This application is a § 371 application of International Application No. PCT/US2021/041117, filed Jul. 9, 2021, which claims the benefit of PCT Application No. PCT/CN2020/101004, which was filed on Jul. 9, 2020, and European Patent Appln. No. 20189843.4, which was filed on Aug. 6, 2020, the contents of which are hereby incorporated by reference herein.
Bulbs, including halogen bulbs and LED bulbs, are widely used in various lighting scenarios, for example in automotive lighting and in indoor lighting. Due to an omni-directional light emission of halogen, the halogen bulbs can be installed in any direction within the whole lighting module or system, such as within an automotive headlight, and output the same beam pattern.
An LED bulb includes a center ring, a burner and an elastic component. The center ring includes a central opening, a first flat rim extending along a first part of an outer edge of the central opening, and a first notch cut-out beyond the central opening at an end of the first flat rim. The burner is disposed at least in part in the central opening and includes a first pin that has a first flat side face. The elastic component is configured to press the first flat rim of the center ring against the first flat side face of the first pin of the burner.
A more detailed understanding can be had from the following description, given by way of example in conjunction with the accompanying drawings wherein:
Examples of different light illumination systems and/or light emitting diode (“LED”) implementations will be described more fully hereinafter with reference to the accompanying drawings. These examples are not mutually exclusive, and features found in one example may be combined with features found in one or more other examples to achieve additional implementations. Accordingly, it will be understood that the examples shown in the accompanying drawings are provided for illustrative purposes only and they are not intended to limit the disclosure in any way. Like numbers refer to like elements throughout.
It will be understood that, although the terms first, second, third, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms may be used to distinguish one element from another. For example, a first element may be termed a second element and a second element may be termed a first element without departing from the scope of the present invention. As used herein, the term “and/or” may include any and all combinations of one or more of the associated listed items.
It will be understood that when an element such as a layer, region, or substrate is referred to as being “on” or extending “onto” another element, it may be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there may be no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it may be directly connected or coupled to the other element and/or connected or coupled to the other element via one or more intervening elements. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present between the element and the other element. It will be understood that these terms are intended to encompass different orientations of the element in addition to any orientation depicted in the figures.
Relative terms such as “below,” “above,” “upper,”, “lower,” “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the figures. It will be understood that these terms are intended to encompass different orientations of the device in addition to the orientation depicted in the figures.
While halogen bulbs can be installed in any direction without changing the output beam pattern, this may not be the case if such halogen bulbs are replaced by LED bulbs because LEDs of the LED bulbs are typically only emitting light across half of the 3D space (e.g., they are side emitting). In this case, at least two LEDs may be required in a conventional LED bulb, located respectively at two opposite sides of the LED bulb's body, helping to get a similar output of light emission as that of the halogen bulbs. In a case that two LEDs are included in a conventional LED bulb, stepped rims comprising discrete steps are often used on the center ring of the LED bulb to obtain an excellent omni-directional beam output as that of the halogen bulbs. In such configurations, pins on the burner of the LED bulb may be configured to rest into valleys between adjacent steps for the assembly of the LED bulb. In this case, only a limited number of angle positions can be reached if the burner is rotated with respect to the center ring of the LED bulb, rendering it to be extremely inconvenient for an end user to install the LED bulb in an optimal rotational position.
Thus, it may be desirable to provide a retrofit LED bulb so as to ensure that the end user can adjust the installing angle of the LED bulb according to the specific requirements of applications or just based on what the end user desires, while still having a perfect light beam output as that of the halogen bulbs and also a nice mechanical resistance for field applications.
Embodiments described herein may provide for an LED bulb with a center ring that has a flat rim with a notch at an end thereof. This flat rim may replace the stepped rim of the center ring in conventional LED bulbs. Thus, in the embodiments described herein, there will be no need to provide the pin of the burner, which is to be pressed against the flat rim of the center ring, with any special curves that were otherwise matched with the valleys between adjacent steps of the stepped rim of the center ring in the conventional LED bulb. This may be beneficial for the easy and cost-effective manufacture of the pin and also of the burner in the LED bulb. Further, after introducing a flat rim in the center ring of the above proposed LED bulb, a continuous angle rotation can be achieved between the burner and the center ring, wherein the burner and the center ring may be able to be kept at any of continuous angle positions relative to each other. This may be easy to operate by an end user as desired. By contrast, by using a conventional LED bulb with a center ring having a stepped rim, comprising, for example, three valleys between adjacent steps, only a limited number of discrete angle positions (e.g., 3) can be reached for the burner with respect to the center ring. Therefore, according to embodiments described herein, a great flexibility can be provided for the end user in installing the LED bulb on a specific automotive vehicle according to the practical requirements, because the relative angle position between the burner and the center ring of the LED bulb may no longer be restricted only to those limited ones determined by the valleys between adjacent steps of the center ring's stepped rim in the conventional LED bulb.
