This application claims the benefit of CN application No. 201110035189.4, filed on Jan. 30, 2011, and incorporated herein by reference.
This invention relates generally to electrical circuits, and more particularly but not exclusively to light emitting diodes (“LEDs”).
White LEDs (“WLEDs”) have gained significant importance in the applications of general illumination market and display market. One example is the WLED street lamp application. Currently LED backlight power supplies typically use a three-stage driver system. Some other power supplies are also required for the LED backlight driver system, for example, 12V, and/or 5V.
There are several kinds of structures for LED backlight driver system, some examples are shown in
The conventional LED backlight driver system comprises multiple converters such as isolated converters, non-isolated converters, and LED driver stage. The conventional LED backlight driver system is complex, has low efficiency and high costs.
In one embodiment, a light-emitting diode (LED) driver system with a simple structure is disclosed. The LED driver system may comprise an isolated converter and a DC/DC converter. The isolated converter may be coupled to a first input signal, and may provide a LED current and a bus voltage. The isolated converter may be configured to regulate the LED current and the bus voltage separately in accordance with a dimming signal. The DC/DC converter may comprise an input coupled to the bus voltage.
The use of the same reference label in different drawings indicates the same or like components.
In the present disclosure, numerous specific details are provided, such as examples of circuits, components, and methods, to provide a thorough understanding of embodiments of the invention. Persons of ordinary skill in the art will recognize, however, that the invention can be practiced without one or more of the specific details. In other instances, well-known details are not shown or described to avoid obscuring aspects of the invention.
Several embodiments of the present invention are described below with reference to LED backlight driver system and associated method of operation. As used hereinafter, the term “LED” encompasses LEDs, laser diodes (“LDs”), polymer LEDs (“PLEDs”), and/or other suitable light emitting diodes. The term “LED string” means one LED or more LEDs coupled in series. The term “couple” generally refers to multiple ways including a direct connection with an electrical conductor and an indirect connection through intermediate diodes, resistors, capacitors, and/or other intermediaries. The term “isolated” general refers to the fact that the input and the output of the converter are isolated by an electrical barrier, typically a transformer.
Isolated converter 301 has an input 3011, an output 3012 and an output 3013. Input 3011 is configured to receive an input signal V_in. Isolated converter 301 is configured to provide power for a LED string (not shown in
Each DC/DC converter 302_1 to 302_N has an input coupled to bus voltage V_bus and provides an output voltage, i.e., V_PS1 to V_PSN. For example, DC/DC converter 302_1 provides output voltage V_PS1, DC/DC converter 302_2 provides output voltage V_PS2, and DC/DC converter 302_N provides output voltage V_PSN. DC/DC converter 302_1 to 302_N may be any type of DC/DC converter circuit, e.g. boost converter circuit, buck converter circuit, etc.
A dimming signal DIM is employed, and pulse width modulation (“PWM”) dimming method may be used to adjust the luminance of the LED string. While power is supplied to the LED string and LED current I_LED is positive when dimming signal DIM is activated (e.g., dimming signal DIM is logic HIGH); and the power supplied to the LED string is cut off and LED current I_LED is almost zero ampere when dimming signal DIM is deactivated (e.g., dimming signal DIM is logic LOW). Isolated converter 301 is configured to regulate LED current I_LED and bus voltage V_bus separately in accordance with dimming signal DIM. In one embodiment, LED current I_LED is regulated when dimming signal DIM is activated, and bus voltage V_bus is regulated when dimming signal DIM is deactivated.
As described in the foregoing, LED driver system 300 is preferred for cost and simple architecture to achieve regulation of both LED current I_LED and bus voltage V_bus.
