The present invention relates to light emitting diodes. In particular, the invention relates to light emitting diodes that emit in relatively high frequencies within the visible spectrum (e.g., blue and violet) and that are used in conjunction with phosphors that convert some of the light generated by the LEDs into complementary colors that together with the LED light produce white output.
Light emitting diodes (LEDs) are a class of photonic semiconductor devices that convert an applied voltage into light by encouraging electron-hole recombination events in an appropriate semiconductor material. In turn, some or all of the energy released in the recombination event produces a photon.
Light emitting diodes share a number of the favorable characteristics of other semiconductor devices. These include generally robust physical characteristics, long lifetime, high reliability, and, depending upon the particular materials, low cost.
A number of terms are used herein that are common and well-understood in the industry. In such industry use, however, these terms are sometimes informally blended in their meaning. Accordingly, these terms will be used as precisely as possible herein, but in every case their meaning will be clear in context.
Accordingly, the term “diode” or “chip” typically refers to the structure that minimally includes two semiconductor portions of opposite conductivity types (p and n) along with some form of ohmic contacts to permit current to be applied across the resulting p-n junction.
The term “lamp” is used to designate a light emitting diode that is matched with an appropriate electrical contact and potentially a lens to form a discrete device that can be added to or included in electrical circuits or lighting fixtures or both.
As used herein, the term “package” typically refers to the placement of the semiconductor chip on an appropriate physical and electrical structure (sometimes as simple as a small piece of metal through which the electrical current is applied) along with a plastic lens (resin, epoxy, encapsulant) that provides some physical protection to the diode and can optically direct the light output. The package often includes a reflective structure, frequently formed of a polymer within which the diode rests. Adding a lens and electrical contacts typically forms a lamp.
Appropriate references about the structure and operation of light emitting diodes and diode lamps include Sze, P
The color emitted by an LED is largely defined by the material from which it is formed. Diodes formed of gallium arsenide (GaAs) and gallium phosphide (GaP) tend to emit photons in the lower energy (red and yellow) portions of the visible spectrum. Materials such as silicon carbide (SiC) and the Group III nitrides (e.g., AlGaN, InGaN, AlInGaN) have larger bandgaps and thus can generate photons with greater energy that appear in the green, blue and violet portions of the visible spectrum as well as in the ultraviolet portions of the electromagnetic spectrum.
In some applications, an LED is more useful when its output is moderated or converted to a different color. In particular, as the availability of blue-emitting LEDs has greatly increased, the use of yellow-emitting phosphors that down-convert the blue photons has likewise increased. Specifically, the combination of the blue light emitted by the diode and the yellow light emitted by the phosphor can create white light. In turn, the availability of white light from solid-state sources provides the capability to incorporate them in a number of applications, particularly including illumination and as lighting for color displays.
Several types of structures are currently used for color conversion in white-emitting LEDs. In one structure and related technique, the LED chip is placed on a package and then substantially or entirely covered with a polymer resin that carries a dispersed phosphor and that forms the lens portion of the LED lamp. Although this is a straightforward structure and process, it produces a relatively high variation in color across the diode.
In another technique, the phosphor is deposited directly upon or very near the chip surface, after which the lens resin is applied to fix the phosphor in place. This produces better color uniformity (lower CCT variation), a brighter output, and less undesired scattering. The corresponding disadvantage, however, is that the phosphor must be positioned precisely during the fabrication process, thus increasing the cost of the process and of the resulting diodes.