The burner 11 of the LED bulb 10 may include two portions, a first portion 111 and a second portion 112. For example, as shown in
Where the first pin 1131 of the burner 11 has flat side surfaces, once the LED bulb is assembled, the contact interface between the first pin and the first flat rim may be flat, thus being advantageous to the durable use of the pin (thus of the burner) and also of the flat rim (thus of the center ring). Besides, a perfect fitting with a higher accuracy or a nearly zero tolerance may be much easier to obtain between the first flat surface of the first pin and the first flat rim, as compared to that between two curved surfaces. This, on one hand, may render installation and rotation of the burner and the center ring in the LED bulb to be more accurate, and on the other hand, may help to increase the vibration resistance of the burner and the center ring in the LED bulb. Further, due to the flat contact interface between the first pin and the first flat rim as well, the pressure applied by the elastic component on the first flat rim of the center ring against the first pin of the burner may be ensured to be large enough, such that the center ring may be fixed firmly against the burner, thus providing the LED bulb with a high mechanical stability. In some embodiments, the first pin of the burner may have a cuboid shape, which may be easy and cost-effective to manufacture.
A method of assembling an LED bulb will now be explained in detail with reference to
The method may also include providing a burner that includes a first pin (360) and providing an elastic component (370). The burner may be inserted through the elastic component and the central opening in the center ring (380). In the illustrated examples, if the half-assembled LED bulb, such as shown in
As described above, the first pin 1131 can have a cuboid shape and include, for example, a flat side face. Thus, the contacting interface between the first pin 1131 and the first flat rim 1311, which may be pressed against each other by the O-ring 120 after assembly of the LED bulb 10, may be flat as well, rendering the further rotation of the first pin 1131 (thus of the burner 11) along the first flat rim 1311 (thus along the center ring 13) to be continuous and stable. This may help to obtain not only a continuous relative rotation between the burner 11 and the center ring 13 but also a reliable mechanical performance of the LED bulb 10 as assembled, thus being well distinguished from an LED bulb having a center ring with a stepped rim and a burner having a pin with a curved or round side face, such as shown, for example, in
As can be seen from
Further, as shown in
When the half-assembled LED comprising the burner 11 and the O-ring 120 of
In the examples illustrated in
Additionally, where two pins, such as the first pin and the second pin, are positioned directly opposite to each other on the second portion of the burner, the two notches, such as the first notch and the second notch, will be necessarily located opposite to each other on the center ring. This may result in both of the first flat rim and the second flat rim extending between the first notch and the second notch on the center ring but along two different parts of the outer edge of the center opening. For example, the outer edge of the center opening may include two half parts, both extending between the first notch and the second notch, wherein the first flat rim may extend along one half part and the second flat rim may extend along the other half part.
In embodiments, the first pin 1131, the second pin 1132, and the third pin 1133 can be positioned at an equal distance (e.g., uniformly spaced apart) on the second portion 112 of the burner 11. In this case, the respective center ring 13 may comprise a center opening 130, a first flat rim 1311, a second flat rim 1312, a third flat rim 1313, a first notch 1321, a second notch 1322, and a third notch 1323. Where the three pins (e.g., the first pin, the second pin, and the third pin) are positioned with an equal distance on the second portion of the burner, the three notches (e.g., the first notch, the second notch, and the third notch) may be located at three uniformly spaced positions respectively along the outer edge of the center opening of the center ring. For example, in the center ring of the LED bulb, the outer edge of the center opening may be divided into three equal parts (e.g., the first part, the second part, and the third part) by the three notches (e.g., the first notch, the second notch and the third notch), wherein the first flat rim may extend along the first part between the first notch and the second notch, the second flat rim may extend along the second part between the second notch and the third notch, while the third flat rim may extend along the third part between the third notch and the first notch.