Primary circuit 403 comprises at least a primary side switch, wherein primary circuit 403 is configured to receive an input signal V_in, and wherein the primary side switch is switched to provide an AC signal. Isolated transformer T1 comprises a primary winding coupled to the primary side switch and two secondary windings, wherein the primary winding is coupled to the AC signal provided by the primary side switch. First rectified circuit 404 at a secondary side of the isolated converter is coupled to a first secondary winding of transformer T1 and first rectified circuit 404 is configured to provide a DC bus voltage V_bus, for example, 18V. Second rectified circuit 405 at a secondary side of the isolated converter is coupled to a second secondary winding of transformer T1 and second rectified circuit 405 is configured to provide a LED current I_LED. Controller 406 is configured to receive a feedback voltage signal V_bus from first rectified circuit 404 and a feedback current signal ILED_fb from second rectified circuit 405, and controller 406 is configured to provide a control signal CTRL coupled to a control terminal of the primary side switch. Control signal CTRL is configured to be responsive to the feedback voltage signal from first rectified circuit 404 and the feedback current signal from second rectified circuit 405. In one embodiment, controller 406 is further configured to receive an output voltage V_LED of second rectified circuit 405 and controller 406 is further configured to receive a feedback output current ISSD_fb of second rectified circuit 405. In one embodiment, controller 406 is further configured to provide a dimming signal DIM coupled to second rectified circuit 405 and a protection signal PRT coupled to second rectified circuit 405. In one embodiment, controller 406 is located at the primary side of the isolated converter. In another embodiment, controller 406 is located at the secondary side of the isolated converter.
In one embodiment, primary circuit 403 comprises a primary switches S1 and S2, and a capacitor C1. Primary circuit 403 regulates input signal V_in to an AC signal through switch S1 and switch S2 and the AC signal is coupled to the primary winding of transformer T1. One of ordinary skill in the art will appreciate that other topologies of primary circuit 403, e.g., half-bridge circuit may also be used without detracting from the merits of present invention. First rectified circuit 404/second rectified circuit 405 may be a half-wave rectifier circuit or a full-wave rectifier circuit. DC/DC converters 402_1 to 402_N convert bus voltage V_bus to DC voltage V_PS1 to V_PSN correspondingly. For example, DC/DC converter 402_1 converts bus voltage V_bus to DC voltage V_PS1, DC/DC converter 402_2 converts bus voltage V_bus to DC voltage V_PS2 and DC/DC converter 402_N converts bus voltage V_bus to DC voltage V_PSN.
One of ordinary skill in the art will appreciate that switch S1 and switch S2 may be metal oxide semiconductor field effect transistor (“MOSFET”). The MOSFET can be either N type or P type. Other types of switches such as bipolar junction transistor (“BJT”) or junction field effect transistor (“JFET”) can also be adopted.
The isolated converter may further comprise a protection switch S3. Protection switch S3 is coupled between second rectified circuit 405 and a LED string. Protection switch S3 is configured to be turned OFF to stop a power supplied to the LED string when fault condition occurs at second rectified circuit 405. Protection signal PRT is set activated when fault condition occurs at second rectified circuit 405. Protection signal PRT is coupled to a control terminal of protection switch S3. Fault condition at second rectified circuit 405 may comprise over voltage condition or over current condition at output of rectified circuit 405, and over current condition at the LED string. In one embodiment, controller 406 is configured to receive some feedback signals. As shown in
The isolated converter may further comprise a dimming switch S4 coupled to the LED string in series. Dimming switch S4 has a control terminal. The control terminal of dimming switch S4 is configured to receive dimming signal DIM. Dimming switch S4 is configured to be turned ON to provide the power supply for the LED string when dimming signal DIM is activated, and dimming switch S4 is configured to be turned OFF to stop the power supply for the LED string when dimming signal DIM is deactivated.
Continuing with
In one embodiment, protection switch S3 or dimming switch S4 is a metal oxide semiconductor field effect transistor (“MOSFET”). The MOSFET can be either N type or P type. Other types of switches such as bipolar junction transistor (“BJT”) or junction field effect transistor (“JFET”) can also be adopted as protection switch S3 or dimming switch S4.
In one embodiment, controller 406 comprises a switch 613 coupled between current regulating loop 610, voltage regulating loop 611 and PWM generator 612. Switch 613 comprises a control terminal couple to dimming signal DIM, a controllable first terminal coupled to current regulating loop 610 or voltage regulating loop 611, and a second terminal coupled to PWM generator. The controllable first terminal of switch 613 is configured to receive the current compensation signal CMP_i when dimming signal DIM is activated, and the controllable first terminal of switch 613 is configured to receive the voltage compensation signal CMP_v when dimming signal DIM is deactivated. A voltage at the second terminal of switch 613 is configured to generate the control signal through PWM generator 612.