In a third option, the phosphor is applied in a “mini-glob;” i.e., as a small amount of resin carrying a dispersed phosphor that is applied only to the surface of the LED chip. In a separate step, polymer resin without phosphor is added to produce the final lens and package. The mini-glob technique is relatively easy from a fabrication standpoint, tends to be less expensive, and offers a good compromise as between the dispersed resin technique and the phosphor-on-chip technique. The corresponding problem, however, is that the geometry of the chip and the mini-glob (e.g.,
In a fourth option, a resin and phosphor are cast or molded into a pre-form (e.g., in the shape of a solid rectangle). The pre-form is then positioned adjacent the LED chip during the fabrication process. This produces a bright and dense output, but represents a relatively difficult fabrication. Accordingly, the fabrication and diode costs are relatively high. Additionally, the pre-form technique produces a diode geometry that tends to suffer from the same blue leakage as the mini-glob technique. Another problem with the pre-form technique arises from the current spreading fingers that are typically used on an active layer, particularly a p-type active layer. These fingers tend to prevent the pre-forms from resting flush on the diode chip. The resulting gap between the pre-form and the diode surface allows high angle blue light to escape without interacting with the pre-form.
Representative descriptions of several of these structures are set forth in commonly-assigned and copending application Ser. No. 60/745,478 for, “Side View Surface mount White LED,” the contents of which are incorporated entirely herein by reference. Other representative packages include (but are not limited to) U.S. Patent Application Publication No. 20050199884.
The phosphors themselves raise another potential problem. As generally well understood in the art, a phosphor is a solid material that absorbs photons of one frequency and then emits photons of a different (typically lower energy) frequency or range of frequencies. When blue light emitting diodes are used to produce white light, yttrium aluminum garnet (YAG), often cerium doped, represents a useful and exemplary phosphor. In use, YAG absorbs the blue frequencies such as those emitted by Group III nitride LEDs and converts the energy into a range of lower frequencies, with yellow being predominant. The combination of blue light from the LED and yellow from the phosphor produces an overall white emission.
Conventionally, phosphors are produced by mixing the relevant precursors and sintering them under pressure at relatively high temperatures (e.g. 1000° C.) and then mechanically milling the sintered product. This produces a powder that can be incorporated into the resin lens on an LED chip.
In the LED context, phosphor particles smaller than a certain size tend to avoid dispersing properly in the encapsulant, tend to exhibit a higher proportion of surface defects, and are less efficient in terms of white conversion and output. Thus, the phosphor particle size (based on the rough diameter across the particle) should be more than at least about 1 micron (μm) and preferably greater than 2 μm to maximize efficiency. In many LED applications, phosphor particle sizes in the 2-25 μm range are generally preferred.
These sizes are, however, large enough to be proportionally similar to certain dimensions of the LED chip. For example, and as illustrated in
The blue light problem is also exacerbated because in a diode formed from a plurality of epitaxial layers, the majority of light is emitted in a generally vertical direction; i.e., if the surface of the diode chip were considered to be horizontal, then most of the light is emitted within about 70° degrees of a line perpendicular to the horizontal surface. As a result, the phosphor particles are generally positioned to interact most efficiently with the more perpendicular emissions.
Additionally, the power emitted at angles closer to the horizontal (i.e., within about 20° of the horizontal surface) is generally lower than the power emitted vertically which adds to the difficulty in balancing the conversion of the blue light with the phosphor.
In one aspect the invention is a light emitting diode that includes an active portion, a raised border on the top surface of the active portion and around the perimeter of the top surface of the active portion. A resin is in the space defined by the border and the top surface of the active portion and phosphor particles are in the resin to convert the frequencies emitted by the active portion.
In another aspect, the invention is a semiconductor precursor wafer. In this aspect, the invention includes a substrate, a plurality of LED chip precursors on the wafer, with a plurality of the chip precursors having a perpendicular-oriented border along the perimeter of the LED chip surface. A plurality of the bordered chip precursors are filled with a polymer resin and a plurality of the resin-filled precursors have a phosphor in the resin.
In another aspect, the invention is a light emitting diode structure that includes an active portion, a raised border on the top surface of the active portion and around the perimeter of the top surface of the active portion, a resin pre-form resting on the raised border and above the top surface of the active portion, and phosphor particles in the resin pre-form that convert the frequencies emitted by the active portion.
