1. Field of the Invention
The present invention relates to light emitting diode (LED) bulbs, and more particularly, to an LED bulb having a heat dissipating structure disposed therein.
2. Description of Related Art
Since LEDs have advantages of long lifetime, low power consumption and short response time and do not have idling time, the application of the LEDs is increasingly expanded. Particularly, white LEDs are being widely adopted in lighting applications, and conventional halogen or incandescent bulbs are being replaced by the LEDs so as to meet the energy saving and carbon reducing trend.
However, since heat is generated inside the bulb while the heat dissipating structure of the bulb is disposed around the periphery of the base 12 and thermal convection through the heat dissipating holes 121 only reaches the surface of the base 12, the heat cannot be effectively and rapidly dissipated by the heat dissipating structure, thus resulting in high temperature of the bulb. Further, the high temperature of the bulb can adversely affect the light emitting efficiency of the LEDs, cause rapid deterioration of the circuit board, and shorten the lifetime of the bulb.
Therefore, it is imperative to provide an LED bulb with improved heat dissipating efficiency so as to increase the light emitting efficiency and lifetime of the LED bulb.
Accordingly, the present invention provides an LED bulb, which comprises: a circuit board having a first surface and a second surface opposite to the first surface; a plurality of LEDs disposed on the first surface of the circuit board; and a heat dissipating structure having a heat dissipating board, wherein the heat dissipating board has a third surface and a fourth surface opposite to the third surface, the third surface is attached to the second surface of the circuit board, and a plurality of heat dissipating bumps is disposed on the fourth surface and gradually decreases in length from the center toward the periphery of the fourth surface.
In an embodiment of the present invention, the LED bulb can further comprise a housing disposed around the circuit board and the heat dissipating structure and having a plurality of openings disposed therein and positioned around the heat dissipating bumps.
In an embodiment of the present invention, the housing can have a heat dissipating space formed near the LEDs that generate heat, the heat dissipating structure being disposed in the heat dissipating space.
In an embodiment of the present invention, the fourth surface of the heat dissipating board can have a protruding portion with a height gradually decreasing from the center toward the periphery of the fourth surface.
In an embodiment of the present invention, the heat dissipating structure can be made of metal.
In an embodiment of the present invention, the heat dissipating structure can be formed by die casting.
In an embodiment of the present invention, the heat dissipating bumps can have a triangular pyramid shape, a square pyramid shape, a polygonal pyramid shape, a triangular tapered column shape, a square tapered column shape, a polygonal tapered column shape, a round column shape, a square column shape or a polygonal column shape.
In an embodiment of the present invention, the LED bulb can further comprise a nano-scaled radiation coating disposed on the heat dissipating bumps.
According to the present invention, the heat dissipating bumps that gradually decrease in length from the center toward the periphery of the fourth surface facilitate rapid dissipation of hot air in the center and the openings disposed around the heat dissipating structure also help to dissipate heat, thereby maintaining the LED bulb at a normal temperature so as to increase the light emitting efficiency and lifetime of the LED bulb.
The following embodiments are provided to illustrate the present invention. Those skilled in the art will readily understand other advantages and functions of the present invention in accordance with the contents disclosed in this specification.
Referring to
In an embodiment of the present invention, the above-described heat dissipating structure 23 can be formed by die casting.
In an embodiment of the present invention, the above-described LED bulb further comprises a housing 24 disposed around the circuit board 21 and the heat dissipating structure 23, and a plurality of openings 240 is disposed in the housing 24 and positioned around the heat dissipating bumps 232. In particular, a heat dissipating space 28 is formed near the LEDs 22 that generate heat, and the heat dissipating structure 23 is received in the heat dissipating space 28. In an embodiment of the present invention, the heat dissipating structure 23 is preferably made of metal, and the third surface 231a of the heat dissipating board 231 is attached to the second surface 21b of the circuit board 21 preferably through a thermal paste so as to improve the heat conducting efficiency.
Referring to
According to the above-described structure, heat generated by the circuit board 21 and the LEDs 22 is conducted to the heat dissipating bumps 232 of the heat dissipating structure 23. Since the heat dissipating bumps 232 located in the center of the heat dissipating structure 23 are longer than the heat dissipating bumps 232 located around the periphery of the heat dissipating structure 23, the heat dissipating bumps 232 located in the center of the heat dissipating structure 23 have a larger heat dissipating area for effectively dissipating heat in the center of the circuit board 21, and the shorter heat dissipating bumps 232 located around the periphery of the heat dissipating structure 23 will not block the flow of air in the center. As such, heat in the center can be rapidly dissipated by the heat dissipating bumps 232 through air convection. Furthermore, the openings 240 disposed in the housing 24 cause hot air to be rapidly dissipated out of the LED bulb 2 in all directions (360 degrees), thereby increasing the heat dissipating efficiency.
In the LED bulb of the present invention, the heat dissipating bumps 232 can have, but not limited to, a triangular pyramid shape, a square pyramid shape, a polygonal pyramid shape, a triangular tapered column shape, a square tapered column shape, a polygonal tapered column shape, a round column shape, a square column shape or a polygonal column shape.
In addition, the present invention can comprise a nano-scaled radiation coating that is disposed on heat dissipating bumps 232 through spray coating, for example, so as to further improve the heat dissipating efficiency.
Therefore, the housing of the LED bulb of the present invention has a heat dissipating space formed near the LEDs that generate heat for receiving a heat dissipating structure, wherein the heat dissipating structure comprises a heat dissipating board having one surface attached to the circuit board having the LEDs and the other surface having a plurality of heat dissipating bumps disposed thereon and gradually decreasing in length from the center toward the periphery of the heat dissipating board. The heat dissipating bumps that gradually decrease in length from the center toward the periphery of the heat dissipating board facilitate rapid dissipation of hot air in the center and the openings disposed around the heat dissipating structure also help to dissipate heat. Further, the heat dissipating space, the heat dissipating bumps and the openings disposed in the housing facilitate thermal convection. As such, the overall heat dissipating effect is improved so as to maintain the LED bulb at a normal temperature, thereby increasing the light emitting efficiency and lifetime of the LED bulb.
The above-described descriptions of the detailed embodiments are intended to illustrate the preferred implementation according to the present invention but are not intended to limit the scope of the present invention. Accordingly, all modifications and variations completed by those with ordinary skill in the art should fall within the scope of present invention defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
99135907 A | Oct 2010 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
7341365 | Basile et al. | Mar 2008 | B2 |
20060067077 | Kumthampinij et al. | Mar 2006 | A1 |
20070070628 | Chen | Mar 2007 | A1 |
20070086196 | Wong | Apr 2007 | A1 |
20090080205 | Chang et al. | Mar 2009 | A1 |
20100314985 | Premysler | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
M389826 | Oct 2010 | TW |
Number | Date | Country | |
---|---|---|---|
20120098402 A1 | Apr 2012 | US |