The present invention relates generally to LED lighting fixtures. More particularly, the present invention relates to an LED architectural luminaire having improved illumination characteristics.
Lighting fixtures are known in the art. Since the invention of the incandescent light bulb, or lamp, lighting fixtures housing incandescent lamps have been deployed in countless environments in countless configurations. The development of the fluorescent lamp and its concomitant energy savings led to their widespread use and placement in areas previously populated with incandescent lights. Today, fluorescent fixtures vastly predominate in many places, especially business and commercial settings where energy cost savings are amplified.
Overtime, fluorescent fixtures have been modified to not only improve upon the aesthetic look of the fixtures, but also the light scattering characteristics. As the industry shifts to newer energy saving technologies, such as light emitting diodes (LEDs), the desire to maintain the aesthetics and superior lighting characteristics of existing fluorescent fixtures remains. In other words, prior artisans are seeking to develop an LED fixture that has the outward appearance of an existing fluorescent fixture, while also providing the uniform “bat wing” light output, even luminousity, and favorable spacing criteria of fluorescent fixtures.
A number of prior artisans have attempted to achieve these goals by replacing the elongated lamps of fluorescent fixtures with strips of LEDs. These and other prior artisans have recognized that the swapping of LEDs in the place of fluorescent bulbs does result in the superior lighting characteristics of the original fixtures. Problems encountered include inferior brightness, uneven luminosity, presence of dark areas, inability to create a “bat wing” distribution of light, and poor spacing criteria.
In an effort to overcome these drawbacks with LED lighting fixtures, some prior artisans have attempted to increase the number or brightness of the LEDs by using multiple strips of LEDs or larger diodes. Other prior artisans have attempted to address these problems by modifying the size, shape, or angles of the reflectors and lenses of the fixtures. And still others, have attempted to address these problems by a combination of these methods. To date, those in the art have failed to solve the problems in successfully deploying LED lighting in place of traditional fluorescent lighting.
The foregoing highlights the long-felt, yet unresolved, need in the art for an LED lighting fixture that overcomes the problems in the art. The foregoing also highlights the long-felt, yet unresolved, need in the art for methods of using LEDs in a manner that results in suitable lighting characteristics.
Various embodiments of the present invention overcome various of the drawbacks in the art and offer other advantages features as well. According to one aspect of various embodiments of the present invention there is provided an LED light fixture having the same general outward appearance as prior art fluorescent architectural luminaires and having a light output affording the same general favorable spacing criteria.
According to an advantageous embodiment of this aspect of the invention there is provided a LED mounting plate assembly having a flat central section and opposing downwardly angled sides. Mounted along the length of the angled sides are LED strips, whereby the LEDs irradiate light at an angle relative to the floor
One advantageous feature of this aspect of the invention is the ability to ensure a “bat-wing” distribution of light. Another aspect of this embodiment of the invention is the ability to keep a favorable spacing criteria that rivals that of prior art fluorescent fixtures. Another aspect of this embodiment of the invention is the ability to achieve even luminousity that rivals that of fluorescent fixtures deployed in a work area.
In a presently preferred embodiment, the angle of the LED mounting surfaces are between 20° and 30° from horizontal. In a particularly preferred embodiment involving use of LEDs in a SERRANO™ fixture, the angle of the mounting surfaces is about 21 degrees.
According to another advantageous aspect of some embodiments of the invention is the provision of end caps on the fixture to block dark areas resulting from the end of the LED strips from being discernible by the viewer, thereby overcoming another drawback in the art.
The invention as described and claimed herein should become evident to a person of ordinary skill in the art given the following enabling description and drawings. The aspects and features of the invention believed to be novel and other elements characteristic of the invention are set forth with particularity in the appended claims. The drawings are not intended to limit the scope of the invention. The following enabling disclosure is directed to one of ordinary skill in the art and presupposes that those aspects of the invention within the ability of the ordinarily skilled artisan are understood and appreciated.
The above benefits and other advantages of the various embodiments of the present invention will be more apparent from the following detailed description of exemplary embodiments of the present invention and from the accompanying drawing figures, in which:
The drawings are to scale where indicated on the Figures as will be clear to one of ordinary skill in the art.
While the present invention will be described in connection with embodiments of the invention designed to mimic the appearance and footprint of prior art SERRANO™ luminaires, it will be readily apparent to one of ordinary skill in the art armed with the present specification that the present invention can be applied to any suitable luminaire in any suitable environment through routine experimentation.
The assignee of the present application sells a line of aesthetically pleasing architectural luminaires sold under the trade name “SERRANO.” Presently, these luminaires come in standard 1′×4′, 2′×2′, and 2′×4′ versions with alternative aesthetic central lens design. Many details of the SERRANO™ operation and appearance are available in Applicant's co-pending U.S. Ser. No. 13/687,124, filed Nov. 28, 2012, which is hereby incorporated-by-reference in its entirety.