In another aspect, the invention is a method of tuning a light emitting diode by output. In this aspect, the invention comprises measuring a quantity selected from the group consisting of color, radiant flux, and combinations thereof produced by a light emitting diode. The diode is then covered with an amount of phosphor combined with a polymer resin that produces a selected color based upon the measured color from the diode and the added phosphor in the resin
In yet another aspect, the invention comprises a method of categorizing light emitting diodes by output. In this aspect, the invention includes the steps of probing a wafer that includes a plurality of LED precursors to measure a quantity selected from the group consisting of wavelength, radiant flux, and combinations thereof. A map is then created of the probed wafer according to the measured quantity, and an amount of phosphor in a resin is added to individual diodes on the wafer based upon the mapped output. The diodes are then separated and sorted by output.
In yet another aspect, the invention is a method of forming a color-conversion light emitting diode. In this aspect, the invention comprises forming a raised border around the perimeter of the top surface of a light emitting diode chip and then filling the well created by the raised border with a polymer resin carrying a dispersed phosphor that is responsive to the frequencies emitted by the diode chip and that emits responsive frequencies that are different from the frequencies emitted by the diode chip.
The foregoing and other objects and advantages of the invention and the manner in which the same are accomplished will become clearer based on the followed detailed description taken in conjunction with the accompanying drawings.
The present invention is a light emitting diode structure and in particular relates to the mini-glob type of structure referred to in the Background. To some extent, the invention can be understood with respect to certain aspects of the prior art. Accordingly,
In
The phosphor particles 14 are included for the purpose of generating an emission, symbolized by the arrow 15. In the case of white light emitting diodes, the active portion 12 tends to generate a blue emission symbolized by the arrows 16 and the phosphor particles 14 generate a yellow emission, the combination of which produces white light. At the edge of the active portion, the resin geometry is too small to include phosphor particles 14 and thus the predominant emission is in the color (e.g. blue) generated by the active portion, rather than the desired blend of colors from both the active portion 12 and the phosphor particles 14.
Using this system, color temperatures of about 2500-10,000 K represent various tones of white light. As
As used herein, the term “perpendicular-oriented” is not limited to 90° angles and can also refer to a physical edge or edge structure that extends upwardly from the chip and that will help retain the polymer resin in the described and illustrated manner. Thus (for example), a border that included an edge set at 45° relative to the chip surface would necessarily include portions that were perpendicularly above the chip surface and that served to retain the resin in place on the chip with more than just the meniscus.
Similarly, as used herein, the phrase “around the perimeter” is descriptive rather than limiting of the invention. Thus, the raised border need not align perfectly with the perimeter, and borders set marginally inside the chip perimeter will serve the intended purpose.
As set forth in the background, because the invention offers advantages in the production of white light emitting diodes, the active portion 30 is typically formed from the Group III nitride material system. As indicated by the breakout portion of
Those familiar with light emitting diodes will recognize that the active portion 30 can also include homojunctions, single heterojunctions, superlattice structures and multiple quantum wells.
When indium gallium nitride is used as the active layer 35, an atomic fraction of indium of about 0.2 (i.e., In0.2Ga0.8N) is typically preferred because it provides a desired output and because larger atomic fractions of indium tend to form less stable compounds.
In
The raised border 31 is typically selected from the group consisting of metals, semiconductors and ceramics. Metals can be deposited in a well-understood manner analogous to other types of semiconductor patterning and lithography. Semiconductors and ceramics can be applied with generally well-understood deposition and etching steps to produce the desired structure in a manner directly analogous to forming other structures of similar size. The border can also be formed by dispensing a solder and then reflowing it in a well understood technique or by depositing or molding a ceramic such as aluminum oxide (Al2O3), titanium dioxide (TiO2), or silicon dioxide (SiO2). These compositions are typically white in color with high reflectivity and thus help with the light scattering function of the raised border.
As
Additionally, in diodes of this type, a higher percentage of vertical light is easier to manage and the invention helps provide this advantage.
In exemplary embodiments (e.g., the Group III nitrides), the active portion 30 emits in the blue portion of the visible spectrum and the phosphor 34 down-converts the blue emission from the diode into predominantly yellow frequencies.
