LED-based light with canted outer walls

Information

  • Patent Grant
  • 10690296
  • Patent Number
    10,690,296
  • Date Filed
    Tuesday, December 18, 2018
    6 years ago
  • Date Issued
    Tuesday, June 23, 2020
    4 years ago
Abstract
An LED-based light has an elongate housing having a longitudinal axis and a vertical axis, the housing defined by a base and two canted outer walls meeting opposite the base, the housing defining a cavity. An LED circuit board on which a plurality of LEDs are located is positioned within the cavity. End caps are positioned at opposite ends of the housing.
Description
TECHNICAL FIELD

The embodiments disclosed herein relate to a light emitting diode (LED)-based light for replacing a fluorescent light in a standard fluorescent light fixture.


BACKGROUND

Fluorescent lights are widely used in a variety of locations, such as schools and office buildings. Although conventional fluorescent lights have certain advantages over, for example, incandescent lights, they also pose certain disadvantages including, inter alia, disposal problems due to the presence of toxic materials within the light.


LED-based lights designed as one-for-one replacements for fluorescent lights have appeared in recent years.


SUMMARY

Disclosed herein are embodiments of LED-based lights. One embodiment of an LED-based light has an elongate housing having a longitudinal axis and a vertical axis, the housing defined by a base and two canted outer walls meeting opposite the base, the housing defining a cavity. An LED circuit board on which a plurality of LEDs are located is positioned within the cavity. End caps are positioned at opposite ends of the housing.


Another embodiment of an LED-based light has an elongate housing having longitudinal axis and a vertical axis, the housing defining a cavity having a width that varies along the vertical axis, the width including a greatest width below a vertical center of the vertical axis. An LED circuit board on which a plurality of LEDs are located is positioned within the housing. End caps are positioned at opposite ends of the housing.


Another embodiment of an LED-based light comprises an elongate housing comprising a base extending substantially along a horizontal and two canted outer walls extending from the base and canting toward each other, wherein a portion of a profile of each of the two canted outer walls between a line tangent to the profile and 45° from horizontal and a line tangent to the profile and 90° from the horizontal is greater than 30 percent, the housing defining a cavity. An LED circuit board on which a plurality of LEDs is positioned within the cavity. An end cap is located at each end of the housing.





BRIEF DESCRIPTION OF THE DRAWINGS

The various features, advantages and other uses of the present apparatus will become more apparent by referring to the following detailed description and drawings in which:



FIG. 1 is a partial perspective view of a first example of an LED-based light including an LED circuit board, a housing for the LED circuit board and a pair of end caps positioned at the ends of the housing;



FIG. 2A is a perspective partial assembly view of the LED-based light of FIG. 1 with the end caps removed, showing the LED circuit board and a power supply circuit board;



FIG. 2B is an enlarged view of an end cap removed from the housing;



FIGS. 3A-C are additional views of one of the pair of end caps of the LED-based light of FIG. 1;



FIG. 4 is a plan view showing an example installation of the LED-based light of FIG. 1 and the LED-based light of FIG. 7 in a light fixture;



FIG. 5 is a cross section of the LED-based light of FIG. 1 taken at a position similar to the line A-A in FIG. 1;



FIG. 6 is an example of a polar light distribution curve for the LED-based light of FIG. 1, shown with reference to the polar light distribution curve for a conventional LED-based light;



FIG. 7 is a partial perspective view of a second example of an LED-based light including an LED circuit board, a housing for the LED circuit board and a pair of end caps positioned at the ends of the housing;



FIG. 8A is a perspective partial assembly view of the LED-based light of FIG. 7 with the end caps removed, showing the LED circuit board and a power supply circuit board;



FIG. 8B is an enlarged view of an end cap removed from the housing;



FIGS. 9A-C are additional views of one of the pair of end caps of the LED-based light of FIG. 7;



FIG. 10 is a cross section of the LED-based light of FIG. 7 taken at a position similar to the line B-B in FIG. 7;



FIG. 11 is an example of a polar light distribution curve for the LED-based light of FIG. 7, shown with reference to the polar light distribution curve for a conventional LED-based light;



FIGS. 12A-H are cross sections of alternative examples of LED-based lights;



FIG. 13A is a cross section of the housing illustrating that 30% or greater of the profile of a canted outer wall is between a line tangent to the profile and 45° from horizontal and a line tangent to the profile and 90° from the horizontal;



FIG. 13B is a cross section of a conventional housing having a circular cross section, illustrating that only 25% of the profile of the circular housing is between a line tangent to the profile and 45° from horizontal and a line tangent to the profile and 90° from the horizontal; and



FIG. 14 is an example of light intensity projected onto the internal surface of the housing for the LED-based light of FIG. 10, shown with reference to the housing and the LEDs.





DETAILED DESCRIPTION

A first example of an LED-based light 10 for replacing a conventional light in a standard light fixture is illustrated in FIGS. 1 and 2A. The LED-based light 10 includes a housing 12 and has a pair of end caps 20 positioned at the ends of the housing 12. An LED circuit board 30 including LEDs 34, a power supply circuit board 32 and a support 36 are arranged within the housing 12.


The housing 12 of the LED-based light 10 can generally define a single package sized for use in a standard fluorescent light fixture. In the illustrated example, the pair of end caps 20 is attached at opposing longitudinal ends of the housing 12 for physically connecting the LED-based light 10 to a light fixture. As shown, each end cap 20 carries an electrical connector 18 configured to physically connect to the light fixture. The electrical connectors 18 can be the sole physical connection between the LED-based light 10 and the light fixture. One example of a light fixture for the LED-based light 10 is a troffer designed to accept conventional fluorescent lights, such as T5, T8 or T12 fluorescent tube lights. These and other light fixtures for the LED-based light 10 can include one or more sockets adapted for physical engagement with the electrical connectors 18. Each of the illustrated electrical connectors 18 is a bi-pin connector including two pins 22. Bi-pin electrical connectors 18 are compatible with many fluorescent light fixtures and sockets, although other types of electrical connectors can be used, such as a single pin connector or a screw type connector.


The light fixture can connect to a power source, and at least one of the electrical connectors 18 can additionally electrically connect the LED-based light 10 to the light fixture to provide power to the LED-based light 10. In this example, each electrical connector 18 can include two pins 22, although two of the total four pins can be “dummy pins” that provide physical but not electrical connection to the light fixture. The light fixture can optionally include a ballast for electrically connecting between the power source and the LED-based light 10.


The housing 12 is an elongate, light transmitting tube at least partially defined by a lens 14 opposing the LEDs 34. The term “lens” as used herein means a light transmitting structure, and not necessarily a structure for concentrating or diverging light. While the illustrated housing 12 is linear, housings having an alternative shape, e.g., a U-shape or a circular shape can alternatively be used. The LED-based light 10 can have any suitable length. For example, the LED-based light 10 may be approximately 48″ long, and the housing 12 can have a 0.625″, 1.0″ or 1.5″ diameter for engagement with a standard fluorescent light fixture.


The housing 12, as generally shown, can be formed as an integral whole including the lens 14 and a lower portion 16. The lens 14 can be made from polycarbonate, acrylic, glass or other light transmitting material (i.e., the lens 14 can be transparent or translucent). The lower portion 16 can be made from the same polycarbonate, acrylic, glass or other light transmitting material as the lens 14, or, can be made of a similar opaque material. The housing 12 may be formed by extrusion, for example. Optionally, the lens 14, made from a light transmitting material, can be coextruded with a lower portion made from opaque material to form the housing 12. Alternatively, the housing 12 can be formed by connecting multiple individual parts, not all of which need be light transmitting.


The support 36 is arranged within the housing 12. The support 36, as generally shown, is elongate and may support one or both of the LED circuit board 30 and the power supply circuit board 32 inside of the housing 12.


In the illustrated example of the LED-based light 10, the support 36 can additionally support, in whole or in part, the end caps 20, the housing 12, or both. With reference to FIG. 2B, each of the end caps 20 defines a socket 40 sized and shaped to receive and retain an end of the housing 12. The attachment of the end caps 20 at the opposing ends of the support 36 fixes the position and orientation of the sockets 40 to retain the housing 12 in its arrangement around the support 36, the LED circuit board 30 and the power supply circuit board 32. The end caps 20 may, as shown, be attached to the opposing ends of the support 36 by threaded fasteners, for example. The ends of the housing 12 can have a recess around a circumference of the ends so that exterior surfaces of the end caps 20 are flush with the exterior surface of the housing 12.


In the illustrated example in FIG. 2B, each of the end caps 20 is generally tubular, with an annular sidewall 42, a first, closed end 44 bordering the electrical connector 18 and a second, open end 46 in communication with the socket 40. The socket 40 may, as shown, be defined in part by the interior of the annular sidewall 42. According to this example, the interior of the annular sidewall 42 is generally sized and shaped to receive and circumscribe the exterior of an end of the housing 12. Additionally, or alternatively, the socket 40 may, as shown, be defined in part by a retaining member 48 spaced in opposition to the interior of the annular sidewall 42 and generally sized and shaped to receive the interior of an end of the housing 12. In this example, the socket 40 generally constrains translational travel of the housing 12 relative to the end cap 20. One or more shoulder surfaces 50 may additionally be defined at a distal portion of the socket 40 to configure the socket 40 to generally constrain longitudinal travel of the housing 12 relative to the end cap 20. The shoulder surfaces 50 may, as shown, extend from the annular sidewall 42.


In one example of the LED-based light 10, one or both of the sockets 40 defined by the end caps 20 can be shaped and sized to receive an end of the housing 12 with play permissive of small amounts of translational travel of the housing 12 relative to the end cap 20, of small amounts of longitudinal travel of the housing 12 relative to the end cap 20, or both. The play, for instance, may accommodate differing amounts of thermal expansion between the housing 12 and the support 36 to which the end caps 20 are attached. In other examples of the LED-based light 10, it will be understood that one or both of the sockets 40 defined by the end caps 20 can be shaped and sized to receive an end of the housing 12 substantially without play.


With reference to FIGS. 3A-3C, in the illustrated example of the LED-based light 10, the closed end 44 of one or both of the end caps 20 can define one or more tapered surfaces 52. As shown, the tapered surfaces 52 are tapered away from the closed end 44 and towards the remainder of the end cap 20 and the LED-based light 10.


The tapered surfaces 52 may, for example, facilitate installation of the LED-based light 10. As shown with additional reference to FIG. 4, the LED-based light 10 may be installed in a light fixture F with a pair of opposing sockets S each adapted for physical engagement with the electrical connector 18 carried by an end cap 20. To install the LED-based light 10 in the light fixture F, typically, after one of the end caps 20 is connected to one of the sockets S, the remainder of the LED-based light 10 is swung towards the light fixture F to position the other end cap 20 near the other socket S for connection. The tapered surfaces 52 may facilitate installation of the LED-based light 10 by preventing either or both of the end caps 20 from hanging up on the sockets S.


The tapered surfaces 52 may be included on one, some or all of the portions of the closed end 44 bordering the electrical connector 18. In the illustrated example, each of the portions of the closed end 44 bordering the electrical connector 18 is includes a tapered surface 52 tapered away from the closed end 44 and towards the remainder of the end cap 20 and the LED-based light 10, giving the closed end 44 of the end cap 20 a generally domed shaped configuration. In particular, the tapered surfaces 52 are tapered at a corner of the end cap 20 that is opposite the base of the housing 12.


With additional reference to FIG. 5, the support 36 includes an elongate planar portion 60 arranged across the inside of the housing 12, giving the housing 12 a generally bipartite configuration, splitting cavity 61 into a first cavity 62 defined between the planar portion 60 of the support 36 and the lens 14, and a second cavity 64 defined between the planar portion 60 of the support 36 and the lower portion 16 of the housing 12.


As shown, the planar portion 60 defines an LED mounting surface 66 for supporting the LED circuit board 30 across the inside of the housing 12. The LED mounting surface 66 can be substantially flat, so as to support a flat underside of the LED circuit board 30 opposite the LEDs 34. The LED circuit board 30 is positioned within the first cavity 62 and adjacent the lens 14, such that the LEDs 34 of the LED circuit board 30 are oriented to illuminate the lens 14.


The support 36 may additionally include opposed elongate sidewalls 68 extending from the planar portion 60 and at least partially in contact with the housing 12. The outer walls 68 can be outboard edges 68 extending away from the planar portion 60. The outboard edges 68 each define a radially outer portion 70 and a radially inner portion 72. As shown, in each of the outboard edges 68, the radially outer portion 70 may have one or more areas shaped to correspond to the contour of the interior of the housing 12. These one or more areas at the radially outer portion 70 may be a continuous area shaped to correspond to the contour of the interior of the housing 12, or, may be discontinuous areas shaped to correspond to the contour of the interior of the housing 12. These one or more areas at the radially outer portion 70 may, for example, engage the interior of the housing 12 to support, in whole or in part, the housing 12.


The support 36 may be constructed from a thermally conductive material such as aluminum and configured as a heat sink to enhance dissipation of heat generated by the LEDs 34 during operation to an ambient environment surrounding the LED-based light 10. For instance, in the example LED-based light 10, the LED mounting surface 66 may support the flat underside of the LED circuit board 30 opposite the LEDs 34 in thermally conductive relation, and the one or more areas at the radially outer portion 70 in each of the outboard edges 68 shaped to correspond to the contour of the interior of the housing 12 may engage the interior of the housing 12 in thermally conductive relation, to define a thermally conductive heat transfer path from the LEDs 34 to the LED mounting surface 66 and the remainder of the support 36 through the LED circuit board 30, and to the ambient environment surrounding the LED-based light 10 through the outboard edges 68 of the support 36 and the housing 12.


Optionally, if the support 36 is constructed from an electrically conductive material, the housing 12 can be made from an electrically insulative material. In this configuration, the housing 12 can isolate the support 36 from the ambient environment surrounding the LED-based light 10 from a charge occurring in the support 36 as a result of, for instance, a parasitic capacitive coupling between the support 36 and the LED circuit board 30 resulting from a high-frequency starting voltage designed for starting a conventional fluorescent tube being provided to the LED-based light 10.


The power supply circuit board 32 may, as shown, be positioned within the second cavity 64, although it will be understood that the power supply circuit board 32 may also be positioned in other suitable locations, such as within one or both of the end caps 20 or external to the LED-based light 10. As shown, the power supply circuit board 32 may be supported across the inside of the housing 12. The interior of the housing 12 or the support 36 can include features for supporting the power supply circuit board 32. For instance, in the illustrated example of the LED-based light 10, the outboard edges 68 of the support 36 define opposing channels 74 configured to slidably receive outboard portions of the power supply circuit board 32. It will be understood that the channels 62 are provided as a non-limiting example and that the power supply circuit board 32 may be otherwise and/or additionally supported within the second cavity 64.


In one example of the LED-based light 10, referring to FIG. 5, the housing 12 may have a longitudinal axis and a vertical axis X, the housing defining the cavity 61. The cavity 61 can have a width that varies along the vertical axis X, the width including a greatest width W below a vertical center of the vertical axis X. As illustrated in FIG. 5, for example, the housing 12 may have a generally triangular cross sectional profile. The triangular cross sectional profile may be equilateral, as depicted in the figures, or can be isosceles. As shown in FIG. 5, the housing 12 includes a base 80 and opposing outer walls 82 extending from the base 80 and canted towards one another. The outer walls 82 can meet at a rounded crown 84 connecting the outer walls 82. The rounded crown 84 can include any similar shape as shown in FIG. 5, including those shown in FIGS. 12A-12H. In this example of the LED-based light 10, the lens 14 is formed by the rounded crown 84 and at least a portion of the opposing outer walls 82.


