The present disclosure relates to the field of display technology, particularly, to a modularized light emitting diode (LED) arc display.
An LED display device has advantages such as lower power consumption, reduced volume and better image display as compared to a traditional LCD display device and is thus gradually being accepted by the general public. In recent years, arc display devices have been widely adopted and gradually becoming the mainstream of the market.
Currently, a large-area arc display (A) commonly seen on the market is formed by arranging and assembling a plurality of quadrilateral (for example, rectangular or trapezoidal) LED matrix light-emitting units. However, in the assembly process of the plurality of LED matrix light-emitting units, any two adjacent LED matrix light-emitting units are highly likely to form a discontinuity in contour due to tolerance, gap, break or other factors, and thus unable to form a smooth arc display. For example, a traditional LED arc display (A) is shown in
The objective of the present disclosure is to provide a modularized LED arc display.
In order to achieve the aforesaid objective among others, the LED arc display of the present disclosure includes at least one LED matrix array module. Each LED matrix array module is composed of a plurality of LED matrix units arranged regularly. Each LED matrix unit includes a display surface, and the display surface has an outer contour. The outer contour is a non-quadrilateral.
In an embodiment of the present disclosure, each LED matrix unit further includes a plurality of LED components, wherein each LED component includes a plurality of light sources of different colors, and the order of arrangement of the plurality of light sources of each LED component is different from the order of arrangement of the plurality of light sources of the adjacent LED component.
In an embodiment of the present disclosure, the outer contour of the display surface forms a protrusion portion and a recess portion, and the shape of the protrusion portion corresponds to the shape of the recess portion.
In an embodiment of the present disclosure, wherein the outer contour of the display surface has at least five sides.
In an embodiment of the present disclosure, the outer contour of the display surface is hexagonal.
In an embodiment of the present disclosure, the display surface is structurally symmetrical about the longitudinal line.
In an embodiment of the present disclosure, at least two sides of the outer contour of the display surface are parallel in the longitudinal direction.
In an embodiment of the present disclosure, the LED arc display further includes at least one adjustment component, the least one adjustment component being connected to at least one LED matrix array module so as to adjust the least one LED matrix array module by means of the least one adjustment component about at least one of the three axes.
In an embodiment of the present disclosure, the curvature of the display surface about the longitudinal direction is 1.4 degrees.
In an embodiment of the present disclosure, the curvature of the display surface about the latitudinal direction is 1.5 degrees.
In an embodiment of the present disclosure, the LED arc display further includes at least one support frame, wherein the at least one LED matrix array module is disposed on the at least one support frame.
Accordingly, the LED arc display of the present disclosure adopts LED matrix units having non-quadrilateral outer contours to improve the unsmooth visual perception generated by the assembled plurality of LED matrix units due to assembly tolerance.
Since various aspects and embodiments are only illustrative and non-limiting, after reading this specification, those with ordinary knowledge may have other aspects and embodiments without departing from the scope of the present disclosure. According to the following detailed description and patent application scope, the features and advantages of these embodiments will be more prominent.
In present disclosure, “a” or “an” is used to describe the units, elements, and components described herein. This is done for convenience of description only and providing a general meaning to the scope of the present disclosure. Therefore, unless clearly stated otherwise, the description should be understood to include one, at least one, and the singular can also include plural.
In this disclosure, the terms “including”, “having”, “containing” or any other similar terms are intended to encompass non-exclusive inclusive. For example, a component, structure, article, or device that contains a plurality of elements is not limited to such elements as listed herein but may include those not specifically listed but which are typically inherent to the component, structure, article, or device. In addition, the term “or” means an inclusive “or” rather than an exclusive “or” unless clearly stated to the contrary.
Please refer to
In an embodiment of the present invention, the LED arc display 1 of the present invention further includes at least one support frame. The at least one LED matrix array module 10 is disposed on the at least one support frame 20, causing the at least one LED matrix array module 10 to be fixed and supported by the at least one support frame 20, thereby composing the LED arc display 1 of the present invention. Based on different number of the LED matrix array modules 10 being disposed, the LED arc display 1 of the present invention may take the form of a curved display, a spherical display or other forms of display, but the present invention is not limited thereto.
In addition, in order to conveniently adjust the location or direction of each LED matrix array module 10 being disposed, in an embodiment of the present invention, the LED arc display 1 of the present invention further includes at least one adjustment component (not shown). The least one adjustment component is connected to the at least one LED matrix array module 10, for example, on the side of the LED matrix array module 10 facing the support frame 20, so as to adjust the location or angle of the least one LED matrix array module 10 by means of the least one adjustment component 30 about at least one of the three axes (x-axis, y-axis, z-axis) of the rectangular coordinate system. The number of the adjustment component 30 may be changed pursuant to requirements, for example, a number of adjustment components may be disposed corresponding to the number of the LED matrix array modules 10, or a single adjustment component may be disposed for multiple LED matrix array modules 10.