In one embodiment, PWM generator 612 is configured to provide control signal CTRL responsive to voltage compensation signal CMP_v when fault condition occurs at second rectified circuit 405.
In one embodiment, LED current I_LED is configured to be regulated to current reference IREF when dimming signal DIM is activated, and bus voltage V_bus is configured to be regulated to voltage reference VREF when dimming signal DIM is deactivated.
Current regulating loop 710 comprises an amplifier AMP1, a switch S5, a switch S7 and a capacitor C_i. Amplifier AMP1 comprises an inverting terminal, a non-inverting terminal and an output terminal as an output 7101 of current regulating loop 710. Capacitor C_i is employed to provide current compensation signal CMP_i. A compensation network may be employed to improve performance of current regulating loop 710. When dimming signal DIM is activated, switch S5 is configured to be turned OFF and switch S7 is configured to be turned ON. Feedback current signal ILED_fb is coupled to the inverting terminal of amplifier AMP1, current reference IREF is coupled to the non-inverting terminal of amplifier AMP1. Then amplifier AMP1 provides current compensation signal CMP_i by comparing feedback current signal ILED_fb with current reference IREF. When dimming signal DIM is deactivated, switch S5 is configured to be turned ON and switch S7 is configured to be turned OFF. The inverting terminal of amplifier AMP1 is pulled up to an external voltage VCC which may be higher than current reference IREF. As a result, output of amplifier AMP1 is LOW, i.e., about 0V. Current compensation signal CMP_i comprises a voltage across capacitor C_i, and is configured to keep its value when dimming signal DIM is deactivated.
Voltage regulating loop 711 comprises an amplifier AMP2, a switch S6, a switch S8 and a capacitor C_v. Amplifier AMP2 comprises an inverting terminal, a non-inverting terminal and an output terminal as an output 7111 of voltage regulating loop 711. Capacitor C_v is employed to provide voltage compensation signal CMP_v. A compensation network may be employed to improve performance of voltage regulating loop 711. When dimming signal DIM is activated, switch S6 is configured to be turned ON and switch S8 is configured to be turned OFF. Voltage reference VREF is coupled to the non-inverting terminal of amplifier AMP2. The inverting terminal of amplifier AMP2 is pulled up to an external voltage VCC which may be higher than voltage reference VREF. As a result, output of amplifier AMP2 is LOW, i.e., about 0V. Voltage compensation signal CMP_v comprises a voltage across capacitor C_v, and is configured to keep its value when dimming signal DIM is activated. When dimming signal DIM is deactivated, switch S6 is configured to be turned OFF and switch S8 is configured to be turned ON. Feedback voltage signal Vbus_fb is coupled to the inverting terminal of amplifier AMP2, voltage reference VREF is coupled to the non-inverting terminal of amplifier AMP2. Then amplifier AMP2 provides voltage compensation signal CMP_v by comparing feedback voltage signal Vbus_fb with voltage reference VREF.
PWM generator 712 is coupled to output 7101 of current regulating loop 710 and output 7111 of voltage regulating loop 711. When dimming signal DIM is activated, output 7101 of current regulating loop 710 equals current compensation signal CMP_i, output 7111 of voltage regulating loop 711 is about 0V. Output 7101 of current regulating loop 710 is higher than output 7111 of voltage regulating loop 711 and PWM generator 712 is configured to receive output 7101 of current regulating loop 710. When dimming signal DIM is deactivated, output 7101 of current regulating loop 710 is about 0V, output 7111 of voltage regulating loop 711 equals voltage compensation signal CMP_v. Output 7111 of voltage regulating loop 711 is higher than output 7101 of current regulating loop 710 and PWM generator 712 is configured to receive output 7111 of voltage regulating loop 711. In one embodiment, output 7101 of current regulating loop 710 is coupled to PWM generator 712 through a diode D1. an anode of diode D1 is coupled to output 7101 of current regulating loop 710 and a cathode of diode D1 is coupled to PWM generator 712. In one embodiment, output 7111 of voltage regulating loop 711 is coupled to PWM generator 712 through a diode D2. An anode of diode D2 is coupled to output 7111 of voltage regulating loop 711 and a cathode of diode D2 is coupled to PWM generator 712.