As illustrated in FIG. 13A, the housing 12 can be configured so that, with the base 80 extending substantially along a horizontal H, each of the two canted outer walls 82 have a profile P such that greater than or equal to 30% of the profile is between a line a tangent to the profile P and 45° from horizontal H and a line b tangent to the profile P and 90° from the horizontal H. This is distinguishable from other profiles. As a non-limiting example, FIG. 13B illustrates a conventional circular housing, the circular housing having a profile P such that 25% of the profile P is between a line a tangent to the profile P and 45° from horizontal H and a line b tangent to the profile P and 90° from the horizontal H.


The generally triangular cross sectional profile of the housing 12 of the LED-based light 10 may allow, for example, for a wider second cavity 64 defined between the planar portion 60 of the support 36 and the lower portion 16 of the housing 12 as compared to an otherwise similar LED-based light with a lower portion formed from a housing having a circular cross sectional profile. This may among other things, for instance, accommodate a wider power supply circuit board 32 within the second cavity 64.


The generally triangular cross sectional profile of the housing 12 of the LED-based light 10 may also allow, for example, for a different optical redistribution by the lens 14 of the light emanating from the LEDs 34 as compared to the optical redistribution, if any, of the light emanating from the LEDs in an otherwise similar LED-based light with a lens formed from a housing having a circular cross sectional profile. Although the description follows with general reference to the spatial aspects of light, it will be understood that the lens 14 of the LED-based light 10 could be additionally configured to modify, for instance, the spectral aspects of the light emanating from the LEDs 34.



FIG. 14 illustrates the housing 12 and a light profile 94 of the output of the LED. Profile 96 represents the intensity of the light projected onto the internal surfaces of the housing shown in FIGS. 5 and 10. The diffusion in the housing 12 combined with the intensity of the light striking the interior surface of the housing 12 determines the lighting profile as observed from outside the LED-based light. The profile 96 is determined from a combination of the angle of the surface at a given point relative to the LED and the distance of that given point from the LED. The intensity of the LED source is greatest at 0 degrees; however, the distance of the lens at 0 degrees is large and thus the “beam” coming from the LED is spread across a greater portion of the lens, reducing the point intensity.


The light emanating from both the LEDs 34 in the LED-based light 10 and the LEDs in the otherwise similar LED-based light with a lens formed from a housing having a circular cross sectional profile may be generally directional. In the otherwise similar LED-based light, the generally directional nature of the LEDs may be substantially maintained as the light is transmitted through the lens. An example of a resulting light distribution 90 for the otherwise similar LED-based light is shown in FIG. 6. As shown, for this LED-based light, the light emanating from the LEDs is generally directionally distributed in a direction normal to the LEDs (i.e., along 0°), and little if any of the light emanating from the LEDs is distributed in a direction opposite the LEDs.


In the LED-based light 10, the lens 14 may generally be configured to redistribute some or all of the light emanating from the LEDs 34 away from the direction normal to the LEDs 34. The two canted outer walls 82 can be formed of a light transmitting material and configured to maximize an illuminated section of the housing 12 that faces horizontal. For example, as shown in the light distribution 92 in FIG. 6, the light transmitted from the lens 14 may have a “batwing” configuration, or, a configuration with relatively more distribution of light away from 0° as compared to the light distribution 90 achieved with the otherwise similar LED-based light with a lens formed from a housing having a circular cross sectional profile.


In the illustrated example construction of the LED-based light 10, for instance, the lens 14 is formed by a rounded crown 84 connecting the opposing upright outer walls 82 and some or all of the opposing outer walls 82. It has been found that both increasing cant of the opposing outer walls 82 towards one another and decreasing distance between the opposing outer walls 82 are effective not only to redistribute relatively more of the light emanating from the LEDs 34 away from 0° and in a direction opposite the LEDs, but also to increase overall optical efficiency of the lens 14.


The LED-based light 10 can include other features for distributing light produced by the LEDs 34. For example, the lens 14 can be manufactured with structures to collimate light produced by the LEDs 34. The light collimating structures can be formed integrally with the lens 14, for example, or can be formed in a separate manufacturing step. In addition to or as an alternative to manufacturing the lens 14 to include light collimating structures, a light collimating film can be applied to the exterior of the lens 14 or placed in the housing 12.


In yet other embodiments, the LEDs 34 can be over molded or otherwise encapsulated with light transmitting material configured to distribute light produced by the LEDs 34. For example, the light transmitting material can be configured to diffuse, refract, collimate and/or otherwise distribute the light produced by the LEDs 34. The over molded LEDs 34 can be used alone to achieve a desired light distribution for the LED-based light 10, or can be implemented in combination with the lens 14 and/or films described above.


The above described or other light distributing features can be implemented uniformly or non-uniformly along a length and/or circumference of the LED-based light 10. These features are provided as non-limiting examples, and in other embodiments, the LED-based light 10 may not include any light distributing features.


The LED circuit board 30 can include at least one LED 34, a plurality of series-connected or parallel-connected LEDs 34, an array of LEDs 34 or any other arrangement of LEDs 34. Each of the illustrated LEDs 34 can include a single diode or multiple diodes, such as a package of diodes producing light that appears to an ordinary observer as coming from a single source. The LEDs 34 can be surface-mount devices of a type available from Nichia, although other types of LEDs can alternatively be used. For example, the LED-based light 10 can include high-brightness semiconductor LEDs, organic light emitting diodes (OLEDs), semiconductor dies that produce light in response to current, light emitting polymers, electro-luminescent strips (EL) or the like. The LEDs 34 can emit white light. However, LEDs that emit blue light, ultra-violet light or other wavelengths of light can be used in place of or in combination with white light emitting LEDs 34.


The orientation, number and spacing of the LEDs 34 can be a function of a length of the LED-based light 10, a desired lumen output of the LED-based light 10, the wattage of the LEDs 34, a desired light distribution for the LED-based light 10 and/or the viewing angle of the LEDs 34.


The LEDs 34 can be fixedly or variably oriented in the LED-based light 10 for facing or partially facing an environment to be illuminated when the LED-based light 10 is installed in a light fixture. Alternatively, the LEDs 34 can be oriented to partially or fully face away from the environment to be illuminated. In this alternative example, the LED-based light 10 and/or a light fixture for the LED-based light 10 may include features for reflecting or otherwise redirecting the light produced by the LEDs into the environment to be illuminated.


For a 48″ LED-based light 10, the number of LEDs 34 may vary from about thirty to three hundred such that the LED-based light 10 outputs between 1,500 and 3,000 lumens. However, a different number of LEDs 34 can alternatively be used, and the LED-based light 10 can output any other amount of lumens.


The LEDs 34 can be arranged in a single longitudinally extending row along a central portion of the LED circuit board 30 as shown, or can be arranged in a plurality of rows or arranged in groups. The LEDs 34 can be spaced along the LED circuit board 30 and arranged on the LED circuit board 30 to substantially fill a space along a length of the lens 14 between end caps 20 positioned at opposing longitudinal ends of the housing 12. The spacing of the LEDs 34 can be determined based on, for example, the light distribution of each LED 34 and the number of LEDs 34. The spacing of the LEDs 34 can be chosen so that light output by the LEDs 34 is uniform or non-uniform along a length of the lens 14. In one implementation, one or more additional LEDs 34 can be located at one or both ends of the LED-based light 10 so that an intensity of light output at the lens 14 is relatively greater at the one or more ends of the LED-based light 10. Alternatively, or in addition to spacing the LEDs 34 as described above, the LEDs 34 nearer one or both ends of the LED-based light 10 can be configured to output relatively more light than the other LEDs 34. For instance, LEDs 34 nearer one or both ends of the LED-based light 10 can have a higher light output capacity and/or can be provided with more power during operation.


The power supply circuit board 32 has power supply circuitry configured to condition an input power received from, for example, the light fixture through the electrical connector 18, to a power usable by and suitable for the LEDs 34. In some implementations, the power supply circuit board 32 can include one or more of an inrush protection circuit, a surge suppressor circuit, a noise filter circuit, a rectifier circuit, a main filter circuit, a current regulator circuit and a shunt voltage regulator circuit. The power supply circuit board 32 can be suitably designed to receive a wide range of currents and/or voltages from a power source and convert them to a power usable by the LEDs 34.


As shown, the LED circuit board 30 and the power supply circuit board 32 are vertically opposed and spaced with respect to one another within the housing 12. The LED circuit board 30 and the power supply circuit board 32 can extend a length or a partial length of the housing 12, and the LED circuit board 30 can have a length different from a length of the power supply circuit board 32. For example, the LED circuit board 30 can generally extend a substantial length of the housing 12, and the power supply circuit board 32 can extend a partial length of the housing. However, it will be understood that the LED circuit board 30 and/or the power supply circuit board 32 could be alternatively arranged within the housing 12, and that the LED circuit board 30 and the power supply circuit board 32 could be alternatively spaced and/or sized with respect to one another.


The LED circuit board 30 and the power supply circuit board 32 are illustrated as elongate printed circuit boards. Multiple circuit board sections can be joined by bridge connectors to create the LED circuit board 30 and/or power supply circuit board 32. Also, other types of circuit boards may be used, such as a metal core circuit board. Further, the components of the LED circuit board 30 and the power supply circuit board 32 could be in a single circuit board or more than two circuit boards.


A second example of an LED-based light 110 for replacing a conventional light in a standard light fixture is illustrated in FIGS. 7 and 8. Components in the LED-based light 110 with like function and/or configuration as components in the LED-based light 10 are designated similarly, with 100-series designations instead of the 10-series designations for the LED-based light 10. For brevity, the full descriptions of these components is not repeated, and only the differences from the LED-based light 10 to the LED-based light 110 are explained below.


The LED-based light 110, similarly to the LED-based light 10, includes a housing 112 and has a pair of end caps 121 positioned at the ends of the housing 112. An LED circuit board 130 including LEDs 134 and a power supply circuit board 133 are arranged within the housing 112. The housing 112 of the LED-based light 110 can generally define a single package sized for use in a standard fluorescent light fixture, as described above.


Compared to the LED-based light 10, the LED-based light 110 does not include the support 36 arranged within the housing 112 to support the LED circuit board 130 and the power supply circuit board 133 across the inside of the housing 112.


In the LED-based light 110, with reference to FIG. 8, each of the end caps 121 defines a socket 140 sized and shaped to receive and retain an end of the housing 112. In the illustrated example, each of the end caps 121 is generally tubular, with an annular sidewall 142, a first, closed end 144 bordering the electrical connector 118 and a second, open end 146 in communication with the socket 140. The socket 140 may, as shown, be defined in part by the interior of the annular sidewall 142. According to this example, the interior of the annular sidewall 142 is generally sized and shaped to receive and circumscribe the exterior of an end of the housing 112. An exterior surface of each end cap 121 can be configured to be flush with an exterior surface of the housing 112. One or more shoulder surfaces 150 may be defined at a distal portion of the socket 140 to configure the socket 140 to generally constrain longitudinal travel of the housing 112 relative to the end cap 121. The shoulder surfaces 150 may, as shown, extend from the annular sidewall 142. The end caps 121 may, for example, be attached to the opposing ends of the housing 112 by threaded fasteners or an adhesive, for example.


In the LED-based light 110, the power supply circuit board 133 extends a partial length of the LED-based light 110, and may be arranged in one or both the end caps 121. In the illustrated example, at least one of the end caps 121 is elongated compared to the end caps 20 of the LED-based light 10 and generally sized and shaped to receive the power supply circuit board 133. The power supply circuit board 133 may, as shown, be a singular package and housed in only one of the end caps 121. Alternatively, it will be understood that the power supply circuit board 133 could include other packages housed in the other of the end caps 121, for example, or otherwise in the housing 112. In some implementations, only the end caps 121 housing the power supply circuit board 133 could be elongated compared to the end caps 20 of the LED-based light 10. Optionally, however, as generally shown, both of end caps 121 may be matching elongated end caps 121 regardless of whether they each house the power supply circuit board 133.


As shown, the power supply circuit board 133 may be supported across the inside of an end cap 121. The interior of the annular outer walls 142 of the end cap 121 can include features for supporting the power supply circuit board 133. For instance, in the illustrated example of the LED-based light 110, interior of the annular outer walls 142 of the end cap 121 define opposing channels 175 configured to slidably receive outboard portions of the power supply circuit board 133. It will be understood that the channels 163 are provided as a non-limiting example and that the power supply circuit board 133 may be otherwise and/or additionally supported across the inside of an end cap 121 or otherwise within the end cap 121.


As described above for the LED-based light 10, with reference to FIG. 9, in the illustrated example of the LED-based light 110, the closed end 144 of one or both of the end caps 121 can define one or more tapered surfaces 152 facilitating installation of the LED-based light 110 by preventing either or both of the end caps 121 from hanging up on the sockets S of a light fixture F, as described above with reference to FIG. 4.


With additional reference to FIG. 10, in the LED-based light 110, without the support 36 of the LED-based light 10 arranged within the housing 112, the housing 112 defines a cavity 163 between the lens 114 and the lower portion 116 of the housing 112. With the power supply circuit board 133 arranged in one or both the end caps 121, the LED circuit board 130 may be arranged at the base 180 of the housing 112. As shown, base 180 defines an LED mounting surface 167 for supporting the LED circuit board 130. The LED mounting surface 167 can be substantially flat, so as to support a flat underside of the LED circuit board 130 opposite the LEDs 134. The LED circuit board 130 is positioned within the cavity 163 and facing the lens 114, such that the LEDs 134 of the LED circuit board 130 are oriented to illuminate the lens 114.


To enhance dissipation of heat generated by the LEDs 134 during operation to an ambient environment surrounding the LED-based light 110, in the example LED-based light 110, the LED mounting surface 167 may support the flat underside of the LED circuit board 130 opposite the LEDs 134 in thermally conductive relation to define a thermally conductive heat transfer path from the LEDs 134 to the LED mounting surface 167, and to the ambient environment surrounding the LED-based light 110 through the housing 112. Optionally, the housing 112 can be made from an electrically insulative material. In this configuration, the housing 112 can isolate the LED circuit board 130 from the ambient environment surrounding the LED-based light 110 from a charge occurring in the LED circuit board 130 resulting from a high-frequency starting voltage designed for starting a conventional fluorescent tube being provided to the LED-based light 110.


In one example of the LED-based light 110, the housing 112 may have a generally triangular cross sectional profile, as described above for the housing 12 of the LED-based light 10. As shown in FIG. 10, the housing 112 includes a base 180 and opposing upright outer walls 182 extending from the base 180 and canted towards one another. The housing 112 can include a rounded crown 184 connecting the upright outer walls 182.


As illustrated in FIG. 13A, the housing 12 can be configured so that, with the base 180 extending substantially along a horizontal H, each of the two canted outer walls 182 have a profile P such that greater than or equal to 30% of the profile is between a line a tangent to the profile P and 45° from horizontal H and a line b tangent to the profile P and 90° from the horizontal H. This is distinguishable from other profiles. As a non-limiting example, FIG. 13B illustrates a conventional circular housing, the circular housing having a profile P such that 25% of the profile P is between a line a tangent to the profile P and 45° from horizontal H and a line b tangent to the profile P and 90° from the horizontal H.


The generally triangular cross sectional profile of the housing 112 of the LED-based light 110 may also allow, for example, for a different optical redistribution by the lens 114 of the light emanating from the LEDs 134 as compared to the optical redistribution, if any, of the light emanating from the LEDs in an otherwise similar LED-based light with a lens formed from a housing having a circular cross sectional profile. Although the description follows with general reference to the spatial aspects of light, it will be understood that the lens 114 of the LED-based light 110 could be additionally configured to modify, for instance, the spectral aspects of the light emanating from the LEDs 134.