Because of the expected frequencies, the resin 33 is typically selected from the group consisting of polymethylmethacrylate (PMMA), polycarbonate, polysiloxane and polyester. The polysiloxane resins are particularly advantageous for the resin 33 because they are less affected by the relatively high energy blue photons produced by the Group III nitride material system. Similarly, yttrium aluminum garnet (“YAG”, usually doped with cerium) represents an exemplary phosphor for down-converting the blue frequencies into predominantly yellow frequencies.
It will be understood, however, that although producing white light from the combination of a blue light emitting diode and a yellow phosphor is particularly useful, the structural aspects of the invention are not limited to these colors. Accordingly, phosphors that emit other colors, or LEDs that emit other colors, can be combined to produce desired output colors (e.g., CIE chromaticity coordinates). Additionally, the term “white” is somewhat subjective and different end users may desire or require specific hues that can be produced with specific LED-phosphor combinations. Furthermore, the white output from several different lamps can be combined to produce a final “white” (or any other color choice) at the system level.
In addition to the optical advantages described with respect to
The relevant materials for the embodiment shown in
In another aspect, the invention is a semiconductor precursor wafer. Aspects of this embodiment are illustrated in
The wafer 72 includes a plurality of LED chip precursors 76 on the substrate 73. It will be understood that in the schematic view of
A plurality, and preferably all, of the chip precursors 76 include the raised border described with respect to the individual chip embodiments. In turn, a plurality (and preferably all) of the bordered chip precursors are filled with the polymer resin and a plurality (and preferably all) of the resin filled chip precursors include a phosphor in the resin.
As in the earlier embodiments, the substrate is typically selected from among silicon carbide, sapphire and sub-mounting structures and the chips are formed from the Group III nitride material system.
Because each chip precursor 76 contains the raised border, the invention provides some fabrication advantages over conventional techniques. For example, in some embodiments each of the chip precursors 76 includes an identical composition of phosphor and an identical amount of the phosphor in the resin. Alternatively, in other embodiments different chip precursors can include different amounts of the phosphor, or different phosphor compositions, or different resin compositions, or combinations of these differences.
As in the previous embodiments, the resins are selected from among the group consisting of PMMA, polycarbonate, polysiloxane, and polyester. The raised borders are again selected from the group consisting of metals, semiconductors and ceramics.
In the preferred embodiments, the chip precursors emit in the blue portion of the spectrum and the phosphor down-converts the blue frequencies into predominantly yellow portions of the visible spectrum.
The structural features of the invention in turn provide the opportunity for novel methods of categorizing both individual diodes and groups of light emitting diodes. Thus, and again using
This offers the advantage of categorizing diodes by color while they are on the wafer rather than after they have been separated and packaged. Sorting the diodes at the wafer structure, rather than after they are separated, has significant advantages in efficiency and yield of the fabrication process.
Stated differently, the blue frequencies range from about 455 to about 490 nanometers within the visible spectrum. For a number of reasons, the emissions from individual diodes can differ from diode to diode across a single wafer. Thus, the probing step (the term “probing” being used generally rather than specifically) can be used to identify the different blue frequencies emitted by the individual diodes (or groups of diodes). Based upon the different emissions, the composition or amount (or both) of phosphor added to each individual diode can be tailored to that diode while the diode is still on the wafer to produce the desired light output.
As an alternative or complementary step, the wafer can also be probed and mapped according to color after the phosphor has been added to the diode precursors. Stated differently, the diodes can be mapped according to their blue emission before the phosphor is added, or they can be mapped according to their white emission after the phosphor has been added, or both.
As described earlier, the phosphor can be added as a liquid droplet carrying the phosphor, as a pre-form.
Although the invention offers particular advantages for tailoring the output of diodes while they are on the wafer, such tailoring can also be applied to individual diodes in an entirely analogous manner.
In yet another aspect, the invention comprises the method of forming the color conversion light emitting diode. In this aspect, the invention includes the steps of forming the raised border around the perimeter of the top surface of the diode chip and then filling the well created by the raised border with the polymer resin carrying the dispersed phosphor that is responsive to the frequencies emitted by the diode chip and that emits response to frequencies that are different from the frequencies emitted by the diode chip.