Providing customers with the aesthetics while meeting the favorable spacing of the SERRANO™ line in an LED version would prove impossible based on the conventional wisdom in the art when it comes to LED luminaires. However, the present inventors went against the weight of authority and achieved an LED version of the SERRANO™ line that, for all intents and purposes, looks identical to the fluorescent versions and provides the desired light output characteristics.
As best shown in
Turning to
End bridges/brackets 4 or “fillers” are disposed on each end of the housing 1 to provide support for securing the LED mounting plate 21 above the chasm in the housing that is home to the internal electronics supporting the LED illumination source including the EMpack 6 and LED driver 7. The fillers 4 and mounting plate 21 are secured in place by strategically placed screws along the periphery of the mounting plate 21. Similar screws 8 or securing means are used to fasten the end caps 3 in place.
In this 1′×4′ embodiment, as best shown in
While certainly not intuitive by any means, the present inventors have discovered that the angling of the LED boards (and LEDs) allows the ultimate light output to be vastly improved over prior art LED light fixtures that generally ran the LED boards along a central, flat mounting plate. The angling of the LEDs allows the fixture to appear almost indiscernibly the same as a fluorescent fixture (the frosted, textured, or prism central lens prevents the individual LEDs from being visible). The angling of the LEDs allows the entire face of the fixture to be illuminated (avoids the dark outside areas), which was a major drawback in the art. Prior artisans attempted to deal with the problem by changing, manipulating or adding additional reflectors; or in some cases, adding additional LEDs which affected other aesthetic aspects of the fixture.
Prior art LED luminaires often failed to provide favorable spacing criteria, sometimes falling below 1.2, due in large part to the limited 120° light output of the LEDs. The present invention now provides spacing criteria of upwards of 1.5 or more, which allows for spacing installations similar or the same as that of fluorescent lighting. In the end, the present invention provides a bat-wing distribution of lighting that is akin to that desired by fluorescent lighting.
Continuing with
Continuing with
As shown in the various views in
As will now be readily appreciated by one of ordinary skill in the art armed with the present specification, the inventive methods of the present invention lend themselves to configuring LED lighting fixtures that mimic the aesthetic and lighting characteristics of fluorescent lighting common in the industry by manipulating the angle of the LED boards in conjunction with the provision of the other features discussed herein and shown in the figures. For example, the presently preferred 21° angle of the LED boards discussed in connection with a presently preferred embodiment was based on a number of factors specific to the configuration of the fixture, and in particular, the 2.912 inch distance between the LED mounting plate and the apex of the central lens.
The foregoing embodiments and advantages are merely exemplary and are not to be construed as limiting the scope of the present invention. The description of an exemplary embodiment of the present invention is intended to be illustrative, and not to limit the scope of the present invention. Various modifications, alternatives and variations will be apparent to those of ordinary skill in the art, and are intended to fall within the scope of the invention.
This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application 61/790,005, filed Mar. 15, 2013, the contents of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
6007217 | Ferrier | Dec 1999 | A |
7824071 | Zheng | Nov 2010 | B2 |
7854534 | Liu | Dec 2010 | B2 |
7901105 | Fowler, Jr. et al. | Mar 2011 | B2 |
7918575 | Ho | Apr 2011 | B2 |
7926974 | Wung et al. | Apr 2011 | B2 |
8052300 | Zhang et al. | Nov 2011 | B2 |
8128256 | Kim et al. | Mar 2012 | B2 |
8201967 | Ramer et al. | Jun 2012 | B2 |
8231243 | Boissevain et al. | Jul 2012 | B1 |
8251541 | Lin | Aug 2012 | B2 |
8272763 | Chinnam | Sep 2012 | B1 |
8360620 | Rashidi | Jan 2013 | B1 |
20110090687 | Lin et al. | Apr 2011 | A1 |
20110141738 | Ogura | Jun 2011 | A1 |
20120033420 | Kim et al. | Feb 2012 | A1 |
20120146512 | Kim | Jun 2012 | A1 |
20120155073 | McCanless | Jun 2012 | A1 |
20120206909 | Morgan | Aug 2012 | A1 |
20130193857 | Tlachac | Aug 2013 | A1 |
20140078728 | Rodgers et al. | Mar 2014 | A1 |
20140104843 | McCane | Apr 2014 | A1 |
Number | Date | Country |
---|---|---|
2009157468 | Dec 2009 | WO |
2010024507 | Mar 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20140268759 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61790005 | Mar 2013 | US |