The light emanating from both the LEDs 134 in the LED-based light 110 and the LEDs in the otherwise similar LED-based light with a lens formed from a housing having a circular cross sectional profile may be generally directional. In the otherwise similar LED-based light, the generally directional nature of the LEDs may be substantially maintained as the light is transmitted through the lens. An example of a resulting light distribution 190 for the otherwise similar LED-based light is shown in FIG. 11. As shown, for this LED-based light, the light emanating from the LEDs is generally directionally distributed in a direction normal to the LEDs (i.e., along 0°), and little if any of the light emanating from the LEDs is distributed in a direction opposite the LEDs.


In the LED-based light 110, the lens 114 may generally be configured to redistribute some or all of the light emanating from the LEDs 134 away from the direction normal to the LEDs 134. For example, as shown in the light distribution 193 in FIG. 11, the light transmitted from the lens 114 may have a “batwing” configuration, or, a configuration with relatively more distribution of light away from 0° as compared to the light distribution 190 achieved with the otherwise similar LED-based light with a lens formed from a housing having a circular cross sectional profile. Further, due in part to the arrangement of the LED circuit board 130 at the base 180 of the housing 112, the light transmitted from the lens 114 may have a configuration with relatively more distribution of light away from 0° as compared to the light distribution 92 achieved with the LED-based light 10.


Alternative examples of LED-based lights 210, 310, 410, 510, 610, 710, 810, 910, where the lenses 214, 314, 414, 514, 614, 714, 814, 914 are formed by a rounded crown 284, 384, 484, 584, 684, 784, 884, 984 and adjoining distal portions of opposing canted outer walls 282, 382, 482, 582, 682, 782, 882, 982, are shown in FIGS. 12A-H. In these examples, the configurations of the housings are substantially as described above for the LED-based light 10 and the LED-based light 110. The examples may accommodate the support of the LED circuit boards as described with respect to LED-based lights 10, 110 using the support 36 as described or the base or bottom surface of the housing 112. By means of example only, FIG. 12A illustrates the LED circuit board 30 supported by the base surface 280 of the housing 212. By means of example only, FIG. 12B illustrates the LED circuit board 30 supported by the support 36, with the support 36 also supporting the power supply circuit board 32.


While recited characteristics and conditions of the invention have been described in connection with certain embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.

Claims
  • 1. An LED-based light comprising: an elongate tubular housing having longitudinal axis and a vertical axis orthogonal to the longitudinal axis, wherein the housing defines an outer periphery of the LED-based light and a cavity,wherein the housing comprises a base, a first canted outer wall, and a second canted outer wall, andwherein a surface of each of the base, the first canted outer wall, and the second canted outer wall defines a substantially identical arced profile in cross-section orthogonal to the longitudinal axis;an LED circuit board positioned within the cavity;a plurality of LEDs positioned on the LED circuit board;end caps positioned at opposite ends of the housing, wherein each end cap comprises a respective bi-pin connector protruding from the end cap, the bi-pin connectors being compatible with a fluorescent light fixture; anda support enclosed by the housing, the support comprising a planar portion and two sidewalls extending from opposing ends of the planar portion, each sidewall being contoured to and aligned flush against a respective curved interior portion of the housing, and the LED circuit board being positioned on the planar portion.
  • 2. The LED-based light of claim 1, wherein the surfaces of the base, the first canted outer wall, and the second canted outer wall substantially form a triangle in cross-section orthogonal to the longitudinal axis.
  • 3. The LED-based light of claim 1, wherein the surfaces of the base, the first canted outer wall, and the second canted outer wall substantially form an equilateral triangle in cross-section orthogonal to the longitudinal axis.
  • 4. The LED-based light of claim 1, wherein the surface of the first canted outer wall defines a first profile in cross-section orthogonal to the longitudinal axis, the first profile extending from a top of the first canted outer wall to a point of intersection between the first canted outer wall and the base, wherein the first profile comprises a first section extending between a first point and a second point, wherein the first point is defined by a first line tangent to the housing and at a 45° angle from a horizontal line, and wherein the second point is defined by a second line tangent to the housing and at a 90° angle from the horizontal line, andwherein the first section is at least 30 percent of the first profile.
  • 5. The LED-based light of claim 4, wherein the surface of the second canted outer wall defines a second profile in cross-section orthogonal to the longitudinal axis, the second profile extending from a top of the second canted outer wall to a point of intersection between the second canted outer wall and the base, wherein the second profile comprises a second section extending between a third point and a fourth point, wherein the third point is defined by a third line tangent to the housing and at a 45° angle from the horizontal line, and wherein the fourth point is defined by a fourth line tangent to the housing and at a 90° angle from the horizontal line, andwherein the second section is at least 30 percent of the second profile.
  • 6. The LED-based light of claim 1, wherein the LED-based light is operable to emit light according to a light distribution profile, wherein the light distribution profile comprises a first portion protruding from the LED-based light in a first direction angled with respect to the vertical axis, and a second portion protruding from the LED-based light in a second direction angled with respect to the vertical axis.
  • 7. The LED-based light of claim 1, wherein the support creates a bipartite configuration which splits the cavity into a first cavity and a second cavity.
  • 8. The LED-based light of claim 7, wherein the LED circuit board is supported by the support in the first cavity.
  • 9. The LED-based light of claim 8, further comprising a power supply circuit board positioned in the second cavity and supported by the support.
  • 10. The LED-based light of claim 1, wherein the each sidewall defines a respective channel, and wherein the power supply circuit board is inserted in the channels.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 14/826,505, filed Aug. 14, 2015, now U.S. Pat. No. 10,161,568, issued Dec. 25, 2018, which claims priority to U.S. Provisional Patent Application Ser. No. 62/169,050, filed on Jun. 1, 2015. The contents of all of the prior applications are incorporated here by reference in their entirety.