As in the structural embodiments, the step of forming the raised border can be selected from among the steps of depositing a metal, a ceramic, or another semiconductor.
In some cases, the step of forming the raised border can comprise etching a silicon carbide substrate.
In the context of white light emitting diodes, the method comprises forming the raised border on a blue light emitting diode chip and filling the well with the polymer resin that carries a dispersed phosphor that emits predominantly in the yellow frequencies. If desired, the blue output of the chip can be measured at this point, following which the resin and phosphor are added in a combination that will produce a desired color coordinate of white light based upon the measured frequency output of the diode chip and the output of the phosphor.
In the drawings and specification there has been set forth a preferred embodiment of the invention, and although specific terms have been employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being defined in the claims.
Number | Name | Date | Kind |
---|---|---|---|
4308114 | Das et al. | Dec 1981 | A |
4902535 | Garg et al. | Feb 1990 | A |
4946547 | Palmour et al. | Aug 1990 | A |
5200022 | Kong et al. | Apr 1993 | A |
RE34861 | Davis et al. | Feb 1995 | E |
5767573 | Noda et al. | Jun 1998 | A |
5813753 | Vriens et al. | Sep 1998 | A |
5959316 | Lowery | Sep 1999 | A |
6188230 | Birk | Feb 2001 | B1 |
6323480 | Tran et al. | Nov 2001 | B1 |
6395564 | Huang et al. | May 2002 | B1 |
6417019 | Mueller et al. | Jul 2002 | B1 |
6483196 | Wojnarowski et al. | Nov 2002 | B1 |
6577073 | Shimizu et al. | Jun 2003 | B2 |
6598998 | West et al. | Jul 2003 | B2 |
6603146 | Hata et al. | Aug 2003 | B1 |
6610563 | Waitl et al. | Aug 2003 | B1 |
6635363 | Duclos et al. | Oct 2003 | B1 |
6734465 | Taskar et al. | May 2004 | B1 |
6746295 | Sorg | Jun 2004 | B2 |
6747406 | Bortscheller et al. | Jun 2004 | B1 |
6756058 | Brubaker | Jun 2004 | B2 |
6841934 | Wang et al. | Jan 2005 | B2 |
6860621 | Bachi et al. | Mar 2005 | B2 |
6891259 | Im et al. | May 2005 | B2 |
6897490 | Brunner et al. | May 2005 | B2 |
6936862 | Chang et al. | Aug 2005 | B1 |
6969946 | Steranka et al. | Nov 2005 | B2 |
7049159 | Lowery | May 2006 | B2 |
7051965 | Nishimura | May 2006 | B2 |
7122937 | Hatakeyama et al. | Oct 2006 | B2 |
7126273 | Sorg | Oct 2006 | B2 |
7148716 | Schuette et al. | Dec 2006 | B2 |
7176612 | Omoto et al. | Feb 2007 | B2 |
7189591 | Suehiro et al. | Mar 2007 | B2 |
7195944 | Tran et al. | Mar 2007 | B2 |
7208769 | Guenther et al. | Apr 2007 | B2 |
7260123 | Sato | Aug 2007 | B2 |
7312106 | Raben | Dec 2007 | B2 |
7361938 | Mueller et al. | Apr 2008 | B2 |
7371603 | Kim et al. | May 2008 | B2 |
7510890 | Ott et al. | Mar 2009 | B2 |
7521862 | Mueller et al. | Apr 2009 | B2 |
7646035 | Loh et al. | Jan 2010 | B2 |
7655957 | Loh et al. | Feb 2010 | B2 |
7804103 | Zhai et al. | Sep 2010 | B1 |
7858403 | Hiller et al. | Dec 2010 | B2 |