When the half-assembled LED comprising the burner 11 and the O-ring 120 of
As explained above, in the LED bulb described above with respect to
According to an example embodiment, in any of the LED bulbs described herein, the center ring can be made by injection molding using one of the following materials: Polyphenylene Sulfide (PPS), Polyvinyl Toluene (PVT), Polyamide 6, 6 (PA66), Polyamide 4, 6 (PA46), Liquid Crystal Polymer (LCP), Polyether Ether Ketone (PEEK), and Polyphthalamide (PPA). Those skilled in the art shall easily understand that all the above materials are merely listed as possible candidates for manufacturing the center ring but are not meant to place a restriction on the embodiments described herein. Other suitable materials, such as metal or plastic, can be used as well. A similar reasoning applies to the manufacture process, for example injection molding, as well, because a skilled person in the art shall appreciate that other suitable processes, such as die casting and stamping, can be also used consistent with the embodiments described herein.
According to another example embodiment, in the above described LED bulb embodiments, the first flat surface of the first pin and a surface of the first flat rim contacting the first flat surface of the first pin once the LED bulb is assembled, may be formed from a first material with a first frictional resistance high enough to resist an unintentional sliding along each other. Similarly, the second flat surface of the second pin, and a surface of the second flat rim contacting the second flat surface of the second pin when the LED bulb is assembled may be formed from a second material with a second frictional resistance high enough to resist an unintentional sliding along each other. Similarly, the third flat surface of the third pin and a surface of the third flat rim contacting the third flat surface of the third pin when the LED bulb is assembled may be made of a third material with a third frictional resistance high enough to resist an unintentional sliding along each other. In more specific embodiments, at least one of the first material, the second material, and the third material may be Polyphenylene Sulfide (PPS). In this way, the constituent components, such as the burner and the center ring, can be well fixed with respect to each other, helping to avoid or substantially reduce any unintentional sliding of the three pins along the respective flat rims by the high frictional resistance therebetween and provide the final assembled LED bulb with higher stability in mechanics and further electrics.
It should be noted that, for the sake of clarity, all the above description about a LED bulb is merely focused on the mechanical components in structure and little or nothing is ever talked about the electrical parts of the LED bulb. However, this is not meant to be limiting on the embodiments described herein. As a matter of fact, having benefitted from the embodiments described herein, a skilled person in the art shall easily understand that, apart from those mechanical parts as described above, the LED bulb described herein may comprise all the necessary electrical components as well, such as PCB(s), electrical wires, driving circuits for LEDs, etc., and all these alternatives shall be covered within the protection scope of the embodiments described herein.
Having described the embodiments in detail, those skilled in the art will appreciate that, given the present description, modifications may be made to the embodiments described herein without departing from the spirit of the inventive concept. Therefore, it is not intended that the scope of the invention be limited to the specific embodiments illustrated and described.
Number | Date | Country | Kind |
---|---|---|---|
PCT/CN2020/101004 | Jul 2020 | WO | international |
20189843 | Aug 2020 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/041117 | 7/9/2021 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2022/011280 | 1/13/2022 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4841419 | Ohishi | Jun 1989 | A |
10598338 | Goodwin et al. | Mar 2020 | B1 |
20160053956 | Toyoyama | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
208107964 | Nov 2018 | CN |
208139184 | Nov 2018 | CN |
209569667 | Nov 2019 | CN |
202020101383 | Mar 2020 | DE |
3421882 | Jan 2019 | EP |
3647649 | May 2020 | EP |
2005-044777 | Feb 2005 | JP |
2018-078085 | May 2018 | JP |
2018-078086 | May 2018 | JP |
3218915 | Nov 2018 | JP |
20160101380 | Aug 2016 | KR |
101685650 | Dec 2016 | KR |
Entry |
---|
Translation of JP2018078086A (Year: 2018). |
International Preliminary Report on Patentability Chapter I dated Jan. 10, 2023 for PCT International Application No. PCT/US2021/041117. |
Extended European Search Report dated Nov. 17, 2020 for European Patent Application No. 20189843.4. |
International Search Report and Written Opinion dated Nov. 1, 2021 for PCT International Application No. PCT/US2021/041117. |
Number | Date | Country | |
---|---|---|---|
20230265979 A1 | Aug 2023 | US |