US Referenced Citations (1438)
Number Name Date Kind
D79814 Hoch Nov 1929 S
D80419 Kramer Jan 1930 S
D84763 Stange Jul 1931 S
D119797 Winkler et al. Apr 1940 S
D125312 Logan Feb 1941 S
2826679 Rosenburg Mar 1958 A
2909097 Alden et al. Oct 1959 A
3178622 Paul et al. Apr 1965 A
3272977 Holmes Sep 1966 A
3318185 Kott May 1967 A
3561719 Grindle Feb 1971 A
3586936 Mcleroy Jun 1971 A
3601621 Ritchie Aug 1971 A
3612855 Juhnke Oct 1971 A
3643088 Osteen et al. Feb 1972 A
3739336 Burland Jun 1973 A
3746918 Drucker et al. Jul 1973 A
3818216 Larraburu Jun 1974 A
3832503 Crane Aug 1974 A
3858086 Anderson et al. Dec 1974 A
3909670 Wakamatsu et al. Sep 1975 A
3924120 Cox, III Dec 1975 A
3958885 Stockinger et al. May 1976 A
3969720 Nishino Jul 1976 A
3974637 Bergey et al. Aug 1976 A
3993386 Rowe Nov 1976 A
4001571 Martin Jan 1977 A
4054814 Fegley et al. Oct 1977 A
4070568 Gala Jan 1978 A
4082395 Donato et al. Apr 1978 A
4096349 Donato Jun 1978 A
4102558 Krachman Jul 1978 A
4107581 Abernethy Aug 1978 A
4189663 Schmutzer et al. Feb 1980 A
4211955 Ray Jul 1980 A
4241295 Williams, Jr. Dec 1980 A
4261029 Mousset Apr 1981 A
4262255 Kokei et al. Apr 1981 A
4271408 Teshima et al. Jun 1981 A
4271458 George, Jr. Jun 1981 A
4272689 Crosby et al. Jun 1981 A
4273999 Pierpoint Jun 1981 A
4298869 Okuno Nov 1981 A
4329625 Nishizawa et al. May 1982 A
4339788 White et al. Jul 1982 A
4342947 Bloyd Aug 1982 A
4344117 Niccum Aug 1982 A
4367464 Kurahashi et al. Jan 1983 A
D268134 Zurcher Mar 1983 S
4382272 Quella et al. May 1983 A
4388567 Yamazaki et al. Jun 1983 A
4388589 Molldrem, Jr. Jun 1983 A
4392187 Bornhorst Jul 1983 A
4394719 Moberg Jul 1983 A
4420711 Takahashi et al. Dec 1983 A
4455562 Dolan et al. Jun 1984 A
4500796 Quin Feb 1985 A
4521835 Meggs et al. Jun 1985 A
4531114 Topol et al. Jul 1985 A
4581687 Nakanishi Apr 1986 A
4587459 Frederick May 1986 A
4597033 Meggs et al. Jun 1986 A
4600972 MacIntyre Jul 1986 A
4607317 Lin Aug 1986 A
4622881 Rand Nov 1986 A
4625152 Nakai Nov 1986 A
4635052 Aoike et al. Jan 1987 A
4647217 Havel Mar 1987 A
4650971 Manecci et al. Mar 1987 A
4656398 Michael et al. Apr 1987 A
4661890 Watanabe et al. Apr 1987 A
4668895 Schneiter May 1987 A
4669033 Lee May 1987 A
4675575 Smith et al. Jun 1987 A
4682079 Sanders et al. Jul 1987 A
4686425 Havel Aug 1987 A
4687340 Havel Aug 1987 A
4688154 Nilssen Aug 1987 A
4688869 Kelly Aug 1987 A
4695769 Schweickardt Sep 1987 A
4698730 Sakai et al. Oct 1987 A
4701669 Head et al. Oct 1987 A
4705406 Havel Nov 1987 A
4707141 Havel Nov 1987 A
D293723 Buttner Jan 1988 S
4727289 Uchida Feb 1988 A
4739454 Federgreen Apr 1988 A
4740882 Miller Apr 1988 A
4748545 Schmitt May 1988 A
4753148 Johnson Jun 1988 A
4758173 Northrop Jul 1988 A
4765708 Becker et al. Aug 1988 A
4771274 Havel Sep 1988 A
4780621 Bartleucci et al. Oct 1988 A
4794373 Harrison Dec 1988 A
4794383 Havel Dec 1988 A
4801928 Minter Jan 1989 A
4810937 Havel Mar 1989 A
4818072 Mohebban Apr 1989 A
4824269 Havel Apr 1989 A
4837565 White Jun 1989 A
4843627 Stebbins Jun 1989 A
4845481 Havel Jul 1989 A
4845745 Havel Jul 1989 A
4847536 Lowe et al. Jul 1989 A
4851972 Altman Jul 1989 A
4854701 Noll et al. Aug 1989 A
4857801 Farrell Aug 1989 A
4863223 Weissenbach et al. Sep 1989 A
4870325 Kazar Sep 1989 A
4874320 Freed et al. Oct 1989 A
4887074 Simon et al. Dec 1989 A
4894832 Colak Jan 1990 A
4901207 Sato et al. Feb 1990 A
4904988 Nesbit et al. Feb 1990 A
4912371 Hamilton Mar 1990 A
4920459 Rothwell, Jr. et al. Apr 1990 A
4922154 Cacoub May 1990 A
4929936 Friedman et al. May 1990 A
4934852 Havel Jun 1990 A
4941072 Yasumoto et al. Jul 1990 A
4943900 Gartner Jul 1990 A
4962687 Belliveau et al. Oct 1990 A
4965561 Havel Oct 1990 A
4973835 Kurosu et al. Nov 1990 A
4977351 Bavaro et al. Dec 1990 A
4979081 Leach et al. Dec 1990 A
4979180 Muncheryan Dec 1990 A
4980806 Taylor et al. Dec 1990 A
4991070 Stob Feb 1991 A
4992704 Stinson Feb 1991 A
5003227 Nilssen Mar 1991 A
5008595 Kazar Apr 1991 A
5008788 Palinkas Apr 1991 A
5010459 Taylor et al. Apr 1991 A
5018054 Ohashi et al. May 1991 A
5027037 Wei Jun 1991 A
5027262 Freed Jun 1991 A
5032960 Katoh Jul 1991 A
5034807 Von Kohorn Jul 1991 A
5036248 McEwan et al. Jul 1991 A
5038255 Nishihashi et al. Aug 1991 A
5065226 Kluitmans et al. Nov 1991 A
5072216 Grange Dec 1991 A
5078039 Tulk et al. Jan 1992 A
5083063 Brooks Jan 1992 A
5088013 Revis Feb 1992 A
5089748 Ihms Feb 1992 A
5103382 Kondo et al. Apr 1992 A
5122733 Havel Jun 1992 A
5126634 Johnson Jun 1992 A
5128595 Hara Jul 1992 A
5130909 Gross Jul 1992 A
5134387 Smith et al. Jul 1992 A
5136483 Schoniger et al. Aug 1992 A
5140220 Hasegawa Aug 1992 A
5142199 Elwell Aug 1992 A
5151679 Dimmick Sep 1992 A
5154641 McLaughlin Oct 1992 A
5161879 McDermott Nov 1992 A
5161882 Garrett Nov 1992 A
5164715 Kashiwabara et al. Nov 1992 A
5184114 Brown Feb 1993 A
5194854 Havel Mar 1993 A
5198756 Jenkins et al. Mar 1993 A
5209560 Taylor et al. May 1993 A
5220250 Szuba Jun 1993 A
5225765 Callahan et al. Jul 1993 A
5226723 Chen Jul 1993 A
5254910 Yang Oct 1993 A
5256948 Boldin et al. Oct 1993 A
5278542 Smith et al. Jan 1994 A
5281961 Elwell Jan 1994 A
5282121 Bornhorst et al. Jan 1994 A
5283517 Havel Feb 1994 A
5287352 Jackson et al. Feb 1994 A
5294865 Haraden Mar 1994 A
5298871 Shimohara Mar 1994 A
5301090 Hed Apr 1994 A
5303124 Wrobel Apr 1994 A
5307295 Taylor et al. Apr 1994 A
5321593 Moates Jun 1994 A
5323226 Schreder Jun 1994 A
5329431 Taylor et al. Jul 1994 A
5341988 Rein et al. Aug 1994 A
5344068 Haessig Sep 1994 A
5350977 Hamamoto et al. Sep 1994 A
5357170 Luchaco et al. Oct 1994 A
5365411 Rycroft et al. Nov 1994 A
5371618 Tai et al. Dec 1994 A
5374876 Horibata et al. Dec 1994 A
5375043 Tokunaga Dec 1994 A
D354360 Murata Jan 1995 S
5381074 Rudzewicz et al. Jan 1995 A
5388357 Malita Feb 1995 A
5402702 Hata Apr 1995 A
5404094 Green et al. Apr 1995 A
5404282 Klinke et al. Apr 1995 A
5406176 Sugden Apr 1995 A
5410328 Yoksza et al. Apr 1995 A
5412284 Moore et al. May 1995 A
5412552 Fernandes May 1995 A
5420482 Phares May 1995 A
5421059 Leffers, Jr. Jun 1995 A
5430356 Ference et al. Jul 1995 A
5432408 Matsuda et al. Jul 1995 A
5436535 Yang Jul 1995 A
5436853 Shimohara Jul 1995 A
5450301 Waltz et al. Sep 1995 A
5461188 Drago et al. Oct 1995 A
5463280 Johnson Oct 1995 A
5463502 Savage, Jr. Oct 1995 A
5465144 Parker et al. Nov 1995 A
5473522 Kriz et al. Dec 1995 A
5475300 Havel Dec 1995 A
5481441 Stevens Jan 1996 A
5489827 Xia Feb 1996 A
5491402 Small Feb 1996 A
5493183 Kimball Feb 1996 A
5504395 Johnson et al. Apr 1996 A
5506760 Giebler et al. Apr 1996 A
5513082 Asano Apr 1996 A
5519496 Borgert et al. May 1996 A
5530322 Ference et al. Jun 1996 A
5539628 Seib Jul 1996 A
5544809 Keating et al. Aug 1996 A
5545950 Cho Aug 1996 A
5550440 Allison et al. Aug 1996 A
5559681 Duarte Sep 1996 A
5561346 Byrne Oct 1996 A
D376030 Cohen Nov 1996 S
5575459 Anderson Nov 1996 A
5575554 Guritz Nov 1996 A
5581158 Quazi Dec 1996 A
5592051 Korkala Jan 1997 A
5592054 Nerone et al. Jan 1997 A
5600199 Martin, Sr. et al. Feb 1997 A
5607227 Yasumoto et al. Mar 1997 A
5608290 Hutchisson et al. Mar 1997 A
5614788 Mullins et al. Mar 1997 A
5621282 Haskell Apr 1997 A
5621603 Adamec et al. Apr 1997 A
5621662 Humphries et al. Apr 1997 A
5622423 Lee Apr 1997 A
5633629 Hochstein May 1997 A
5634711 Kennedy et al. Jun 1997 A
5640061 Bornhorst et al. Jun 1997 A
5640141 Myllymaki Jun 1997 A
5642129 Zavracky et al. Jun 1997 A
5655830 Ruskouski Aug 1997 A
5656935 Havel Aug 1997 A
5661374 Cassidy et al. Aug 1997 A
5661645 Hochstein Aug 1997 A
5673059 Zavracky et al. Sep 1997 A
5682103 Burrell Oct 1997 A
5684523 Satoh et al. Nov 1997 A
5688042 Madadi et al. Nov 1997 A
5697695 Lin et al. Dec 1997 A
5699243 Eckel et al. Dec 1997 A
5701058 Roth Dec 1997 A
5712650 Barlow Jan 1998 A
5713655 Blackman Feb 1998 A
5721471 Begemann et al. Feb 1998 A
5725148 Hartman Mar 1998 A
5726535 Yan Mar 1998 A
5731759 Finucan Mar 1998 A
5734590 Tebbe Mar 1998 A
5751118 Mortimer May 1998 A
5752766 Bailey et al. May 1998 A
5765940 Levy et al. Jun 1998 A
5769527 Taylor et al. Jun 1998 A
5781108 Jacob et al. Jul 1998 A
5784006 Hochstein Jul 1998 A
5785227 Akiba Jul 1998 A
5790329 Klaus et al. Aug 1998 A
5803579 Turnbull et al. Sep 1998 A
5803580 Tseng Sep 1998 A
5803729 Tsimerman Sep 1998 A
5806965 Deese Sep 1998 A
5808689 Small Sep 1998 A
5810463 Kawahara et al. Sep 1998 A
5812105 Van de Ven Sep 1998 A
5813751 Shaffer Sep 1998 A
5813753 Vriens et al. Sep 1998 A
5821695 Vilanilam et al. Oct 1998 A
5825051 Bauer et al. Oct 1998 A
5828178 York et al. Oct 1998 A
5831522 Weed et al. Nov 1998 A
5836676 Ando et al. Nov 1998 A
5841177 Komoto et al. Nov 1998 A
5848837 Gustafson Dec 1998 A
5850126 Kanbar Dec 1998 A
5851063 Doughty et al. Dec 1998 A
5852658 Knight et al. Dec 1998 A
5854542 Forbes Dec 1998 A
RE36030 Nadeau Jan 1999 E
5859508 Ge et al. Jan 1999 A
5865529 Yan Feb 1999 A
5870233 Benz et al. Feb 1999 A
5890794 Abtahi et al. Apr 1999 A
5896010 Mikolajczak et al. Apr 1999 A
5904415 Robertson et al. May 1999 A
5907742 Johnson et al. May 1999 A
5909378 De Milleville Jun 1999 A
5912653 Fitch Jun 1999 A
5917287 Haederle et al. Jun 1999 A
5917534 Rajeswaran Jun 1999 A
5921660 Yu Jul 1999 A
5924784 Chliwnyj et al. Jul 1999 A
5927845 Gustafson et al. Jul 1999 A
5934792 Camarata Aug 1999 A
5936599 Reymond Aug 1999 A
5943802 Tijanic Aug 1999 A
5946209 Eckel et al. Aug 1999 A
5949347 Wu Sep 1999 A
5951145 Iwasaki et al. Sep 1999 A
5952680 Strite Sep 1999 A
5959547 Tubel et al. Sep 1999 A
5961072 Bodle Oct 1999 A
5962989 Baker Oct 1999 A
5962992 Huang et al. Oct 1999 A
5963185 Havel Oct 1999 A
5966069 Zmurk et al. Oct 1999 A
5971597 Baldwin et al. Oct 1999 A
5973594 Baldwin et al. Oct 1999 A
5974553 Gandar Oct 1999 A
5980064 Metroyanis Nov 1999 A
5998925 Shimizu et al. Dec 1999 A
5998928 Hipp Dec 1999 A
6000807 Moreland Dec 1999 A
6007209 Pelka Dec 1999 A
6008783 Kitagawa et al. Dec 1999 A
6010228 Blackman et al. Jan 2000 A
6011691 Schreffler Jan 2000 A
6016038 Mueller et al. Jan 2000 A
6018237 Havel Jan 2000 A
6019493 Kuo et al. Feb 2000 A
6020825 Chansky et al. Feb 2000 A
6025550 Kato Feb 2000 A
6028694 Schmidt Feb 2000 A
6030099 McDermott Feb 2000 A
6031343 Recknagel et al. Feb 2000 A
D422737 Orozco Apr 2000 S
6056420 Wilson et al. May 2000 A
6068383 Robertson et al. May 2000 A
6069597 Hansen May 2000 A
6072280 Allen Jun 2000 A
6074074 Marcus Jun 2000 A
6084359 Hetzel et al. Jul 2000 A
6086220 Lash et al. Jul 2000 A
6091200 Lenz Jul 2000 A
6092915 Rensch Jul 2000 A
6095661 Lebens et al. Aug 2000 A
6097352 Zavracky et al. Aug 2000 A
6107755 Katyl et al. Aug 2000 A
6116748 George Sep 2000 A
6121875 Hamm et al. Sep 2000 A
6127783 Pashley et al. Oct 2000 A
6132072 Turnbull et al. Oct 2000 A
6135604 Lin Oct 2000 A
6135620 Marsh Oct 2000 A
6139174 Butterworth Oct 2000 A
6149283 Conway et al. Nov 2000 A
6150774 Mueller et al. Nov 2000 A
6151529 Batko Nov 2000 A
6153985 Grossman Nov 2000 A
6158882 Bischoff, Jr. Dec 2000 A
6166496 Lys et al. Dec 2000 A
6175201 Sid Jan 2001 B1
6175220 Billig et al. Jan 2001 B1
6181126 Havel Jan 2001 B1
D437947 Huang Feb 2001 S
6183086 Neubert Feb 2001 B1
6183104 Ferrara Feb 2001 B1
6184628 Ruthenberg Feb 2001 B1
6196471 Ruthenberg Mar 2001 B1
6203180 Fleischmann Mar 2001 B1
6211626 Lys et al. Apr 2001 B1
6215409 Blach Apr 2001 B1
6217190 Altman et al. Apr 2001 B1
6219239 Mellberg et al. Apr 2001 B1
6220722 Begemann Apr 2001 B1
6227679 Zhang et al. May 2001 B1
6236331 Dussureault May 2001 B1
6238075 Dealey, Jr. et al. May 2001 B1
6241359 Lin Jun 2001 B1
6249221 Reed Jun 2001 B1
6250774 Begemann et al. Jun 2001 B1
6252350 Alvarez Jun 2001 B1
6252358 Xydis et al. Jun 2001 B1
6268600 Nakamura et al. Jul 2001 B1
6273338 White Aug 2001 B1
6275397 McClain Aug 2001 B1
6283612 Hunter Sep 2001 B1
6290140 Pesko et al. Sep 2001 B1
6292901 Lys et al. Sep 2001 B1
6293684 Riblett Sep 2001 B1
6297724 Bryans et al. Oct 2001 B1
6305109 Lee Oct 2001 B1
6305821 Hsieh et al. Oct 2001 B1
6307331 Bonasia et al. Oct 2001 B1
6310590 Havel Oct 2001 B1
6315429 Grandolfo Nov 2001 B1
6323832 Nishizawa et al. Nov 2001 B1