Please refer to
In an embodiment of the present invention, the curvature of the display surface about the longitudinal direction is 1.4 degrees, while the curvature of the display surface about the latitudinal direction is 1.5 degrees, but the present invention is not limited thereto. For example, if the display range of the LED arc display 1 of the present invention is 0 to 180 degrees, and the if the curvature of the display surface 110 about the longitudinal direction is about 1.4 degrees, then it means that the LED arc display 1 of the present invention can accommodate about 128 LED matrix units 100 about the longitudinal direction L1; and if the display range of the LED arc display 1 of the present invention about the latitudinal direction L2 is −30 to 90 degrees, then it means that the LED arc display 1 of the present invention about the latitudinal direction can accommodate about 80 LED matrix units 100.
The outermost periphery of the display surface 110 of the LED matrix unit 100 has an outer contour 111. In the present invention, the outer contour 111 of the display surface 110 is non-quadrilateral, namely excluding the traditional shapes with for sides such as a rectangle or a trapezoid. For example, the outer contour 111 of the display surface 110 may be polygonal or of other irregular shape other than being quadrilateral. Preferably, the outer contour 111 of the display surface 110 at least has five sides. In the following embodiment, the outer contour 111 of the display surface 110 of the LED matrix unit is taken as hexagonal as an example to illustrate the technical features of the LED arc display of the present invention, but the invention is not limited thereto.
In an embodiment of the present invention, a protrusion portion 111a is formed on one side of the outer contour 111 of the display surface 110, a recess portion 111b is formed on the opposite side. The shape of the protrusion portion 111a corresponds to the shape of the recess portion 111b, namely, the shape of the protrusion portion 111a can act in concert with the shape of the recess portion 111b, causing the protrusion portion 111a of the outer contour 111 of any one LED matrix unit 100 to embed into the recess portion 111b of the outer contour 111 of another LED matrix unit 100, so as to assist in the assembling and fixing two adjacent LED matrix units 100 about the longitudinal direction L1. For example, in the present embodiment, the shape of the protrusion portion 111a may exhibit a sharp angle structure, whereas the shape of the recess portion 111b may exhibit a reentrant angle structure corresponding to the sharp angle structure.
Moreover, in the present embodiment, the display surface 110 is structurally symmetrical about the longitudinal direction, and at least two sides of the outer contour 111 of the display surface 110 are parallel in the longitudinal direction. By means of this design, when plural LED matrix units 100 are assembled side by side about the same latitudinal line, the existing assembly convenience can be kept and close arrangement can be readily achieved.
Please refer to
Please refer to
In summary, the LED arc display of the present invention can improve the convenience of transportation and assembly through the modular design, and the non-quadrilateral contour design for each LED matrix unit can also make the gap between the adjacent two LED matrix units after assembly smoother to produce a better visual experience.
The above implementations are essentially only auxiliary descriptions, and are not intended to limit the embodiments of the application subject or the applications or uses of the embodiments. In addition, although at least one illustrative example has been presented in the foregoing embodiments, it should be understood that the present invention can still have a large number of variations. It should also be understood that the embodiments described herein are not intended to limit the scope, use, or configuration of the requested subject matter in any way. On the contrary, the foregoing embodiments will provide a convenient guide for those skilled in the art to implement one or more of the embodiments. Furthermore, various changes can be made to the function and arrangement of the components without departing from the scope defined by the scope of the patent application, and the scope of the patent application includes known equivalents and all foreseeable equivalents at the time the patent application is filed.
This application claims priority of U.S. Provisional Application No. 63/134,968 filed on Jan. 8, 2021 under 35 U.S.C. § 119 (e), the entire contents of all of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
6154362 | Takahashi | Nov 2000 | A |
7663715 | Jin | Feb 2010 | B2 |
8885120 | Ben-David | Nov 2014 | B2 |
10342093 | Homer | Jul 2019 | B2 |
11079997 | Cope | Aug 2021 | B2 |
20030227774 | Martin | Dec 2003 | A1 |
20080252197 | Li | Oct 2008 | A1 |
20150292716 | Yamazaki | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
110379319 | Oct 2019 | CN |
Number | Date | Country | |
---|---|---|---|
20220223075 A1 | Jul 2022 | US |
Number | Date | Country | |
---|---|---|---|
63134968 | Jan 2021 | US |