In one embodiment, when dimming signal DIM is activated, switch S8 is turned OFF and voltage compensation signal CMP_v is maintained by capacitor C_v. When dimming signal DIM is deactivated, switch S7 is turned OFF and current compensation signal CMP_i is maintained by capacitor C_i. As a result, transient performance provided by PWM generator 712 is improved.
In one embodiment, voltage reference VREF is set a little lower than bus voltage V_bus at activated dimming signal DIM interval. As a result, output voltage V_LED of second rectified circuit 405 will not increase suddenly at activated dimming signal DIM interval, and therefore LED current I_LED will not be overshot at deactivated dimming signal interval.
In another embodiment, voltage reference VREF is set same as the value of bus voltage V_bus at activated dimming signal DIM interval, and then voltage reference VREF keeps its value at deactivated dimming signal DIM interval. As a result, bus voltage V_bus follows output voltage V_LED of second rectified circuit 405 and keeps its value at deactivated dimming signal DIM interval. Therefore LED current I_LED will not be overshot at activated dimming signal DIM interval and bus voltage V_bus will maintain its value from activated to deactivated dimming interval.
Before time T1, dimming signal DIM is logic LOW, i.e., deactivated, and LED current I_LED equals zero ampere. PWM generator 712 is configured to receive voltage compensation signal CMP_v, and bus voltage V_bus is regulated to a voltage reference VREF. Control signal CTRL is provided by PWM generator 712 in accordance with a feedback voltage signal indicating bus voltage V_bus.
In the time period T1-T2, dimming signal DIM becomes logic HIGH, i.e., activated, PWM generator 712 is configured to receive current compensation signal CMP_i, and LED current I_LED is regulated to a current reference IREF. Control signal CTRL is provided by PWM generator 712 in accordance with a feedback current signal indicating LED current I_LED.
In the time period T2-T3, dimming signal DIM becomes logic LOW, and LED current I_LED equals zero ampere. Bus voltage V_bus is fed back to PWM generator 712 and is regulated to voltage reference VREF. Control signal CTRL is provided by PWM generator 712 in accordance with the feedback voltage signal indicating bus voltage V_bus. In one embodiment, bus voltage V_bus is a little lower than at activated diming interval, then LED driver voltage will not increase, and therefore LED current I_LED will not be overshot.
In one embodiment, a driving circuit is employed to provide driving signals for primary side switches. The driving circuit is coupled between a control signal CTRL and the primary side switches. The driving circuit may be responsive to a fault signal indicating fault condition occurs at a first rectified circuit and disable the driving signals.
Continuing with
Continuing with
Same as circuit 700 shown in
When dimming signal DIM is activated, a current compensation signal CMP_i is provided to PWM generator 1012 by amplifier AMP2 and a capacitor C_v is employed to maintain a voltage compensation signal CMP_v. When dimming signal DIM is deactivated, voltage compensation signal CMP_v is provided to PWM generator 1012 by amplifier AMP1 and a capacitor C_i is employed to maintain current compensation signal CMP_i. As a result, when dimming signal DIM is activated, PWM generator 1012 is configured to provide control signal CTRL in accordance with current regulating loop, and when dimming signal DIM is deactivated, PWM generator 1012 is configured to provide control signal CTRL in accordance with voltage regulating loop.