7910938 | Hussell et al. | Mar 2011 | B2 |
7994531 | Lin et al. | Aug 2011 | B2 |
8207546 | Harada et al. | Jun 2012 | B2 |
20020063520 | Yu et al. | May 2002 | A1 |
20020070449 | Yagi et al. | Jun 2002 | A1 |
20030141510 | Brunner et al. | Jul 2003 | A1 |
20030218180 | Fujiwara | Nov 2003 | A1 |
20040080939 | Braddell et al. | Apr 2004 | A1 |
20040124429 | Stokes et al. | Jul 2004 | A1 |
20040140765 | Takekuma | Jul 2004 | A1 |
20040159850 | Takenaka | Aug 2004 | A1 |
20040264193 | Okumura | Dec 2004 | A1 |
20050057813 | Hasei et al. | Mar 2005 | A1 |
20050077529 | Shen | Apr 2005 | A1 |
20050122031 | Itai et al. | Jun 2005 | A1 |
20050135105 | Teixeira et al. | Jun 2005 | A1 |
20050141240 | Hata et al. | Jun 2005 | A1 |
20050199884 | Lee et al. | Sep 2005 | A1 |
20050205876 | Harada et al. | Sep 2005 | A1 |
20050211991 | Mori et al. | Sep 2005 | A1 |
20050221519 | Leung et al. | Oct 2005 | A1 |
20050242355 | Guenther et al. | Nov 2005 | A1 |
20050280894 | Hartkop et al. | Dec 2005 | A1 |
20060001046 | Batres et al. | Jan 2006 | A1 |
20060003477 | Braune et al. | Jan 2006 | A1 |
20060034082 | Park et al. | Feb 2006 | A1 |
20060060874 | Edmond et al. | Mar 2006 | A1 |
20060086418 | Williams | Apr 2006 | A1 |
20060097621 | Park et al. | May 2006 | A1 |
20060102914 | Smits et al. | May 2006 | A1 |
20060126326 | Ng et al. | Jun 2006 | A1 |
20060220046 | Yu et al. | Oct 2006 | A1 |
20060258028 | Paolini et al. | Nov 2006 | A1 |
20070018573 | Shioi | Jan 2007 | A1 |
20070037307 | Donofrio | Feb 2007 | A1 |
20070165403 | Park et al. | Jul 2007 | A1 |
20070205425 | Harada | Sep 2007 | A1 |
20070295975 | Omae | Dec 2007 | A1 |
20080006839 | Lin | Jan 2008 | A1 |
20080149956 | Mueller-Mach et al. | Jun 2008 | A1 |
20080173884 | Chitnis et al. | Jul 2008 | A1 |
20080179611 | Chitnis et al. | Jul 2008 | A1 |
20090014736 | Ibbetson et al. | Jan 2009 | A1 |
20090057690 | Chakraborty | Mar 2009 | A1 |
20090065791 | Yen et al. | Mar 2009 | A1 |
20090086475 | Caruso et al. | Apr 2009 | A1 |
20090117672 | Caruso et al. | May 2009 | A1 |
20090261358 | Chitnis et al. | Oct 2009 | A1 |
20100155750 | Donofrio | Jun 2010 | A1 |
20100308361 | Beeson et al. | Dec 2010 | A1 |
20110180829 | Cho | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
196 38 667 AL | Apr 1998 | DE |
199 47 044 AL | May 2001 | DE |
102 37 403 AL | Mar 2004 | DE |
1 059 678 | Dec 2000 | EP |
1059678 | Dec 2000 | EP |
1198016 | Apr 2002 | EP |
H0428269 | Jan 1992 | JP |
11040848 | Feb 1999 | JP |
H1140848 | Feb 1999 | JP |
2000-315823 | Nov 2000 | JP |
2000315823 | Nov 2000 | JP |
2002009347 | Jan 2002 | JP |
2003-197973 | Jul 2003 | JP |
2003-303999 | Oct 2003 | JP |
2004087812 | Mar 2004 | JP |
2004179343 | Jun 2004 | JP |
2004363343 | Dec 2004 | JP |
2005508093 | Mar 2005 | JP |
20055080093 | Mar 2005 | JP |
2005-298817 | Oct 2005 | JP |
2005298817 | Oct 2005 | JP |
2006-054209 | Feb 2006 | JP |
2006054209 | Feb 2006 | JP |
2006303373 | Nov 2006 | JP |
200732509 | Dec 2007 | JP |