6325651 Nishihara et al. Dec 2001 B1
6334699 Gladnick Jan 2002 B1
6340868 Lys et al. Jan 2002 B1
6354714 Rhodes Mar 2002 B1
6361186 Slayden Mar 2002 B1
6362578 Swanson et al. Mar 2002 B1
6369525 Chang et al. Apr 2002 B1
6371637 Atchinson et al. Apr 2002 B1
6373733 Wu et al. Apr 2002 B1
6379022 Amerson et al. Apr 2002 B1
D457667 Piepgras et al. May 2002 S
D457669 Piepgras et al. May 2002 S
D457974 Piepgras et al. May 2002 S
6388393 Illingworth May 2002 B1
6388396 Katyl et al. May 2002 B1
6394623 Tsui May 2002 B1
6396216 Noone et al. May 2002 B1
D458395 Piepgras et al. Jun 2002 S
6400096 Wells et al. Jun 2002 B1
6404131 Kawano et al. Jun 2002 B1
6411022 Machida Jun 2002 B1
6411045 Nerone Jun 2002 B1
6422716 Henrici et al. Jul 2002 B2
6428189 Hochstein Aug 2002 B1
6429604 Chang Aug 2002 B1
D463610 Piepgras et al. Sep 2002 S
6445139 Marshall et al. Sep 2002 B1
6448550 Nishimura Sep 2002 B1
6448716 Hutchison Sep 2002 B1
6459919 Lys et al. Oct 2002 B1
6464373 Petrick Oct 2002 B1
6469457 Callahan Oct 2002 B2
6471388 Marsh Oct 2002 B1
6472823 Yen Oct 2002 B2
6473002 Hutchison Oct 2002 B1
D468035 Bianc et al. Dec 2002 S
6488392 Lu Dec 2002 B1
6495964 Muthu et al. Dec 2002 B1
6511204 Emmel et al. Jan 2003 B2
6517218 Hochstein Feb 2003 B2
6521879 Rand et al. Feb 2003 B1
6522078 Okamoto et al. Feb 2003 B1
6527411 Sayers Mar 2003 B1
6528954 Lys et al. Mar 2003 B1
6528958 Hulshof et al. Mar 2003 B2
6538375 Duggal et al. Mar 2003 B1
6540381 Douglass, II Apr 2003 B1
6541800 Barnett et al. Apr 2003 B2
6548967 Dowling et al. Apr 2003 B1
6568834 Scianna May 2003 B1
6573536 Dry Jun 2003 B1
6577072 Saito et al. Jun 2003 B2
6577080 Lys et al. Jun 2003 B2
6577512 Tripathi et al. Jun 2003 B2
6577794 Currie et al. Jun 2003 B1
6578979 Truttmann-Battig Jun 2003 B2
6582103 Popovich et al. Jun 2003 B1
6583550 Iwasa et al. Jun 2003 B2
6583573 Bierman Jun 2003 B2
D477093 Moriyama et al. Jul 2003 S
6585393 Brandes et al. Jul 2003 B1
6586890 Min et al. Jul 2003 B2
6587049 Thacker Jul 2003 B1
6590343 Pederson Jul 2003 B2
6592238 Cleaver et al. Jul 2003 B2
6594369 Une Jul 2003 B1
6596977 Muthu et al. Jul 2003 B2
6598996 Lodhie Jul 2003 B1
6608453 Morgan et al. Aug 2003 B2
6608614 Johnson Aug 2003 B1
6609804 Nolan et al. Aug 2003 B2
6609813 Showers et al. Aug 2003 B1
6612712 Nepil Sep 2003 B2
6612717 Yen Sep 2003 B2
6612729 Hoffman Sep 2003 B1
6621222 Hong Sep 2003 B1
6623151 Pederson Sep 2003 B2
6624597 Dowling et al. Sep 2003 B2
D481484 Cuevas et al. Oct 2003 S
6634770 Cao Oct 2003 B2
6634779 Reed Oct 2003 B2
6636003 Rahm et al. Oct 2003 B2
6639349 Bahadur Oct 2003 B1
6641284 Stopa et al. Nov 2003 B2
6652117 Tsai Nov 2003 B2
6659622 Katogi et al. Dec 2003 B2
6660935 Southard et al. Dec 2003 B2
6666689 Savage, Jr. Dec 2003 B1
6667623 Bourgault et al. Dec 2003 B2
6674096 Sommers Jan 2004 B2
6676284 Wynne Willson Jan 2004 B1
6679621 West et al. Jan 2004 B2
6681154 Nierlich et al. Jan 2004 B2
6682205 Lin Jan 2004 B2
6683419 Kriparos Jan 2004 B2
6700136 Guida Mar 2004 B2
6712486 Popovich et al. Mar 2004 B1
6717376 Lys et al. Apr 2004 B2
6717526 Martineau et al. Apr 2004 B2
6720745 Lys et al. Apr 2004 B2
6726348 Gloisten Apr 2004 B2
6736328 Takusagawa May 2004 B1
6736525 Chin May 2004 B2
6741324 Kim May 2004 B1
D491678 Piepgras Jun 2004 S
D492042 Piepgras Jun 2004 S
6744223 Laflamme et al. Jun 2004 B2
6748299 Motoyama Jun 2004 B1
6762562 Leong Jul 2004 B2
6768047 Chang et al. Jul 2004 B2
6774584 Lys et al. Aug 2004 B2
6777891 Lys et al. Aug 2004 B2
6781329 Mueller et al. Aug 2004 B2
6787999 Stimac et al. Sep 2004 B2
6788000 Appelberg et al. Sep 2004 B2
6788011 Mueller et al. Sep 2004 B2
6791840 Chun Sep 2004 B2
6796680 Showers et al. Sep 2004 B1
6799864 Bohler et al. Oct 2004 B2
6801003 Schanberger et al. Oct 2004 B2
6803732 Kraus et al. Oct 2004 B2
6806659 Mueller et al. Oct 2004 B1
6812970 McBride Nov 2004 B1
6814470 Rizkin et al. Nov 2004 B2
6814478 Menke Nov 2004 B2
6815724 Dry Nov 2004 B2
6846094 Luk Jan 2005 B2
6851816 Wu et al. Feb 2005 B2
6851832 Tieszen Feb 2005 B2
6853150 Clauberg et al. Feb 2005 B2
6853151 Leong et al. Feb 2005 B2
6853563 Yang et al. Feb 2005 B1
6857924 Fu et al. Feb 2005 B2
6860628 Robertson et al. Mar 2005 B2
6866401 Sommers et al. Mar 2005 B2
6869204 Morgan et al. Mar 2005 B2
6871981 Alexanderson et al. Mar 2005 B2
6874924 Hulse et al. Apr 2005 B1
6879883 Motoyama Apr 2005 B1
6882111 Kan et al. Apr 2005 B2
6883929 Dowling Apr 2005 B2
6883934 Kawakami et al. Apr 2005 B2
6888322 Dowling et al. May 2005 B2
6897624 Lys et al. May 2005 B2
D506274 Moriyama et al. Jun 2005 S
6909239 Gauna Jun 2005 B2
6909921 Bilger Jun 2005 B1
6918680 Seeberger Jul 2005 B2
6921181 Yen Jul 2005 B2
6926419 An Aug 2005 B2
6936968 Cross et al. Aug 2005 B2
6936978 Morgan et al. Aug 2005 B2
6940230 Myron et al. Sep 2005 B2
6948829 Verdes et al. Sep 2005 B2
6953261 Jiao et al. Oct 2005 B1
6957905 Pritchard et al. Oct 2005 B1
6963175 Archenhold et al. Nov 2005 B2
6964501 Ryan Nov 2005 B2
6965197 Tyan et al. Nov 2005 B2
6965205 Piepgras et al. Nov 2005 B2
6967448 Morgan et al. Nov 2005 B2
6969179 Sloan et al. Nov 2005 B2
6969186 Sonderegger et al. Nov 2005 B2
6969954 Lys Nov 2005 B2
6975079 Lys et al. Dec 2005 B2
6979097 Elam et al. Dec 2005 B2
6982518 Chou et al. Jan 2006 B2
6995681 Pederson Feb 2006 B2
6997576 Lodhie et al. Feb 2006 B1
6999318 Newby Feb 2006 B2
7004603 Knight Feb 2006 B2
D518218 Roberge et al. Mar 2006 S
7008079 Smith Mar 2006 B2
7014336 Ducharme et al. Mar 2006 B1
7015650 McGrath Mar 2006 B2
7018063 Michael et al. Mar 2006 B2
7018074 Raby et al. Mar 2006 B2
7021799 Mizuyoshi Apr 2006 B2
7021809 Iwasa et al. Apr 2006 B2
7024256 Krzyzanowski et al. Apr 2006 B2
7029145 Frederick Apr 2006 B2
7031920 Dowling et al. Apr 2006 B2
7033036 Pederson Apr 2006 B2
7038398 Lys et al. May 2006 B1
7038399 Lys et al. May 2006 B2
7042172 Dowling et al. May 2006 B2
7048423 Stepanenko et al. May 2006 B2
7049761 Timmermans et al. May 2006 B2
7052171 Lefebvre et al. May 2006 B1
7053557 Cross et al. May 2006 B2
7064498 Dowling et al. Jun 2006 B2
7064674 Pederson Jun 2006 B2
7067992 Leong et al. Jun 2006 B2
7077978 Setlur et al. Jul 2006 B2
7080927 Feuerborn et al. Jul 2006 B2
7086747 Nielson et al. Aug 2006 B2
7088014 Nierlich et al. Aug 2006 B2
7088904 Ryan, Jr. Aug 2006 B2
7102902 Brown et al. Sep 2006 B1
7113541 Lys et al. Sep 2006 B1
7114830 Robertson et al. Oct 2006 B2
7114834 Rivas et al. Oct 2006 B2
7118262 Negley Oct 2006 B2
7119503 Kemper Oct 2006 B2
7120560 Williams et al. Oct 2006 B2
7121679 Fujimoto Oct 2006 B2
7122976 Null et al. Oct 2006 B1
7123139 Sweeney Oct 2006 B2
7128442 Lee et al. Oct 2006 B2
7128454 Kim et al. Oct 2006 B2
D532532 Maxik Nov 2006 S
7132635 Dowling Nov 2006 B2
7132785 Ducharme Nov 2006 B2
7132804 Lys et al. Nov 2006 B2
7135824 Lys et al. Nov 2006 B2
7139617 Morgan et al. Nov 2006 B1
7144135 Martin et al. Dec 2006 B2
7153002 Kim et al. Dec 2006 B2
7161311 Mueller et al. Jan 2007 B2
7161313 Piepgras et al. Jan 2007 B2
7161556 Morgan et al. Jan 2007 B2
7164110 Pitigoi-Aron et al. Jan 2007 B2
7164235 Ito et al. Jan 2007 B2
7165863 Thomas et al. Jan 2007 B1
7165866 Li Jan 2007 B2
7167777 Budike, Jr. Jan 2007 B2
7168843 Striebel Jan 2007 B2
D536468 Crosby Feb 2007 S
7178941 Roberge et al. Feb 2007 B2
7180252 Lys et al. Feb 2007 B2
D538950 Maxik Mar 2007 S
D538952 Maxik et al. Mar 2007 S
D538962 Elliot Mar 2007 S
7186003 Dowling et al. Mar 2007 B2
7186005 Hulse Mar 2007 B2
7187141 Mueller et al. Mar 2007 B2
7190126 Paton Mar 2007 B1
7192154 Becker Mar 2007 B2
7198387 Gloisten et al. Apr 2007 B1
7201491 Bayat et al. Apr 2007 B2
7201497 Weaver, Jr. et al. Apr 2007 B2
7202613 Morgan et al. Apr 2007 B2
7204615 Arik et al. Apr 2007 B2
7204622 Dowling et al. Apr 2007 B2
7207696 Lin Apr 2007 B1
7210818 Luk et al. May 2007 B2
7210957 Mrakovich et al. May 2007 B2
7211959 Chou May 2007 B1
7213934 Zarian et al. May 2007 B2
7217004 Park et al. May 2007 B2
7217012 Southard et al. May 2007 B2
7217022 Ruffin May 2007 B2
7218056 Harwood May 2007 B1
7218238 Right et al. May 2007 B2
7220015 Dowling May 2007 B2
7220018 Crabb et al. May 2007 B2
7221104 Lys et al. May 2007 B2
7221110 Sears et al. May 2007 B2
7224000 Aanegoia et al. May 2007 B2
7226189 Lee et al. Jun 2007 B2
7228052 Lin Jun 2007 B1
7228190 Dowling et al. Jun 2007 B2
7231060 Dowling et al. Jun 2007 B2
7233115 Lys et al. Jun 2007 B2
7233831 Blackwell Jun 2007 B2
7236366 Chen Jun 2007 B2
7237924 Martineau et al. Jul 2007 B2
7237925 Mayer et al. Jul 2007 B2
7239532 Hsu et al. Jul 2007 B1
7241038 Naniwa et al. Jul 2007 B2
7242152 Dowling et al. Jul 2007 B2
7244058 DiPenti et al. Jul 2007 B2
7246926 Harwood Jul 2007 B2
7246931 Hsieh et al. Jul 2007 B2
7248239 Dowling et al. Jul 2007 B2
7249269 Motoyama Jul 2007 B1
7249865 Robertson Jul 2007 B2
D548868 Roberge et al. Aug 2007 S
7248467 Saccomanno et al. Aug 2007 B2
7252408 Mazzochette et al. Aug 2007 B2
7253566 Lys et al. Aug 2007 B2
7255457 Ducharme et al. Aug 2007 B2
7255460 Lee Aug 2007 B2
7256554 Lys Aug 2007 B2
7258458 Mochiachvili et al. Aug 2007 B2
7258467 Saccomanno et al. Aug 2007 B2
7259528 Pilz Aug 2007 B2
7262439 Setlur et al. Aug 2007 B2
7262559 Tripathi et al. Aug 2007 B2
D550379 Hoshikawa et al. Sep 2007 S
7264372 Maglica Sep 2007 B2
7267461 Kan Sep 2007 B2
7267467 Wu et al. Sep 2007 B2
7270443 Kurtz et al. Sep 2007 B2
7271794 Cheng et al. Sep 2007 B1
7273300 Mrakovich Sep 2007 B2
7274045 Chandran et al. Sep 2007 B2
7274160 Mueller et al. Sep 2007 B2
7274183 Gu et al. Sep 2007 B1
D553267 Yuen Oct 2007 S
7285801 Eliashevich et al. Oct 2007 B2
7288902 Melanson Oct 2007 B1
7288904 Numeroli et al. Oct 2007 B2
7296912 Ichikawa et al. Nov 2007 B2
7300184 Ichikawa et al. Nov 2007 B2
7300192 Mueller et al. Nov 2007 B2
D556937 Ly Dec 2007 S
D557854 Lewis Dec 2007 S
7303300 Dowling et al. Dec 2007 B2
7306353 Popovich et al. Dec 2007 B2
7307391 Shan Dec 2007 B2
7308296 Lys et al. Dec 2007 B2
7309965 Dowling et al. Dec 2007 B2
7318658 Wang et al. Jan 2008 B2
7319244 Liu et al. Jan 2008 B2
7319246 Soules et al. Jan 2008 B2
7321191 Setlur et al. Jan 2008 B2
7326964 Lim et al. Feb 2008 B2
7327281 Hutchison Feb 2008 B2
7329024 Lynch et al. Feb 2008 B2
7329031 Liaw et al. Feb 2008 B2
D563589 Hariri et al. Mar 2008 S
7344278 Paravantsos Mar 2008 B2
7345320 Dahm Mar 2008 B2
7348604 Matheson Mar 2008 B2
7350936 Ducharme et al. Apr 2008 B2
7350952 Nishigaki Apr 2008 B2
7352138 Lys et al. Apr 2008 B2
7352339 Morgan et al. Apr 2008 B2
7353071 Blackwell Apr 2008 B2
7358679 Lys et al. Apr 2008 B2
7358929 Mueller Apr 2008 B2
7370986 Chan May 2008 B2
7374327 Schexnaider May 2008 B2
7378805 Oh et al. May 2008 B2
7378976 Paterno May 2008 B1
7385359 Dowling et al. Jun 2008 B2
7391159 Harwood Jun 2008 B2
D574093 Kitagawa et al. Jul 2008 S
7396142 Laizure, Jr. et al. Jul 2008 B2
7396146 Wang Jul 2008 B2
7401935 VanderSchult Jul 2008 B2
7401945 Zhang Jul 2008 B2
D576749 Kitagawa et al. Sep 2008 S
7423548 Kontovich Sep 2008 B2
7427840 Morgan et al. Sep 2008 B2
7429117 Pohlert et al. Sep 2008 B2
7434964 Zheng et al. Oct 2008 B1
7438441 Sun et al. Oct 2008 B2
D580089 Ly et al. Nov 2008 S
D581556 To et al. Nov 2008 S
7449847 Schanberger et al. Nov 2008 B2
D582577 Yuen Dec 2008 S
7466082 Snyeder et al. Dec 2008 B1
7470046 Kao et al. Dec 2008 B2
D584428 Li et al. Jan 2009 S
D584429 Pei et al. Jan 2009 S
7476002 Wolf et al. Jan 2009 B2
7476004 Chan Jan 2009 B2
7478924 Robertson Jan 2009 B2
7482764 Morgan et al. Jan 2009 B2
D586484 Liu et al. Feb 2009 S
D586928 Liu et al. Feb 2009 S
7490957 Leong et al. Feb 2009 B2
7494246 Harbers et al. Feb 2009 B2
7497596 Ge Mar 2009 B2
7498753 McAvoy et al. Mar 2009 B2
7507001 Kit Mar 2009 B2
7510299 Timmermans et al. Mar 2009 B2
7510400 Giovatsky et al. Mar 2009 B2
7511613 Wang Mar 2009 B2
7514876 Roach, Jr. Apr 2009 B2
7520635 Wolf et al. Apr 2009 B2
7521872 Bruning Apr 2009 B2
7524089 Park Apr 2009 B2
D592766 Zhu et al. May 2009 S
D593223 Komar May 2009 S
7530701 Chan-Wing May 2009 B2
7534002 Yamaguchi et al. May 2009 B2
D594999 Uchida et al. Jun 2009 S
