1. Field
The present disclosure relates to a light emitting diode (LED) array module and, more particularly, to aspects of the LED array module and to a frame of the LED array module.
2. Description of Related Art
LEDs have been developed for many years and have been widely used in various light applications. As LEDs are light-weight, consume less energy, and have a good electrical power to light conversion efficacy, they have been used to replace conventional light sources, such as incandescent lamps and fluorescent light sources. LEDs may be utilized in an array module.
In one aspect of the disclosure, an LED module frame includes a supporting member, legs, and arms. The supporting member is configured to support a reflector. The legs are coupled to the supporting member. The arms are coupled to the supporting member and extend inwardly towards an inner edge of the supporting member. Each of the arms has an attachment mechanism for attaching to an LED array.
Various aspects of the present invention will be described herein with reference to drawings that are schematic illustrations of idealized configurations of the present invention. As such, variations from the shapes of the illustrations as a result, for example, manufacturing techniques and/or tolerances, are to be expected. Thus, the various aspects of the present invention presented throughout this disclosure should not be construed as limited to the particular shapes of elements (e.g., regions, layers, sections, substrates, etc.) illustrated and described herein but are to include deviations in shapes that result, for example, from manufacturing. By way of example, an element illustrated or described as a rectangle may have rounded or curved features and/or a gradient concentration at its edges rather than a discrete change from one element to another. Thus, the elements illustrated in the drawings are schematic in nature and their shapes are not intended to illustrate the precise shape of an element and are not intended to limit the scope of the present invention.
It will be understood that when an element such as a region, layer, section, substrate, or the like, is referred to as being “on” another element, it can be directly on the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present. It will be further understood that when an element is referred to as being “formed” on another element, it can be grown, deposited, etched, attached, connected, coupled, or otherwise prepared or fabricated on the other element or an intervening element. In addition, when a first element is “coupled” to a second element, the first element may be directly connected to the second element or the first element may be indirectly connected to the second element with intervening elements between the first and second elements.
Furthermore, relative terms, such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another element as illustrated in the drawings. It will be understood that relative terms are intended to encompass different orientations of an apparatus in addition to the orientation depicted in the drawings. By way of example, if an apparatus in the drawings is turned over, elements described as being on the “lower” side of other elements would then be oriented on the “upper” side of the other elements. The term “lower” can therefore encompass both an orientation of “lower” and “upper,” depending of the particular orientation of the apparatus. Similarly, if an apparatus in the drawing is turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements. The terms “below” or “beneath” can therefore encompass both an orientation of above and below.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and this disclosure.
As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprise,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The term “and/or” includes any and all combinations of one or more of the associated listed items.
Various aspects of an LED array module may be illustrated with reference to one or more exemplary configurations. As used herein, the term “exemplary” means “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other configurations of an LED array module disclosed herein. Additionally, LEDs are but one form of solid state light emitters. Thus, the exemplary configurations, described with reference to LEDs, are representative of any solid state light emitter which may be used in embodiments of the disclosure.
Furthermore, various descriptive terms used herein, such as “on” and “transparent,” should be given the broadest meaning possible within the context of the present disclosure. For example, when a layer is said to be “on” another layer, it should be understood that that one layer may be deposited, etched, attached, or otherwise prepared or fabricated directly or indirectly above or below that other layer. In addition, something that is described as being “transparent” should be understood as having a property allowing no significant obstruction or absorption of electromagnetic radiation in the particular wavelength (or wavelengths) of interest, unless a particular transmittance is provided.
Bolts 316 insert through the cover 312, through the frame 304, and through cutouts on the printed circuit board 302 for allowing the module 300 to attach to a heat sink. A Teflon nut 318 inserted into leg of frame 304 threads onto screw 316 holding cover 312, reflector 310, and frame 304 together as a subassembly. An electrical connector 320 may be coupled to the LED array 306. The LED array 306, reflector 310 and printed circuit board 302 are sealed within the cover 312 with the silicone o-ring 322 and a rubber grommet 324 that is insertable into a hole in the side of the cover 312.
Alternatively, tension springs may be used within the holes 406 of the legs 412 in order to apply an upward force on the pins 414. The pins 414 may be configured to be stationary with respect to the frame 500. In such a configuration, the user must press the heads 415 while rotating the frame 500 into a secured position with respect to the heat sink. Alternatively, the pins 414 may be configured to rotate with respect to the frame 500. In such a configuration, the heads 415 may include grooves to allow a screwdriver to press and to rotate the pins 414 into a secured position within the heat sink.
Because the frame 500 is fully enclosed within the cover 312, the pins 414 may be of such a length that the heads 415 of the pins 414 are exposed above the cover 312. In order to maintain the seal that the cover 312 provides, the cover 312 may include a flexible, but water resistant membrane, below which rest the heads 415 of the pins 414. In such a configuration, a user may press the membrane in order to press the heads 415 of the pins 414 in order to exert a force opposite to the force exerted by the springs.
As shown in
The frame 700 would eliminate the need for the grommet 324 (which includes holes for the electrical wiring), thus improving the seal of the cover 312 in a harsh environment. While frame 700 shows the conductors 460 extending through the legs 412 within the pins 414, the conductors 460 may extend from another part of the frame 700 and be separate from the pins 414. In such a configuration, the insulated member of the heat sink would include slots for both the pins 414 and the conductors 460. The printed circuit board 302 includes holes through which both the pins 414 and the conductors 460 may extend.
As discussed supra, the heat sink may have an insulated member to which the LED module pins 414 attach. As such, the sections of the heat sinks 802-808 shown with pin slots and power leads may be the insulated member.
The various aspects of this disclosure are provided to enable one of ordinary skill in the art to practice the present invention. Modifications to various aspects of an LED array module presented throughout this disclosure will be readily apparent to those skilled in the art, and the concepts disclosed herein may be extended to other applications. Thus, the claims are not intended to be limited to the various aspects of an LED array module presented throughout this disclosure, but are to be accorded the full scope consistent with the language of the claims. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”
This Application claims the benefit of U.S. Provisional Patent Application No. 61/242,880, entitled “LED Array Module and LED Array Module Frame,” filed on Sep. 16, 2009, which is expressly incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61242880 | Sep 2009 | US |