2006303303 | Dec 2007 | JP |
2007324608 | Dec 2007 | JP |
WO 2005101909 | Oct 2005 | WO |
WO 2007023412 | Mar 2007 | WO |
WO 2007049187 | May 2007 | WO |
Entry |
---|
U.S. Appl. No. 60/745,748, filed Apr. 24, 2006. |
International Search Report and Written Opinion from PCT Appl. No. PCT/US2012/050794. dated Jan. 10, 2013. |
Second Office Action from Chinese Patent Application No. 200780012387.0. dated Sep. 5, 2012. |
Decision of Rejection for Japanese Patent Application No. 2009-504205. dated Jul. 31, 2012. |
First Office Action from Chinese Patent Application No. 200980121201.4, dated Jul. 4, 2012. |
First Office Action for European Patent Application No. 07754163.9 dated Feb. 28, 2011. |
Notice of Rejection for Japanese Patent Application No. 2009-504205 issued Sep. 13, 2011. |
US Patent Application Publication No. US 2011/0070668. Dated: Mar. 24, 2011 to Hiller, et al. |
US Patent Application Publication No. US 2011/0070669, Dated: Mar. 24, 2011 to Hiller, at al. |
Nicha Corp.. White LED, Part No. NSPW300BS, Specifications. 15 pages. |
Nicha Corp., White LED. Part No. NSPW312BS. Specifications, 15 pages. |
Cree, Inc., EZBright LED's. EZ1000, EZ700, EZ600, EZ400, Data Sheets. |
Cree. Inc., XThin LED's, XT290, Data Sheet, 6 pages. |
U.S. Appl. No. 61/072,546, filed Mar. 31, 2008, to Ashay Chitnis. at al. |
Gree, Inc., EZBright290, Data Sheets. |
Pi, M-501 Precision Vertical Stage, Data Sheets, 4-60 to 4-61. |
Notice of Reasons for Rejection from Japanese Patent Application No. 2011-502981. dated Feb. 5, 2013. |
Office Action from Korean Patent Application No. 10-2008-7026531. dated Feb. 14, 2013. |
Office Action from U.S. Appl. No. 11/398,214, dated Jun. 10, 2013. |
Office Action from U.S. Appl. No. 11/827,626, dated Mar. 27, 2013. |
Response to OA from U.S. Appl. No. 11/827,626, filed Jun. 20, 2013. |
Office Action from U.S. Appl. No. 13/192,293, dated Mar. 27, 2013. |
Response to OA from Patent Appl. No. 13/192,293, filed Jun. 20, 2013. |
Office Action from U.S. Appl. No. 13/219,486, dated Feb. 8, 2013. |
Response to OA from U.S. Appl. No. 13/219,486, filed May 2, 2013. |
Office Action from U.S. Appl. No. 11/827,626, dated Dec. 19, 2012. |
Response to OA from U.S. Appl. No. 11/827,626, filed Feb. 8, 2013. |
Office Action from U.S. Appl. No. 11/827,626. dated Sep. 17, 2012. |
Response to OA from U.S. Appl. No. 11/827,626, filed Dec. 4, 2012. |
Office Action from U.S. Appl. No. 13/219,486, dated Aug. 21, 2012. |
Response to OA from U.S. Appl. No. 13/219,486, filed Dec. 18, 2012. |
Office Action from U.S. Appl. No. 13/219,486, dated Apr. 19, 2012. |
Response to OA from U.S. Appl. No. 13/219,486, filed Jul. 12, 2012. |
Office Action from U.S. Appl. No. 11/827,626, dated Sep. 28, 2011. |
Response to OA from U.S. Appl. No. 11/827,626, filed Feb. 22, 2012. |
Office Action from U.S. Appl. No. 11/398,214, dated Apr. 25, 2011. |
Response to CA from U.S. Appl. No. 11/398,214, filed Aug. 23, 2011. |