7549769 Kim et al. Jun 2009 B2
7556396 Kuo et al. Jul 2009 B2
7559663 Wong et al. Jul 2009 B2
7562998 Yen Jul 2009 B1
D597686 Noh Aug 2009 S
7569981 Ciancanelli Aug 2009 B1
7572027 Zampini Aug 2009 B2
7572030 Booth et al. Aug 2009 B2
7575339 Hung Aug 2009 B2
7579786 Soos Aug 2009 B2
7582911 Lynch Sep 2009 B2
7583035 Shteynberg et al. Sep 2009 B2
7583901 Nakagawa et al. Sep 2009 B2
7592757 Hargenrader et al. Sep 2009 B2
7594738 Lin et al. Sep 2009 B1
D601726 Mollaert et al. Oct 2009 S
7598681 Lys et al. Oct 2009 B2
7598684 Lys et al. Oct 2009 B2
7600907 Liu et al. Oct 2009 B2
7602559 Jang et al. Oct 2009 B2
7616849 Simon Nov 2009 B1
7618157 Galvez et al. Nov 2009 B1
7619366 Diederiks Nov 2009 B2
7635201 Deng Dec 2009 B2
7635214 Perio Dec 2009 B2
7639517 Zhou et al. Dec 2009 B2
7648251 Whitehouse et al. Jan 2010 B2
7649327 Peng Jan 2010 B2
D610724 Chiang et al. Feb 2010 S
7654703 Kan et al. Feb 2010 B2
7661839 Tsai Feb 2010 B2
D611172 Lin et al. Mar 2010 S
D612528 McGrath et al. Mar 2010 S
7690813 Kanamori et al. Apr 2010 B2
7710047 Fredricks May 2010 B2
7710253 Fredricks May 2010 B1
7712918 Siemiet et al. May 2010 B2
7748886 Pazula et al. Jul 2010 B2
7758207 Zhou et al. Jul 2010 B1
7759881 Melanson Jul 2010 B1
D621975 Wang Aug 2010 S
7784966 Verfuerth et al. Aug 2010 B2
7800511 Hutchison et al. Sep 2010 B1
7815338 Siemiet et al. Oct 2010 B2
7815341 Steedly et al. Oct 2010 B2
7828471 Lin Nov 2010 B2
7843150 Wang et al. Nov 2010 B2
7848702 Ho et al. Dec 2010 B2
7850341 Mrakovich et al. Dec 2010 B2
7855641 Okafo Dec 2010 B1
RE42161 Hochstein Feb 2011 E
7878683 Logan et al. Feb 2011 B2
7887216 Patrick Feb 2011 B2
7887226 Huang et al. Feb 2011 B2
7889051 Biling et al. Feb 2011 B1
D634452 De Visser Mar 2011 S
7904209 Podgomy et al. Mar 2011 B2
D636504 Duster Apr 2011 S
7926975 Siemiet et al. Apr 2011 B2
7938562 Ivey et al. May 2011 B2
7946729 Ivey et al. May 2011 B2
7952292 Vegter et al. May 2011 B2
7976185 Uang et al. Jul 2011 B2
7976196 Ivey et al. Jul 2011 B2
7990070 Nerone Aug 2011 B2
7997770 Meurer Aug 2011 B1
8013472 Adest et al. Sep 2011 B2
D650097 Trumble et al. Dec 2011 S
D650494 Tsao et al. Dec 2011 S
D652968 Aguiar et al. Jan 2012 S
8093823 Ivey et al. Jan 2012 B1
D654192 Maxik et al. Feb 2012 S
8118447 Simon et al. Feb 2012 B2
8136738 Kopp Mar 2012 B1
8147091 Hsia et al. Apr 2012 B2
8159152 Salessi Apr 2012 B1
D660472 Aguiar et al. May 2012 S
8167452 Chou May 2012 B2
8177388 Yen May 2012 B2
8179037 Chan et al. May 2012 B2
8183989 Tsai May 2012 B2
D662236 Matsushita Jun 2012 S
8203445 Recker et al. Jun 2012 B2
8214084 Ivey et al. Jul 2012 B2
8230690 Salessi Jul 2012 B1
8247985 Timmermans et al. Aug 2012 B2
8251544 Ivey et al. Aug 2012 B2
8262249 Hsia et al. Sep 2012 B2
8272764 Son Sep 2012 B2
8287144 Pederson et al. Oct 2012 B2
8297788 Bishop Oct 2012 B2
8299722 Melanson Oct 2012 B2
8304993 Tzou et al. Nov 2012 B2
8305225 Hefright Nov 2012 B2
8313213 Lin et al. Nov 2012 B2
8319407 Ke Nov 2012 B2
8319433 Lin et al. Nov 2012 B2
8319437 Carlin et al. Nov 2012 B2
8322878 Hsia et al. Dec 2012 B2
8324817 Ivey et al. Dec 2012 B2
8337071 Negley et al. Dec 2012 B2
8366291 Hoffmann Feb 2013 B2
8376579 Chang Feb 2013 B2
8376588 Yen Feb 2013 B2
8382322 Bishop Feb 2013 B2
8382327 Timmermans et al. Feb 2013 B2
8382502 Cao et al. Feb 2013 B2
8388179 Hood et al. Mar 2013 B2
8398275 Wang et al. Mar 2013 B2
8403692 Cao et al. Mar 2013 B2
8405314 Jensen et al. Mar 2013 B2
8408734 Wu Apr 2013 B2
8434914 Li et al. May 2013 B2
8454193 Simon et al. Jun 2013 B2
8496351 Lo et al. Jul 2013 B2
8523394 Simon et al. Sep 2013 B2
8531109 Visser et al. Sep 2013 B2
8540401 Simon et al. Sep 2013 B2
8571716 Ivey et al. Oct 2013 B2
8628216 Ivey et al. Jan 2014 B2
8653984 Ivey et al. Feb 2014 B2
8672508 Pearson Mar 2014 B2
8674626 Siemiet et al. Mar 2014 B2
8807785 Vey et al. Aug 2014 B2
8830080 Vey et al. Sep 2014 B2
8840282 Simon et al. Sep 2014 B2
8870412 Timmermans et al. Oct 2014 B1
8870415 Vey Oct 2014 B2
9016895 Handsaker Apr 2015 B2
9072171 Simon Jun 2015 B2
9184518 Vey et al. Nov 2015 B2
10161568 Amrine, Jr. et al. Dec 2018 B2
20010033488 Chliwnyj et al. Oct 2001 A1
20010045803 Cencur Nov 2001 A1
20020011801 Chang Jan 2002 A1
20020015297 Hayashi et al. Feb 2002 A1
20020038157 Dowling et al. Mar 2002 A1
20020041159 Kaping, Jr. Apr 2002 A1
20020044066 Dowling et al. Apr 2002 A1
20020047516 Iwasa et al. Apr 2002 A1
20020047569 Dowling et al. Apr 2002 A1
20020047624 Stam et al. Apr 2002 A1
20020047628 Morgan et al. Apr 2002 A1
20020048169 Dowling et al. Apr 2002 A1
20020057061 Mueller et al. May 2002 A1
20020060526 Timmermans et al. May 2002 A1
20020070688 Dowling et al. Jun 2002 A1
20020074559 Dowling et al. Jun 2002 A1
20020074958 Crenshaw Jun 2002 A1
20020078221 Blackwell et al. Jun 2002 A1
20020101197 Lys et al. Aug 2002 A1
20020113555 Lys et al. Aug 2002 A1
20020130627 Morgan et al. Sep 2002 A1
20020145394 Morgan et al. Oct 2002 A1
20020145869 Dowling et al. Oct 2002 A1
20020152045 Dowling et al. Oct 2002 A1
20020152298 Kilkrta et al. Oct 2002 A1
20020153851 Morgan et al. Oct 2002 A1
20020158583 Lys et al. Oct 2002 A1
20020163316 Lys et al. Nov 2002 A1
20020171365 Morgan et al. Nov 2002 A1
20020171377 Mueller et al. Nov 2002 A1
20020171378 Morgan et al. Nov 2002 A1
20020175639 Pitigoi-Aron Nov 2002 A1
20020176253 Ming Nov 2002 A1
20020176259 Ducharme et al. Nov 2002 A1
20020179816 Haines et al. Dec 2002 A1
20020195975 Schanberger et al. Dec 2002 A1
20030011538 Lys et al. Jan 2003 A1
20030021117 Wen Jan 2003 A1
20030028260 Blackwell Feb 2003 A1
20030031015 Ishibashi Feb 2003 A1
20030048641 Alexanderson et al. Mar 2003 A1
20030052599 Sun Mar 2003 A1
20030057884 Dowling et al. Mar 2003 A1
20030057886 Lys et al. Mar 2003 A1
20030057887 Dowling et al. Mar 2003 A1
20030057890 Lys et al. Mar 2003 A1
20030076281 Morgan et al. Apr 2003 A1
20030085710 Bourgault et al. May 2003 A1
20030095404 Becks et al. May 2003 A1
20030100837 Lys et al. May 2003 A1
20030102810 Cross et al. Jun 2003 A1
20030133292 Mueller et al. Jul 2003 A1
20030137258 Piepgras et al. Jul 2003 A1
20030185005 Sommers et al. Oct 2003 A1
20030185014 Gloisten Oct 2003 A1
20030189412 Cunningham Oct 2003 A1
20030218879 Tieszen Nov 2003 A1
20030222578 Cok Dec 2003 A1
20030222587 Dowling et al. Dec 2003 A1
20030234342 Gaines et al. Dec 2003 A1
20040003545 Gillespie Jan 2004 A1
20040007980 Shibata Jan 2004 A1
20040012959 Jones et al. Jan 2004 A1
20040036006 Dowling et al. Feb 2004 A1
20040037088 English et al. Feb 2004 A1
20040052076 Mueller et al. Mar 2004 A1
20040062041 Cross et al. Apr 2004 A1
20040075572 Buschmann et al. Apr 2004 A1
20040080960 Wu Apr 2004 A1
20040090191 Mueller et al. May 2004 A1
20040090787 Dowling et al. May 2004 A1
20040105261 Ducharme et al. Jun 2004 A1
20040105264 Spero Jun 2004 A1
20040113568 Dowling et al. Jun 2004 A1
20040114371 Lea et al. Jun 2004 A1
20040116039 Mueller et al. Jun 2004 A1
20040124782 Yu Jul 2004 A1
20040130908 McClurg et al. Jul 2004 A1
20040130909 Mueller et al. Jul 2004 A1
20040141321 Dowling et al. Jul 2004 A1
20040145886 Fatemi et al. Jul 2004 A1
20040155609 Lys et al. Aug 2004 A1
20040160199 Morgan et al. Aug 2004 A1
20040178751 Mueller et al. Sep 2004 A1
20040189262 McGrath et al. Sep 2004 A1
20040212320 Dowling et al. Oct 2004 A1
20040212321 Lys et al. Oct 2004 A1
20040212993 Morgan et al. Oct 2004 A1
20040223328 Lee et al. Nov 2004 A1
20040240890 Lys et al. Dec 2004 A1
20040251854 Matsuda et al. Dec 2004 A1
20040257007 Lys et al. Dec 2004 A1
20050013133 Yeh Jan 2005 A1
20050023536 Shackle Feb 2005 A1
20050024877 Frederick Feb 2005 A1
20050030744 Ducharme et al. Feb 2005 A1
20050035728 Schanberger et al. Feb 2005 A1
20050036300 Dowling et al. Feb 2005 A1
20050040774 Mueller et al. Feb 2005 A1
20050041161 Dowling et al. Feb 2005 A1
20050041424 Ducharme et al. Feb 2005 A1
20050043907 Eckel et al. Feb 2005 A1
20050044617 Mueller et al. Mar 2005 A1
20050047132 Dowling et al. Mar 2005 A1
20050047134 Mueller et al. Mar 2005 A1
20050062440 Lys et al. Mar 2005 A1
20050063194 Lys et al. Mar 2005 A1
20050078477 Lo Apr 2005 A1
20050093488 Hung et al. May 2005 A1
20050099824 Dowling et al. May 2005 A1
20050107694 Jansen et al. May 2005 A1
20050110384 Peterson May 2005 A1
20050116667 Mueller et al. Jun 2005 A1
20050128751 Roberge et al. Jun 2005 A1
20050141225 Striebel Jun 2005 A1
20050143173 Barney et al. Jun 2005 A1
20050151489 Lys et al. Jul 2005 A1
20050151663 Tanguay Jul 2005 A1
20050154494 Ahmed Jul 2005 A1
20050162093 Timmermans et al. Jul 2005 A1
20050162100 Romano et al. Jul 2005 A1
20050162101 Leong et al. Jul 2005 A1
20050174473 Morgan et al. Aug 2005 A1
20050174780 Park Aug 2005 A1
20050184667 Sturman et al. Aug 2005 A1
20050201112 Sturman et al. Sep 2005 A1
20050206529 St. Germain Sep 2005 A1
20050213320 Kazuhiro et al. Sep 2005 A1
20050213352 Lys et al. Sep 2005 A1
20050213353 Lys et al. Sep 2005 A1
20050218838 Lys et al. Oct 2005 A1
20050218870 Lys et al. Oct 2005 A1
20050219860 Schexnaider Oct 2005 A1
20050219872 Lys et al. Oct 2005 A1
20050225979 Robertson et al. Oct 2005 A1
20050231133 Lys et al. Oct 2005 A1
20050236029 Dowling et al. Oct 2005 A1
20050236998 Mueller et al. Oct 2005 A1
20050242742 Cheang et al. Nov 2005 A1
20050243577 Moon Nov 2005 A1
20050248299 Chemel et al. Nov 2005 A1
20050253533 Lys et al. Nov 2005 A1
20050259424 Zampini et al. Nov 2005 A1
20050264474 Rast Dec 2005 A1
20050265019 Sommers Dec 2005 A1
20050275626 Mueller et al. Dec 2005 A1
20050276051 Caudle et al. Dec 2005 A1
20050276053 Nortrup et al. Dec 2005 A1
20050276064 Wu et al. Dec 2005 A1
20050281030 Leong et al. Dec 2005 A1
20050285547 Piepgras et al. Dec 2005 A1
20060002110 Dowling et al. Jan 2006 A1
20060012987 Ducharme et al. Jan 2006 A9
20060012997 Catalano et al. Jan 2006 A1
20060016960 Morgan et al. Jan 2006 A1
20060186214 Simon Jan 2006 A1
20060022214 Morgan et al. Feb 2006 A1
20060028155 Young Feb 2006 A1
20060028837 Mrakovich Feb 2006 A1
20060034078 Kovacik et al. Feb 2006 A1
20060044152 Wang Mar 2006 A1
20060050509 Dowling et al. Mar 2006 A9
20060050514 Opolka Mar 2006 A1
20060056855 Nakagawa et al. Mar 2006 A1
20060066447 Davenport et al. Mar 2006 A1
20060076908 Morgan et al. Apr 2006 A1
20060081863 Kim et al. Apr 2006 A1
20060091826 Chen May 2006 A1
20060092640 Li et al. May 2006 A1
20060098077 Dowling et al. May 2006 A1
20060104058 Chemel et al. May 2006 A1
20060109648 Trenchard et al. May 2006 A1
20060109649 Ducharme et al. May 2006 A1
20060109661 Coushaine et al. May 2006 A1
20060126325 Lefebvre et al. Jun 2006 A1
20060126338 Mighetto Jun 2006 A1
20060132061 McCormick et al. Jun 2006 A1
20060132323 Grady Jun 2006 A1
20060146531 Reo et al. Jul 2006 A1
20060152172 Mueller et al. Jul 2006 A9
20060158881 Dowling et al. Jul 2006 A1
20060170376 Piepgras et al. Aug 2006 A1
20060192502 Brown et al. Aug 2006 A1
20060193131 McGrath et al. Aug 2006 A1
20060196953 Simon et al. Sep 2006 A1
20060197661 Tracy et al. Sep 2006 A1
20060198128 Piepgras et al. Sep 2006 A1
20060208667 Lys et al. Sep 2006 A1
20060215422 Laizure et al. Sep 2006 A1
20060220595 Lu Oct 2006 A1
20060221606 Dowling et al. Oct 2006 A1
20060221619 Nishigaki Oct 2006 A1
20060227558 Osawa et al. Oct 2006 A1
20060232974 Lee et al. Oct 2006 A1
20060238884 Jang et al. Oct 2006 A1
20060262516 Dowling et al. Nov 2006 A9
20060262521 Piepgras et al. Nov 2006 A1
20060262544 Piepgras et al. Nov 2006 A1
20060262545 Piepgras et al. Nov 2006 A1
20060265921 Korall et al. Nov 2006 A1
20060273741 Stalker Dec 2006 A1
20060274529 Cao Dec 2006 A1
20060285325 Ducharme et al. Dec 2006 A1
20070035255 Shuster et al. Feb 2007 A1
20070035538 Garcia et al. Feb 2007 A1
20070035965 Holst Feb 2007 A1
20070040516 Chen Feb 2007 A1
20070041220 Lynch Feb 2007 A1
20070047227 Ducharme Mar 2007 A1
20070053182 Robertson Mar 2007 A1
20070053208 Justel et al. Mar 2007 A1
20070057805 Gomez Mar 2007 A1
20070064419 Gandhi Mar 2007 A1
20070064425 Frecska et al. Mar 2007 A1
20070070621 Rivas et al. Mar 2007 A1
20070070631 Huang et al. Mar 2007 A1
20070081423 Chien Apr 2007 A1