Feedback output current Ibus_fb and a feedback bus voltage Vbus_ovp are employed to detect fault conditions at first rectified circuit 904 described foregoing. A comparator CMP1 is employed to detect an over current fault condition at first rectified circuit 904. Feedback output current Ibus_fb is coupled to an inverting terminal of comparator CMP1, and a reference level Vth_ocp is coupled to a non-inverting terminal of comparator CMP1. When a short or an over current condition happens at first rectified circuit 904, comparator CMP1 provides an activated output and triggers a fault signal FAULT (e.g., FAULT=‘1’). A comparator CMP2 is employed to detect an over voltage fault condition at first rectified circuit 904. In one embodiment, bus voltage V_bus is divided by a resistor divider, and feedback bus voltage Vbus_ovp is provided accordingly. Feedback bus voltage Vbus_ovp is coupled to a non-inverting terminal of comparator CMP2, and a reference level Vth_ovp is coupled to an inverting terminal of comparator CMP2. When an over voltage condition happens at first rectified circuit 904, comparator CMP2 provides an activated output and triggers fault signal FAULT (e.g., FAULT=‘1’).
An OR gate OR1 is configured to provide fault signal FAULT in accordance with output of comparator CMP1 and output of comparator CMP2. It is noted that any fault detected by comparator CMP1 or comparator CMP2 will trigger fault signal FAULT.
Driving circuit 1013 is configured to provide driving signals for primary side switch S1 and primary side switch S2 in accordance with fault signal FAULT and control signal CTRL. When fault signal FAULT indicates fault condition at first rectified circuit 904, driving signals are disabled to turn OFF primary side switch S1 and primary side switch S2. When fault signal FAULT is deactivated, driving circuit 1013 provides driving signals in accordance with control signal CTRL.
Continuing with
An OR gate OR2 is configured to provide fault signal FAULT_LED in accordance with output of comparator CMP3, output of comparator CMP4 and output of comparator CMP5. It is noted that any fault detected by comparator CMP3, comparator CMP4 or comparator CMP5 will trigger fault signal FAULT_LED.
Dimming circuit 1014 is configured to provide dimming signal DIM in accordance with a brightness control signal DBRT and fault signal FALUT_LED. When fault signal FAULT_LED is activated, e.g., logic HIGH, dimming signal DIM is configured to be deactivated.
One of ordinary skill in the art will appreciate that brightness control signal DBRT may be a DC signal or a pulse-width modulation (PWM) signal without detracting from the merits of the present invention. For example, 1V or 70% duty cycle.
Protecting switch driver 1015 comprises two inputs and one output. One input is coupled to fault signal FAULT_LED indicating fault conditions at second rectified circuit 905, and the other input is coupled to dimming signal DIM. Protecting switch driver 1015 outputs driving signal P_drive in accordance with fault signal FAULT_LED and dimming signal DIM. Driving signal P_drive is coupled to a control terminal of protection switch S3. When driving signal P_drive is activated, protection switch S3 is configured to be turned ON and when driving signal P_drive is deactivated, protection switch S3 is configured to be turned OFF. In one embodiment, when fault signal FAULT_LED is activated or dimming signal DIM is in deactivated, driving signal P_drive is configured to be deactivated and protection switch S3 is configured to be turned OFF.
Dimming switch driver 1016 comprises two inputs and one output. One input is coupled to fault signal FAULT_LED indicating fault conditions at second rectified circuit 905, and the other input is coupled to dimming signal DIM. Dimming switch driver 1016 outputs driving signal D_drive in accordance with fault signal FAULT_LED and dimming signal DIM. Driving signal D_drive is coupled to a control terminal of dimming switch S4. When driving signal D_drive is activated, dimming switch S4 is turned ON and when driving signal P_drive is deactivated, dimming switch S4 is turned OFF. In one embodiment, when fault signal FAULT_LED is activated or dimming signal DIM is in deactivated, Driving signal D_drive is configured to be deactivated and dimming switch S4 is configured to be turned OFF.
It is noted that the logics of “HIGH” or “LOW” for the logic signals may be in alternative levels since different logic levels may lead to a same result. For example, when over voltage condition happens at first rectified circuit 904, switch S1 and switch S2 are configured to be turned OFF no matter output of comparator CMP2 is logic HIGH or logic LOW.
It should be noted that controller 906 may be integrated on one chip or be integrated with other circuits.
Before time T1, both fault signal FAULT_LED and fault signal FAULT are logic LOW, i.e., deactivated, and the whole LED backlight driver system is operating normally.