Office Action from U.S. Appl. No. 12/414,457. dated Apr. 1, 2011. |
Response to OA from U.S. Appl. No. 12/414,457, filed Jul. 1, 2011. |
Office Action from U.S. Appl. No. 12/414,457, dated Nov. 12, 2010. |
Response to OA from U.S. Appl. No. 12/414,457, file Jan. 11, 2011. |
Office Action from U.S. Appl. No. 12/414,457. dated Jun. 29, 2010. |
Response to OA from U.S. Appl. No. 12/414,457, file Oct. 25, 2010. |
Third Office Action from Chinese Patent Appl. No. 2007800123870, dated Feb. 14, 2013. |
Second Office Action from Chinese Application No. 200980121201.4, Dated: Mar. 5, 2013. |
Interrogatory from Japanese Patent Appl. No. 2009-504205, dated Mar. 19, 2013. |
Rejection Decision from Chinese Patent Appl. No 200980121201.4. received Sep. 23, 2013. |
Decision of Rejection from Japanese Patent Appl. No. 2011-502981, dated Sep. 10, 2013. |
Examination Report from European Patent Appl. No. 07 754 163.9-1564. dated Oct. 14. 2013. |
Allowed Claims from Taiwanese Patent Appl. No. 096111808, dated Jun. 6. 2014. |
Office Action from U.S. Appl. No. 12/414,457, dated Jul. 18, 2013. |
Response to OA from Patent Appl. No. 12/414,457, filed Oct. 17, 2013. |
Office Action from U.S. Appl. No. 11/398,214, dated Mar. 7, 2014. |
Extended European Search Report from European Patent Appl. No. 08160051.2-1551, dated Apr. 24, 2014. |
Office Action from U.S. Appl. No. 11/398,214. dated Nov. 22, 2013. |
Response to OA from U.S. Appl. No. 11/398,214, filed Jan. 14, 2014. |
Office Action from U.S. Appl. No. 11/827,626, dated Jun. 12, 2014. |
Response to OA from U.S. Appl. No. 11/827,626, filed Aug. 8, 2014. |
Office Action from U.S. Appl. No. 11/398,214, dated Jun. 12, 2014. |
Examination Report from European Patent Appl. No. 09728238.8. dated Aug. 6, 2014. |
Office Action from Taiwanese Patent Appl. No. 096111808, dated Nov. 7, 2013. |
Notice of Reexamination from Chinese Patent Appl. No. 200980121201,4. dated Jan. 16, 2015. |
Examination Report from European Appl. No. 09 728 238.8, dated Jan. 5, 2015. |
Office Action from U.S. Appl. No. 11/827,626, dated Feb. 5, 2015. |
Decision of Grant from Japanese Patent Appl. No. 2011-502981, dated Sep. 1, 2015. |
Office Action from U.S. Appl. No. 11/827,626: Feb. 1, 2016. |
Office Action from Korean Patent Appl. No. 10-2010-7024150, dated Mar. 16, 2015. |
Office Action from U.S. Appl. No. 11/827,626. dated May 22, 2015. |
Notice of Reasons for Rejection from Japanese Appl. No. 2011-502981, dated May 12, 2015. |
Summons to attend oral proceedings from European Patent Appl. No. 07754163.9. dated Oct. 8, 2015. |
Third Office Action from Chinese Patent Appl. No. 200980121201.4, dated Oct. 9, 2015. |
Office Action for Application No. 07754163.9; Dated Apr. 8, 2016. |
Office Action for Application No. 200980121201.4; Dated Mar. 4, 2016. |
Office Action from U.S. Appl. No. 11/827,626; May 12, 2016. |
Office Action for application No. 08160049.6; Dated May 6, 2016. |
Number | Date | Country | |
---|---|---|---|
20090014731 A1 | Jan 2009 | US |