20070086754 Lys et al. Apr 2007 A1
20070086912 Dowling et al. Apr 2007 A1
20070097678 Yang May 2007 A1
20070109763 Wolf et al. May 2007 A1
20070109782 Wolf et al. May 2007 A1
20070115658 Mueller et al. May 2007 A1
20070115665 Mueller et al. May 2007 A1
20070120463 Hayashi et al. May 2007 A1
20070120594 Balakrishnan et al. May 2007 A1
20070127234 Jervey Jun 2007 A1
20070133202 Huang et al. Jun 2007 A1
20070139938 Petroski et al. Jun 2007 A1
20070145915 Roberge et al. Jun 2007 A1
20070146126 Wang Jun 2007 A1
20070147046 Arik et al. Jun 2007 A1
20070152797 Chemel et al. Jul 2007 A1
20070152808 Lacasse Jul 2007 A1
20070153514 Dowling et al. Jul 2007 A1
20070159828 Wang Jul 2007 A1
20070164677 Jeurissen Jul 2007 A1
20070165402 Weaver, Jr. et al. Jul 2007 A1
20070165405 Chen Jul 2007 A1
20070173978 Fein et al. Jul 2007 A1
20070177382 Pritchard et al. Aug 2007 A1
20070182387 Weirich Aug 2007 A1
20070188114 Lys et al. Aug 2007 A1
20070188427 Lys et al. Aug 2007 A1
20070189026 Chemel et al. Aug 2007 A1
20070195526 Dowling et al. Aug 2007 A1
20070195527 Russell Aug 2007 A1
20070195532 Reisenauer et al. Aug 2007 A1
20070200725 Fredericks et al. Aug 2007 A1
20070205712 Radkov et al. Sep 2007 A1
20070206375 Piepgras et al. Sep 2007 A1
20070211461 Harwood Sep 2007 A1
20070211463 Chevalier et al. Sep 2007 A1
20070228999 Kit Oct 2007 A1
20070235751 Radkov et al. Oct 2007 A1
20070236156 Lys et al. Oct 2007 A1
20070236358 Street et al. Oct 2007 A1
20070237284 Lys et al. Oct 2007 A1
20070240346 Li et al. Oct 2007 A1
20070241657 Radkov et al. Oct 2007 A1
20070242466 Wu Oct 2007 A1
20070247450 Lee Oct 2007 A1
20070247842 Zampini et al. Oct 2007 A1
20070247847 Villard Oct 2007 A1
20070247851 Villard Oct 2007 A1
20070252161 Meis et al. Nov 2007 A1
20070258231 Koerner et al. Nov 2007 A1
20070258240 Ducharme et al. Nov 2007 A1
20070263379 Dowling Nov 2007 A1
20070274070 Wedell Nov 2007 A1
20070281520 Insalaco et al. Dec 2007 A1
20070285926 Maxik Dec 2007 A1
20070285933 Southard et al. Dec 2007 A1
20070290625 He et al. Dec 2007 A1
20070291483 Lys Dec 2007 A1
20070296350 Maxik et al. Dec 2007 A1
20080003664 Tysoe et al. Jan 2008 A1
20080007945 Kelly et al. Jan 2008 A1
20080012502 Lys Jan 2008 A1
20080012506 Mueller et al. Jan 2008 A1
20080013316 Chiang Jan 2008 A1
20080013324 Yu Jan 2008 A1
20080018261 Kastner Jan 2008 A1
20080024067 Ishibashi Jan 2008 A1
20080029720 Li Feb 2008 A1
20080037226 Shin et al. Feb 2008 A1
20080037245 Chan Feb 2008 A1
20080037284 Rudisill Feb 2008 A1
20080049434 Marsh Feb 2008 A1
20080055894 Deng Mar 2008 A1
20080062680 Timmermans et al. Mar 2008 A1
20080068838 Galke et al. Mar 2008 A1
20080068839 Matheson Mar 2008 A1
20080074872 Panotopoulos Mar 2008 A1
20080089075 Hsu Apr 2008 A1
20080092800 Smith et al. Apr 2008 A1
20080093615 Lin et al. Apr 2008 A1
20080093998 Dennery et al. Apr 2008 A1
20080094819 Vaish Apr 2008 A1
20080094837 Dobbins et al. Apr 2008 A1
20080129211 Lin et al. Jun 2008 A1
20080130267 Dowling et al. Jun 2008 A1
20080150444 Usui et al. Jun 2008 A1
20080151535 de Castris Jun 2008 A1
20080158871 McAvoy et al. Jul 2008 A1
20080158887 Zhu et al. Jul 2008 A1
20080164826 Lys Jul 2008 A1
20080164827 Lys Jul 2008 A1
20080164854 Lys Jul 2008 A1
20080175003 Tsou et al. Jul 2008 A1
20080180036 Garrity et al. Jul 2008 A1
20080185961 Hong Aug 2008 A1
20080186704 Chou et al. Aug 2008 A1
20080192436 Peng et al. Aug 2008 A1
20080198598 Ward Aug 2008 A1
20080211386 Choi et al. Sep 2008 A1
20080211419 Garrity Sep 2008 A1
20080218993 Li Sep 2008 A1
20080224629 Melanson Sep 2008 A1
20080224636 Melanson Sep 2008 A1
20080253125 Kang et al. Oct 2008 A1
20080258631 Wu et al. Oct 2008 A1
20080258647 Scianna Oct 2008 A1
20080265799 Sibert Oct 2008 A1
20080278092 Lys et al. Nov 2008 A1
20080285257 King Nov 2008 A1
20080285266 Thomas Nov 2008 A1
20080290814 Leong et al. Nov 2008 A1
20080291675 Lin et al. Nov 2008 A1
20080298080 Wu et al. Dec 2008 A1
20080304249 Davey et al. Dec 2008 A1
20080310119 Giacoma Dec 2008 A1
20080315773 Pang Dec 2008 A1
20080315784 Tseng Dec 2008 A1
20090002995 Lee et al. Jan 2009 A1
20090010022 Tsai Jan 2009 A1
20090016063 Hu Jan 2009 A1
20090016068 Chang Jan 2009 A1
20090018954 Roberts Jan 2009 A1
20090021140 Takasu et al. Jan 2009 A1
20090032604 Miller Feb 2009 A1
20090033513 Salsbury et al. Feb 2009 A1
20090046473 Tsai et al. Feb 2009 A1
20090052186 Xue Feb 2009 A1
20090059557 Tanaka Mar 2009 A1
20090059559 Pabst et al. Mar 2009 A1
20090059603 Recker et al. Mar 2009 A1
20090065596 Seem et al. Mar 2009 A1
20090067170 Bloemen et al. Mar 2009 A1
20090067182 Hsu et al. Mar 2009 A1
20090072945 Pan et al. Mar 2009 A1
20090073693 Nall et al. Mar 2009 A1
20090085500 Zampini, II et al. Apr 2009 A1
20090086492 Meyer Apr 2009 A1
20090091929 Faubion Apr 2009 A1
20090091938 Jacobson et al. Apr 2009 A1
20090101930 Li Apr 2009 A1
20090115597 Giacalone May 2009 A1
20090122571 Simmons et al. May 2009 A1
20090139690 Maerz et al. Jun 2009 A1
20090140285 Lin et al. Jun 2009 A1
20090175041 Yuen et al. Jul 2009 A1
20090185373 Grajcar Jul 2009 A1
20090195186 Guest et al. Aug 2009 A1
20090196034 Gherardini et al. Aug 2009 A1
20090213588 Manes Aug 2009 A1
20090219713 Siemiet et al. Sep 2009 A1
20090231831 Hsiao et al. Sep 2009 A1
20090268461 Deak et al. Oct 2009 A1
20090273924 Chiang Nov 2009 A1
20090273926 Deng Nov 2009 A1
20090284169 Valois Nov 2009 A1
20090290334 Ivey Nov 2009 A1
20090295776 Yu et al. Dec 2009 A1
20090296017 Itoh et al. Dec 2009 A1
20090296381 Dubord Dec 2009 A1
20090302730 Carroll et al. Dec 2009 A1
20090303720 McGrath Dec 2009 A1
20090316408 Villard Dec 2009 A1
20100002426 Wu Jan 2010 A1
20100002453 Wu et al. Jan 2010 A1
20100008085 Ivey Jan 2010 A1
20100019689 Shan Jan 2010 A1
20100027259 Simon et al. Feb 2010 A1
20100033095 Sadwick Feb 2010 A1
20100033964 Choi et al. Feb 2010 A1
20100046210 Mathai et al. Feb 2010 A1
20100046222 Yang Feb 2010 A1
20100061598 Seo Mar 2010 A1
20100071946 Hashimoto Mar 2010 A1
20100072904 Eckel et al. Mar 2010 A1
20100073944 Chen Mar 2010 A1
20100079085 Wendt et al. Apr 2010 A1
20100096992 Yamamoto et al. Apr 2010 A1
20100096998 Beers Apr 2010 A1
20100103664 Simon et al. Apr 2010 A1
20100103673 Ivey et al. Apr 2010 A1
20100106306 Simon et al. Apr 2010 A1
20100109550 Huda et al. May 2010 A1
20100109558 Chew May 2010 A1
20100141173 Negrete Jun 2010 A1
20100148650 Wu et al. Jun 2010 A1
20100149806 Yiu Jun 2010 A1
20100157608 Chen et al. Jun 2010 A1
20100164404 Shao et al. Jul 2010 A1
20100177532 Simon et al. Jul 2010 A1
20100181178 Chang et al. Jul 2010 A1
20100201269 Tzou et al. Aug 2010 A1
20100207547 Kuroki et al. Aug 2010 A1
20100220469 Ivey et al. Sep 2010 A1
20100237790 Peng Sep 2010 A1
20100265732 Liu et al. Oct 2010 A1
20100270925 Withers Oct 2010 A1
20100277069 Janik et al. Nov 2010 A1
20100289418 Langovsky Nov 2010 A1
20100308733 Shao Dec 2010 A1
20100309652 Shen et al. Dec 2010 A1
20100320922 Palazzolo et al. Dec 2010 A1
20100327766 Recker et al. Dec 2010 A1
20110006658 Chan et al. Jan 2011 A1
20110084608 Lin Apr 2011 A1
20110090682 Zheng et al. Apr 2011 A1
20110109454 McSheffrey et al. May 2011 A1
20110112661 Jung et al. May 2011 A1
20110140136 Daily et al. Jun 2011 A1
20110141745 Gu et al. Jun 2011 A1
20110149564 Hsia et al. Jun 2011 A1
20110156584 Kim Jun 2011 A1
20110176298 Meurer et al. Jul 2011 A1
20110199723 Sato Aug 2011 A1
20110199769 Bretschneider et al. Aug 2011 A1
20110204777 Lenk Aug 2011 A1
20110260647 Catalano et al. Oct 2011 A1
20110280010 Ou et al. Nov 2011 A1
20110291588 Tagare Dec 2011 A1
20110310604 Shimizu Dec 2011 A1
20120008314 Simon et al. Jan 2012 A1
20120008315 Simon et al. Jan 2012 A1
20120014086 Jonsson Jan 2012 A1
20120043892 Visser et al. Feb 2012 A1
20120063140 Kong Mar 2012 A1
20120080994 Hua-Chun et al. Apr 2012 A1
20120081891 Tung et al. Apr 2012 A1
20120081894 Simon et al. Apr 2012 A1
20120098439 Recker et al. Apr 2012 A1
20120106144 Chang May 2012 A1
20120106153 Huang et al. May 2012 A1
20120106157 Simon May 2012 A1
20120113628 Burrow et al. May 2012 A1
20120120660 Grauvogel May 2012 A1
20120127726 Yen May 2012 A1
20120139417 Mironichev et al. Jun 2012 A1
20120146503 Negley et al. Jun 2012 A1
20120146532 Vey et al. Jun 2012 A1
20120147597 Farmer Jun 2012 A1
20120153865 Rolfes et al. Jun 2012 A1
20120153868 Rolfes et al. Jun 2012 A1
20120155073 McCanless et al. Jun 2012 A1
20120161666 Antony et al. Jun 2012 A1
20120194086 Liu et al. Aug 2012 A1
20120195032 Shew Aug 2012 A1
20120212951 Lai et al. Aug 2012 A1
20120212953 Bloom et al. Aug 2012 A1
20120230044 Zhang et al. Sep 2012 A1
20120236533 Nakamura et al. Sep 2012 A1
20120236554 Rust Sep 2012 A1
20120243216 Lai et al. Sep 2012 A1
20120243217 Szprengiel et al. Sep 2012 A1
20120250301 Tung Oct 2012 A1
20120274214 Radermacher et al. Nov 2012 A1
20120275154 Hood et al. Nov 2012 A1
20120293991 Lin Nov 2012 A1
20120293996 Thomas et al. Nov 2012 A1
20120300409 Lee Nov 2012 A1
20120300445 Chu et al. Nov 2012 A1
20120300468 Chang et al. Nov 2012 A1
20120300486 Matsushita et al. Nov 2012 A1
20120307524 Schapira et al. Dec 2012 A1
20120320598 Son Dec 2012 A1
20130010473 Dellian et al. Jan 2013 A1
20130033195 Liao Feb 2013 A1
20130038230 Brown et al. Feb 2013 A1
20130039051 Wu Feb 2013 A1
20130044471 Chen Feb 2013 A1
20130044476 Bretschneider et al. Feb 2013 A1
20130050997 Bretschneider et al. Feb 2013 A1
20130050998 Chu et al. Feb 2013 A1
20130057146 Chao Mar 2013 A1
20130058079 Dellian et al. Mar 2013 A1
20130063944 Lodhie et al. Mar 2013 A1
20130077296 Goeckel et al. Mar 2013 A1
20130077297 Wu et al. Mar 2013 A1
20130094200 Dellian et al. Apr 2013 A1
20130113393 Fujita et al. May 2013 A1
20130119896 Fukano May 2013 A1
20130147381 Yang Jun 2013 A1
20130148349 Pasqualini et al. Jun 2013 A1
20130200797 Timmermans et al. Aug 2013 A1
20130201690 Vissenberg et al. Aug 2013 A1
20130206597 Wang et al. Aug 2013 A1
20130221867 Deppe et al. Aug 2013 A1
20130230995 Vey et al. Sep 2013 A1
20130242553 Feng et al. Sep 2013 A1
20130250610 Brick et al. Sep 2013 A1
20130258668 Dellian et al. Oct 2013 A1
20130265746 May Oct 2013 A1
20140009068 Vey et al. Jan 2014 A1
20140009926 Simon et al. Jan 2014 A1
20140015345 Vey et al. Jan 2014 A1
20140036492 Simon et al. Feb 2014 A1
20140119001 Zhang May 2014 A1
20140126197 Dixon May 2014 A1
20140184082 Siemiet et al. Jul 2014 A1
20140268727 Amrine, Jr. et al. Sep 2014 A1
20140293595 May Oct 2014 A1
20140355262 Vey et al. Dec 2014 A1
20140368342 Vey et al. Dec 2014 A1
20150003070 Medendorp et al. Jan 2015 A1
20150009690 Simon et al. Jan 2015 A1
20150098228 Simon et al. Apr 2015 A1
20150204487 Scapa et al. Jul 2015 A1
20150334790 Scapa et al. Nov 2015 A1
Foreign Referenced Citations (259)
Number Date Country
1584388 Feb 2005 CN
2766345 Mar 2006 CN
2869556 Feb 2007 CN
101016976 Aug 2007 CN
101075605 Nov 2007 CN
201129681 Oct 2008 CN
201184574 Jan 2009 CN
201373286 Dec 2009 CN
101737664 Jun 2010 CN
19651140 Jun 1997 DE
19624087 Dec 1997 DE
29819966 Mar 1999 DE
29817609 Jan 2000 DE
20018865 Feb 2001 DE
102004035027 Feb 2006 DE
0013782 Mar 1983 EP
0091172 Oct 1983 EP
0124924 Sep 1987 EP
0174699 Nov 1988 EP
0197602 Nov 1990 EP
0714556 Jan 1991 EP
0214701 Mar 1992 EP
0262713 Jun 1992 EP
0203668 Feb 1993 EP
0272749 Aug 1993 EP
0337567 Nov 1993 EP
0390262 Dec 1993 EP
0359329 Mar 1994 EP
0403011 Apr 1994 EP
0632511 Jan 1995 EP
0432848 Apr 1995 EP
0659531 Jun 1995 EP
0403001 Aug 1995 EP
0525876 May 1996 EP
0889283 Jul 1999 EP
0458408 Sep 1999 EP
0578302 Sep 1999 EP
0723701 Jan 2000 EP
1142452 Mar 2001 EP
0787419 May 2001 EP
1016062 Aug 2002 EP
1195740 Jan 2003 EP
1149510 Feb 2003 EP
1056993 Mar 2003 EP
0766436 May 2003 EP
0924281 May 2003 EP
0826167 Jun 2003 EP
1147686 Jan 2004 EP
1145602 Mar 2004 EP
1422975 May 2004 EP
0890059 Jun 2004 EP
1348319 Jun 2005 EP
1037862 Jul 2005 EP
1346609 Aug 2005 EP
1321012 Dec 2005 EP
1610593 Dec 2005 EP
1624728 Feb 2006 EP
1415517 May 2006 EP
1415518 May 2006 EP
1438877 May 2006 EP
1166604 Jun 2006 EP
1479270 Jul 2006 EP
1348318 Aug 2006 EP
1399694 Aug 2006 EP
1461980 Oct 2006 EP
1110120 Apr 2007 EP
