(a) Field of the Invention
The present invention is related to an improved construction of a light emitting diode (LED), and more particularly, to one of chip capping construction to enhance LED luminance
(b) Description of the Prior Art
The LED generally available in the market for giving features of being compact, low power consumption, lower heat generated and longer service life have been gradually exiting the conventional tungsten lamps in the adaptation to commodities such as Christmas decoration lights, flash lights, vehicle signal lamps, and traffic signs. The LED as illustrated in
Accordingly, when the conductor 20 is conducted, the light source generated by the chip 40 emits the light. A fluorescent material 60 may be provided to the peripheral of the chip 40 so that when the light source generated from the chip 40 penetrates the fluorescent material 60, the wave length of the source light is incorporated with that of the fluorescence material 60 to produce the light color expected.
With improved manufacturing process and workmanship, the LED may be designed to emit a specific light color depending on the type of fluorescent material used to further expand the application range of the LED in the market. However, current R&D efforts for the LED are essentially invested in the color performance results and the increase of the production capacity of the LED. Therefore, there has been so far the absence of seeing any breakthrough in enhancing the luminance of the LED.
The primary purpose of the present invention is to provide an improved construction of the chip capping of the LED to enhance the luminance of the LED. To achieve the purpose, a condenser is capped over the chip of the LED and surrounded by multiple condensing aspects so that when the source light from the chip passes through the condenser, the source light is consistently reflected to each condensing aspect thanks to the medium characteristics of the condenser to enhance the luminance of the LED.
Referring to
In a first preferred embodiment of the present invention, a fluorescent material 60 is fixed to the carrier 30. The fluorescent material 60 may be provided in the form of a mixture of the chip adhesion material and fluorescent powder. In the manufacturing process, the fluorescent material 60 is coated at where between the chip 40 and the carrier 30 so to directly attach the chip 40 to the bottom of the carrier 30. Once the fluorescent is hardened, the base of the chip 40 is buried in the fluorescent material 60. Therefore, when the conductor 60 is conducted, the light generated from the chip 40 passes through the fluorescent material 60, wherein, the wave length of the source light is incorporated with that of the fluorescent material 60 to emit the light color expected.
A condenser 70 is capped over the chip 40 of the LED. A condensing part 71 of the condenser 70 protrudes through the carrier 30. The entire condensing part 71 is surrounded by multiple condensing aspects 72. As illustrated in
Accordingly, as illustrated in
As illustrated in
When the condensing part is molded into the taper or the mushroom shape using those cavities 81, the carrier 30 is put upside down to plant is the chip into the cavity. Transparent insulation glue is applied first over the chip to hold the chip and the golden plated wire in place to provide a transparent separator 11 between the condenser 70 and the chip to improve the protection for the chip 40 as illustrated in
Now referring to
The present invention for providing an improved construction of the chip capping for an LED to significantly enhance the luminance of the LED, this application for a utility patent is duly filed. However, it is to be noted that that those preferred embodiments disclosed in the specification and the accompanying drawings are in no way limiting the present invention. Therefore, any construction, installation, or characteristics that is same or similar to that of the present invention should fall within the scope of the purposes and claims of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
4603496 | Latz et al. | Aug 1986 | A |
5140220 | Hasegawa | Aug 1992 | A |
6759803 | Sorg | Jul 2004 | B2 |
6850001 | Takekuma | Feb 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20060012297 A1 | Jan 2006 | US |