our improved burner combines rapid premixing of primary air and primary fuel within at least one venturi with the injection of secondary fuel to achieve a stable flame and low NOx emissions. The recirculation of combustion product gases may be used to achieve even lower NOx emissions. Low NOx levels of 10 ppmv or less greatly reduce the air pollutants that are normally associated with conventional industrial burners. The venturi system used in our burner is designed without the use of special tips or nozzles that typically disrupt and/or restrict the flow exiting the venturi leading to reduced primary air capacity and flashback. When the recirculation of combustion products is used, positioning of the outlets of the venturi system within the interior space of the burner tile and downstream of the recirculation conduits draws in the recirculated combustion product gases into the interior space where they are mixed with the premix of primary air and primary fuel. The primary air/fuel ratio is normally greater than the lean or lower flammability limit, which greatly reduces the chances of flashback occurring. Flashback occurs when the flame moves to a position upstream of the desired point of combustion, which in our design is the down stream or upper edge of the tile, into the interior space of the tile. In such a situation, the flame will burn at the venturi outlet or in the venturi causing damage to the venturi system. Our design avoids this problem because of the lean mixture of fuel and combustion air and the elimination of the restrictive nozzle.
Combustion in a primary combustion zone is maintained at the upper edge of the tile by the use of secondary fuel supplied by tips located on or near the outside surface of the tile. The secondary fuel is used to increase the ratio of fuel to air to the point that the mixture is within the flammability range of mixtures. Typically, anywhere from 40% to 60% of the total fuel is used as primary fuel. In a preferred design, 45% of the total fuel is used as the primary fuel with the balance used as the secondary fuel. A portion of the secondary fuel is also used to combust the combustion products from the first combustion zone in a second combustion zone located downstream of the first combustion zone. In a preferred design approximately 10 to 30% of the secondary fuel is used in the first combustion zone with the balance being used in the second combustion zone.
Primary air control to the venturi system can be achieved using individual air adjustment for the inlet of each venturi or by the use of a primary air wind box having a single damper control. In a variation of our burner design a secondary air supply system or wind box is used in situations where the primary air supply cannot deliver a sufficient amount of oxygen (O2) for complete combustion of the primary and secondary fuel. The secondary air supply may be independent and segregated from the primary air supply, and is delivered to the interior space of the tile through secondary air openings that preferably discharge the secondary air at or above the outlet of the venturis.
While our invention is susceptible of embodiment in many different forms, there is shown in the drawings and will be described below in detail, a specific embodiment with the understanding that the present disclosure is to be considered an exemplification of the principles of the invention and is not intended to limit our invention to the embodiment illustrated.
While the embodiments of the invention discussed below are shown in the environment of a floor of an enclosed structure, such as a furnace, it should be understood that the burners of the present invention may also be installed in a side wall or roof of any structure requiring heating with suitable modification which would be readily apparent to one of ordinary skill in the art having the present disclosure before them, without departing from the principles of the invention. In addition, although the furnaces of the present invention are discussed with respect to natural (“thermal”) draft furnaces, it is to be understood that powered burners and/or induced draft burners are also intended to be encompassed by the principles of the invention described herein, with suitable modifications which would be readily apparent to one of ordinary skill in the art having the present disclosure before them.
A preferred configuration of conduits has an entrance opening on the outside surface of the tile that is greater in dimension than exit opening into the interior space 20, although other geometries can be utilized to reduce flow path area, such as by tapering the top and bottom surfaces. Likewise, while a round shaped conduit is illustrated any shaped conduit can be utilized, including rectangular, oval or square. It is also preferred to have a contoured edge for the entrance openings. In another embodiment, each recirculation conduit is oriented relative to the center axis of burner tile 1 so that the direction of flow of the furnace gases is offset from radial, preferably at angle of at least 30 degrees relative to the axis or centerline of the tile.
Fuel gas to the burner assembly is supplied through manifold 16 and is split between primary fuel tips 11 and secondary fuel tips 7. In
The premix flows up the venturi and exits the venturi outlet 19 into the interior space 20. In the embodiment shown in
In the embodiment shown in
Although we have shown a preferred embodiment of our burner having a circular shaped title, our improved burner design could likewise be rectangular, oval or square in shape. Use of the improved burner design of the present invention, and the attendant process for heating a furnace which are provided by it, thus results in numerous advantages, many of which are mentioned above. It will be understood that our invention may be embodied in other specific forms without departing from its spirit or central characteristics. The above-mentioned embodiments and figure, therefore, are to be considered in all respects as illustrative and not restrictive, and the invention is not to be limited to the details given here.
Number | Name | Date | Kind |
---|---|---|---|
4629413 | Michelson et al. | Dec 1986 | A |
5073105 | Martin et al. | Dec 1991 | A |
5195884 | Schwartz et al. | Mar 1993 | A |
5984665 | Loftus et al. | Nov 1999 | A |
6007325 | Loftus et al. | Dec 1999 | A |
6394792 | McDonald et al. | May 2002 | B1 |
6565361 | Jones et al. | May 2003 | B2 |
6695609 | Chung et al. | Feb 2004 | B1 |
20010034001 | Poe et al. | Oct 2001 | A1 |
20020015930 | Poe et al. | Feb 2002 | A1 |
20020064740 | Venizelos et al. | May 2002 | A1 |