1440604 Apr 2007 EP
1047903 Jun 2007 EP
1500307 Jun 2007 EP
0922305 Aug 2007 EP
0922306 Aug 2007 EP
1194918 Aug 2007 EP
1833035 Sep 2007 EP
1048085 Nov 2007 EP
1852648 Nov 2007 EP
1763650 Dec 2007 EP
1776722 Jan 2008 EP
1873012 Jan 2008 EP
1881261 Jan 2008 EP
1459599 Feb 2008 EP
1887836 Feb 2008 EP
1579733 Apr 2008 EP
1145282 Jul 2008 EP
1157428 Sep 2008 EP
1000522 Dec 2008 EP
1502483 Dec 2008 EP
1576858 Dec 2008 EP
1646092 Jan 2009 EP
1579736 Feb 2009 EP
1889519 Mar 2009 EP
1537354 Apr 2009 EP
1518445 May 2009 EP
1337784 Jun 2009 EP
2013530 Aug 2009 EP
1461982 Sep 2009 EP
2333407 Jun 2011 EP
2418422 Feb 2012 EP
2430888 Mar 2012 EP
2469155 Jun 2012 EP
2573457 Mar 2013 EP
2554895 Jun 2013 EP
2876354 May 2015 EP
2813115 Feb 2002 FR
2165977 Apr 1986 GB
2215024 Sep 1989 GB
2324901 Nov 1998 GB
2447257 Sep 2008 GB
2472345 Feb 2011 GB
2486410 Jun 2012 GB
2495647 Apr 2013 GB
S62241382 Oct 1987 JP
06054289 Feb 1994 JP
H654103 Jul 1994 JP
11135274 May 1995 JP
07249467 Sep 1995 JP
7264036 Oct 1995 JP
08162677 Jun 1996 JP
H10308536 Nov 1998 JP
H11162234 Jun 1999 JP
H11260125 Sep 1999 JP
2001238272 Aug 2001 JP
2001291406 Oct 2001 JP
2002141555 May 2002 JP
2002289373 Oct 2002 JP
3098271 Feb 2004 JP
2004119078 Apr 2004 JP
2004273234 Sep 2004 JP
2004335426 Nov 2004 JP
2005158363 Jun 2005 JP
2005166617 Jun 2005 JP
2005347214 Dec 2005 JP
2006012859 Jan 2006 JP
2006507641 Mar 2006 JP
2005322866 Dec 2006 JP
2007227342 Sep 2007 JP
3139714 Feb 2008 JP
2008186758 Aug 2008 JP
2008258124 Oct 2008 JP
2008293753 Dec 2008 JP
3154200 Sep 2009 JP
2009283183 Dec 2009 JP
201015754 Jan 2010 JP
4491695 Jun 2010 JP
2010192229 Sep 2010 JP
2010205553 Sep 2010 JP
2012221636 Nov 2012 JP
1020040008244 Jan 2004 KR
1020060112113 Oct 2006 KR
200430022 Nov 2006 KR
1020060133784 Dec 2006 KR
1020070063595 Jun 2007 KR
100781652 Dec 2007 KR
100844538 Jul 2008 KR
100888669 Mar 2009 KR
100927851 Nov 2009 KR
101475888 Dec 2014 KR
M337036 Jul 2008 TW
M349465 Jan 2009 TW
WO 9906759 Feb 1999 WO
WO 9910867 Mar 1999 WO
WO 9931560 Jun 1999 WO
WO 9945312 Sep 1999 WO
WO 9957945 Nov 1999 WO
WO 0001067 Jan 2000 WO
WO 0225842 Mar 2002 WO
WO 0261330 Aug 2002 WO
WO 02069306 Sep 2002 WO
WO 02091805 Nov 2002 WO
WO 02098182 Dec 2002 WO
WO 02099780 Dec 2002 WO
WO 03026358 Mar 2003 WO
WO 03055273 Jul 2003 WO
WO 03067934 Aug 2003 WO
WO 03090890 Nov 2003 WO
WO 03096761 Nov 2003 WO
WO 2004021747 Mar 2004 WO
WO 2004023850 Mar 2004 WO
WO 2004032572 Apr 2004 WO
WO 2004057924 Jul 2004 WO
WO 2004100624 Nov 2004 WO
WO 2005031860 Apr 2005 WO
WO 2005052751 Jun 2005 WO
WO 2005060309 Jun 2005 WO
WO 2005084339 Sep 2005 WO
WO 2005089293 Sep 2005 WO
WO 2005089309 Sep 2005 WO
WO 2005103555 Nov 2005 WO
WO 2005116519 Dec 2005 WO
WO 2006023149 Mar 2006 WO
WO 2006044328 Apr 2006 WO
WO 2006046207 May 2006 WO
WO 2006056120 Jun 2006 WO
WO 2006093889 Sep 2006 WO
WO 2006095315 Sep 2006 WO
WO 2006095316 Sep 2006 WO
WO 2006127666 Nov 2006 WO
WO 2006127785 Nov 2006 WO
WO 2006133272 Dec 2006 WO
WO 2006137686 Dec 2006 WO
WO 2007004679 Jan 2007 WO
WO 2007081674 Jul 2007 WO
WO 2007090292 Aug 2007 WO
WO 2007094810 Aug 2007 WO
WO 2007143991 Dec 2007 WO
WO 2008018002 Feb 2008 WO
WO 2008027093 Mar 2008 WO
WO 2008061991 May 2008 WO
WO 2008110978 Sep 2008 WO
WO 2008129488 Oct 2008 WO
WO 2008137460 Nov 2008 WO
WO 2009061124 May 2009 WO
WO 2009067074 May 2009 WO
WO 2009111978 Sep 2009 WO
WO 2009139610 Nov 2009 WO
WO 2009143047 Nov 2009 WO
WO 2010011911 Jan 2010 WO
WO 2010014437 Feb 2010 WO
WO 2010030509 Mar 2010 WO
WO 2010047898 Apr 2010 WO
WO 2010047973 Apr 2010 WO
WO 2010069983 Jun 2010 WO
WO 2010083370 Jul 2010 WO
WO 2010088105 Aug 2010 WO
WO 2010132625 Nov 2010 WO
WO 2010141537 Dec 2010 WO
WO 2011005562 Jan 2011 WO
WO 2011005579 Jan 2011 WO
WO 2011021119 Feb 2011 WO
WO 2011014884 Jun 2011 WO
WO 2011072308 Jun 2011 WO
WO 2011113709 Sep 2011 WO
WO 2011117059 Sep 2011 WO
WO 2011159436 Dec 2011 WO
WO 2012001584 Jan 2012 WO
WO 2012004708 Jan 2012 WO
WO 2012007899 Jan 2012 WO
WO 2012019535 Feb 2012 WO
WO 2012025626 Mar 2012 WO
WO 2012063174 May 2012 WO
WO 2012117018 Sep 2012 WO
WO 2012129301 Sep 2012 WO
WO 2012131522 Oct 2012 WO
WO 2012131547 Oct 2012 WO
WO 2013028965 Feb 2013 WO
WO 2013029960 Mar 2013 WO
WO 2013030128 Mar 2013 WO
WO 2013045255 Apr 2013 WO
WO 2013045439 Apr 2013 WO
WO 2013057660 Apr 2013 WO
WO 2013079242 Jun 2013 WO
WO 2013088299 Jun 2013 WO
WO 2013097823 Jul 2013 WO
WO 2013098700 Jul 2013 WO
WO 2013113548 Aug 2013 WO
WO 2013113661 Aug 2013 WO
WO 2013121347 Aug 2013 WO
WO 2013132383 Sep 2013 WO
WO 2013135527 Sep 2013 WO
WO 2013167419 Nov 2013 WO
Non-Patent Literature Citations (37)
Entry
United States Notice of Allowance issued in U.S. Appl. No. 14/826,505 dated Aug. 14, 2018, 8 pages.
United States Notice of Allowance issued in U.S. Appl. No. 14/826,505 dated Oct. 2, 2018, 11 pages.
Airport International. Fly High With Intelligent Airport Building and Security Solutions [online], [retrieved on Oct. 24, 2008]. Retrieved from Airport International web page using Internet <URL: http://www.airport-int.com/ categories/airport-building-and-security-solutions/fly-high-with-intelligent-airport-building-and-security-solutions.html>.
Best Practice Guide—Commercial Office Buildings—Central HVAC System. [online], [Retrieved on Jan. 17, 2008] Retrieved from Flex Your Power Organization web page using Internet <URL: http://www.fypower.org/bpg/module. html?b=offices&m+Central HVAC Systems&s=Contr . . . >.
Cornell University. Light Canopy—Cornell University Solar Decathlon, [online], [retrieved on Jan. 17, 2008] Retrieved from Cornell University web page using Internet <URL: http://cusd.cornell.edu/cusd/web/index.php/page/ show/section/Design/page/controls>.
D.N.A.-111, [online], [retrieved Mar. 10, 2009] Retrieved from the PLC Lighting Web Page using Internet <URL: http:// www.plclighting.com/product_info.php?cPath =1&products_id=92>.
E20112-22 Starburst Collection, [online], [retrieved on Jul. 10, 2010] Retrieved from ET2 Contemporary Lighting using Internet <URL: http://www.et2online.com/proddetail.aspx?ItemID=E20112-22> _.
E20116-18 Larmes Collection, [online], [retrieved on Jul. 10, 2010] Retrieved from ET2 Contemporary Lighting using Internet <URL: http://www.et2online.com/proddetail.aspx?ItemID=E20116-18> _.
E20524-10 & E20525-10 Curva Collection, [online], [retrieved on Jul. 10, 2010] Retrieved from ET2 Contemporary Lighting using Internet <URL: http://www.et2online.com/proddetail.aspx?ltem1D=E20524-10 & E20525-10>.
E20743-09 Stealth Collection, [online], [retrieved on Jul. 10, 2010] Retrieved from ET2 Contemporary Lighting using Internet <URL: http://www.et2onIine.com/proddetail.aspx?ItemlD=E20743-09>.
E22201-44 Esprit Collection, [online], [retrieved on Jul. 10, 2010] Retrieved from ET2 Contemporary Lighting using Internet <URL: http://www.et2onIine.com/proddetail.aspx?ItemlD=E22201-44> _.
Experiment Electronic Ballast. Electronic Ballast for Fluorescent Lamps [online], Revised Fall of 2007. [Retrieved on Sep. 1, 1997]. Retrieved from Virginia Tech Web Page using Internet <URL: http://www.ece.vt.edu/ece3354/labs/ ballast.pdf.>.
Henson, Keith. The Benefits of Building Systems Integration, Access Control & Security Systems Integration, Oct. 1, 2000, Penton Media. [online], [retrieved on Oct. 24, 2008] Retrieved from Security Solutions Web page using Internet <URL: http://securitysolutions.com/mag/security_benefits_building_systems/>.
Hightower et al, “A Survey and Taxonomy of Location Systems for Ubiquitous Computing”, University of Washington, Computer Science and Engineering, Technical Report UW-CSE Jan. 8, 2003, IEEE, Aug. 24, 2001 in 29 pages.
Lawrence Berkeley National Labratory. Lighting Control System—Phase Cut Carrier. University of California, [online] [retrieved on Jan. 14, 2008] Retrieved from Lawrence Berkeley National Labratory web page using Internet <URL: http://www.lbl.gov/tt/techs/lbnl1871.html>.
LCD Optics 101 Tutorial [online]. 3M Corporation, [retrieved on Jan. 6, 2010]. Retrieved from the internet: <URL: http://solutions.3m.com/wps/portal/3M/en_USNikuiti1/BrandProducts/secondary/optics101/>_.
LED Lights, Replacement LED lamps for any incandescent light, [online], [retrieved on Jan. 13, 2000] Retrieved from LED Lights Web Page using Internet <URL: http://www.ledlights.com/replac.htm>.
Ledtronics, Ledtronics Catalog, 1996, p. 10, Ledtronics, Torrance, California.
Phason Electronic Control Systems, Light Level Controller (LLC) case study. Nov. 30, 2004. 3 pages, Phason Inc., Winnipeg, Manitoba, Canada.
Philips. Sense and Simplicity—Licensing program for LED Luminaires and Retrofits, Philips Intellectual Property & Standards, May 5, 2009.
Piper. The Best Path to Efficiency. Building Operating Management, Trade Press Publishing Company May 2000 [online], [retrieved on Jan. 17, 2008]. Retrieved from Find Articles Web Page using Internet <URL:http://findarticles.com/ p/articles/mi_qu3922/is_200005/ai_n8899499/>.
PLC-81756-AL “Fireball” Contemporary Pendant Light, [online], [retrieved on Feb. 27, 2009] Retrieved from the Arcadian Lighting Web Page using Internet <URL: http://www.arcadianlighting.com/plc-81756-al.html>.
PLC-96973-PC PLC Lighting Elegance Modern/Contemporary Pendant Light, [online], [retrieved on Feb. 27, 2009] Retrieved from the Arcadian Lighting Web Page using Internet <URL: http/www.arcadianlighting.com/plc-96978-pc. html>.
Saha et al, “Location Determination of a Mobile Device using IEEE 802.11 Access Point Signals”, May 5, 2002 in 20 pages.
Sensor Switch, nlight Lighting Control System, [online], [retrieved on Jan. 11, 2008] Retrieved from Sensor Switch web page using Internet <URL: http://www.sensorswitch.com>.
Six Strategies, [online], [retrieved on Jan. 11, 2008] Retrieved from Encelium Technologies Inc. Web Page using Internet <URL: http://www.encelium.com/products/strategies.html> _.
Spencer, Eugene. High Sales, Low Utilization. Green Intelligent Buildings, Feb. 1, 2007. [online]. Retrieved from Green Intelligent Buildings web page using Internet <URL: http://www.greenintelligentbuildings.com/CDA/ IBT_Archive/BNP_ GUID_9-5-2006_A_10000000000000056772>.
Telecite Products & Services—Display Options, [online], [retrieved on Jan. 13, 2000] Retrieved from Telecite Web page using Internet <URL: http://www.telecite.com/en/products/options en.him>.
Traffic Signal Products—Transportation Products Group, [online], [retrieved on Jan. 13, 2000] Retrieved from the Dialight Web Page using Internet <URL: http://www.dialight.com/trans.htm>.
Truck-Lite, LEDSelect—LED, Model 35, Clearance & Marker Lighting, [online], [retrieved on Jan. 13, 2000] Retrieved from Truck-Lite Web Page using Internet <URL: http://trucklite.com/leds14.html>.
Truck-Lite, LEDSelect—LED, Model 45, Stop, Turn & Tail Lighting [online], [retrieved on Jan. 13, 2000] Retrieved from Truck-Lite Web Page using Internet <URL: http://trucklite.com/leds4.html>.
Truck-Lite, LEDSelect—LED, Super 44, Stop, Turn & Tail Lighting, [online], [retrieved on Jan. 13, 2000] Retrieved from Truck-Lite Web Page using Internet <URL: http://trucklite.com/leds2.html>.
Wolsey, Robert. Interoperable Systems: The Future of Lighting Control, Lighting Research Center, Jan. 1, 1997, vol. 2 No. 2, Rensselaer Polytechnic Institute, Troy, New York [online]. Retrieved Lighting Research Center Web Page using Internet <URL: http://www.lrc.rpi.edu/programs/Futures/LF-BAS/index.asp>.
JP Office Action in Japanese Appln. No. 2017-561998, dated May 13, 2019, 8 pages (with English translation).
CN Office Action in Chinese Appln. No. 201580080584.0, dated Jul. 16, 2019, 16 pages (with English translation).
EP Office Action in European Appln. No. 15760328.3, dated Mar. 27, 2019, 7 pages.
CN Office Action in Chinese Appln. No. 201580080584.0, dated Apr. 26, 2020, 15 pages (with English translation).
Related Publications (1)
Number Date Country
20190120439 A1 Apr 2019 US
Provisional Applications (1)
Number Date Country
62169050 Jun 2015 US
Continuations (1)
Number Date Country
Parent 14826505 Aug 2015 US
Child 16223762 US