At time T1, fault occurs at second rectified circuit 905, and fault signal FAULT_LED is set HIGH, i.e., activated to indicating that fault condition happens. Driving signal P_drive for protection switch S3 is set deactivated. And then protection switch S3 is turned OFF, LED string is cut off from output of second rectified circuit 905. As a result, no current flows through LED string and LED current I_LED becomes logic LOW. At the same time, no fault occurs at first rectified circuit 904, control signal CTRL continues as time before T1 and primary circuit 903 keeps normal operation. As a result, first rectified circuit 904 keeps normal operation and outputs normal bus voltage V_bus.
At time T2, second rectified circuit 905 heals back to normal operation, and fault signal FAULT_LED becomes deactivated. Driving signal P_drive for protection switch S3 is set activated. And then protection switch S3 is turned ON again, LED string is coupled to output of second rectified circuit 905. As a result, current flows through LED string and LED current I_LED heals back to normal.
At time T3, fault occurs at first rectified circuit 904, and fault signal FAULT is set HIGH, i.e., activated to indicating that fault condition happens. Control signal CTRL becomes invalid, switch S1 and switch S2 are turned OFF. As a result, bus voltage V_bus and LED current I_LED become LOW. The whole LED backlight driver system is configured to be turned OFF.
At stage 1201, providing an AC signal to a primary winding of a transformer, the AC signal is provide by a primary circuit, and the primary circuit is configured to receive a first input signal. In one embodiment, the first input signal is received from an output of a power factor correction circuit. At stage 1202, providing a bus voltage V_bus by a first rectified circuit, and the first rectified circuit is coupled to a first secondary winding of the transformer. In one embodiment, the method further comprises a DC/DC converter, whose input is coupled to receive bus voltage V_bus. At stage 1203, providing a LED current I_LED by a second rectified circuit, wherein the second rectified circuit is coupled to a second secondary winding of the transformer. At stage 1204, providing a dimming signal DIM, wherein LED current I_LED is regulated when dimming signal DIM is activated, and wherein bus voltage V_bus is regulated when dimming signal DIM is deactivated.
In one embodiment, LED current I_LED is regulated to a current reference IREF when dimming signal DIM is activated and bus voltage V_bus is regulated to a voltage reference VREF. Voltage reference VREF may be lower than bus voltage V_bus when dimming signal DIM is activated.
In one embodiment, a current compensation signal CMP_i is provided by comparing a feedback current signal ILED_fb with current reference IREF. Feedback LED current signal ILED_fb indicates a value of LED current I_LED. A voltage compensation signal CMP_v is provided by comparing a feedback voltage signal Vbus_fb with voltage reference VREF. Feedback voltage signal Vbus_fb indicates a value of bus voltage V_bus. A driving signal is generated in accordance with current compensation signal CMP_i when dimming signal DIM is activated and the driving signal is generated in accordance with voltage compensation signal CMP_v when dimming signal DIM is deactivated. Voltage compensation signal CMP_v may keep its value when dimming signal DIM is activated, and current compensation signal CMP_i may keep its value when dimming signal DIM is deactivated.
In one embodiment, when fault condition occurs at second rectified circuit, diming signal DIM is set deactivated. Meanwhile, primary circuit keeps its normal operation to provide bus voltage V_bus.
In one embodiment, when fault condition occurs at first rectified circuit, primary side switch is turned OFF and no power is provided to both first and second rectified circuit.
The above description and discussion about specific embodiments of the present technology is for purposes of illustration. However, one with ordinary skill in the relevant art should know that the invention is not limited by the specific examples disclosed herein. Variations and modifications can be made on the apparatus, methods and technical design described above. Accordingly, the invention should be viewed as limited solely by the scope and spirit of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2011 1 0035189 | Jan 2011 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
20090284164 | Ray et al. | Nov 2009 | A1 |
20110101885 | Yang | May 2011 | A1 |
20110227493 | Du | Sep 2011 | A1 |
20110227497 | Hu | Sep 2011 | A1 |
20120153866 | Liu | Jun 2012 | A1 |
20140160807 | Han et al. | Jun 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20120194078 A1 | Aug 2012 | US |