This application claims benefit of priority to Korean Patent Application No. 10-2021-0010169 filed on Jan. 25, 2021 in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference in its entirety.
Embodiments of the present disclosure relate to an LED control device and a lighting device including the same.
Alight emitting diode (LED) may have low power consumption and a long lifespan, and has rapidly replaced general fluorescent lamps and incandescent lamps. Recently, various types of lighting devices employing an LED as a light source have been developed and marketed, and research into lighting devices having various functions in addition to a simple lighting function have also been actively conducted. For example, a function of controlling a color temperature and/or brightness of light or monitoring an operating state of LEDs mounted as light sources may be included in a lighting device.
An embodiment of the present disclosure is to provide an LED control device which may reduce frequencies of replacement and/or upgrade of components included in a lighting device, and may implement various functions, and the lighting device including the same.
According to an embodiment, there is provided an LED control device which may include: a power supply connected to a first driving node and a second driving node of an LED driver configured to provide driving power to a light source including a plurality of LEDs; a controller configured to operate by a first internal power voltage output from the power supply, and receive a control command from an external controller; and a switching device connected to the second driving node, and configured to operate by a second internal power voltage output from the power supply and control brightness of the light source based on a control signal which is output from the controller in response to the control command.
According to an embodiment, there is provided a lighting device which may include: an LED driver configured to generate driving power for driving LEDs using AC power, and output the driving power through a first driving node and a second driving node; a light source including at least one LED string comprising the LEDs, and connected between the first driving node and at least one LED node; and an LED control device connected to the first driving node, the second driving node, and the LED node, between the LED driver and the light source, wherein the LED control device includes a controller connected to communicate with an external controller, a switching device connected between the LED node and the second driving node and configured to control the LED string in response to a control signal output from the controller, and a power supply connected to the first driving node and the second driving node and configured to output an internal power voltage for operation of the controller and the switching device.
According to an embodiment, there is provided an LED control device which may include: a power supply connected to a first output terminal and a second output terminal among a plurality of output terminals included in an output harness of an LED driver, and configured to generate a first internal power voltage and a second internal power voltage using driving power output by the LED driver; a controller configured to operate by the first internal power voltage and generate a pulse width modulation (PWM) signal as a control signal, based on a control command received from an external controller; and a switching device connected to the second output terminal, configured to operate by the second internal power voltage, and adjust brightness of at least one of a plurality of LEDs operating by the driving power based on the control signal.
Various aspects, features, and advantages of the present disclosure will be more clearly understood from the following detailed description, taken in conjunction with the accompanying drawings, in which:
Hereinafter, embodiments of the present disclosure will be described as follows with reference to the accompanying drawings. The embodiments described herein are all example embodiments, and thus, the inventive concept is not limited thereto and may be realized in various other forms. Each of the embodiments provided in the following description is not excluded from being associated with one or more features of another example or another embodiment also provided herein or not provided herein but consistent with the inventive concept. For example, even if matters described in a specific example are not described in a different example thereto, the matters may be understood as being related to or combined with the different example, unless otherwise mentioned in descriptions thereof.
Referring to
The LED driver 20 may include a rectifier circuit for rectifying AC power VAC output from the power source 1 to a DC power, and a converter circuit for generating driving power VDRV using the rectified DC power. In embodiments, an electro-magnetic interference (EMI) filter may be further connected between the power supply 1 and the rectifier circuit. The structure and operation of the LED driver 20 will be described later.
The light source 30 may include a plurality of LEDs, and the plurality of LEDs may provide at least one LED string. In embodiments, the plurality of LEDs may include first LEDs configured to emit light having a first color temperature and second LEDs configured to emit light having a second color temperature different from the first color temperature. For example, the first LEDs may output cool white light, and the second LEDs may output warm white light. The first LEDs may provide at least one first LED string, and the second LEDs may provide at least one second LED string. The first LED string and the second LED string may be connected in parallel with each other. The number of LED strings included in the light source 30 is not limited to two.
The LED control device 40 may include a power supply, a controller, and a switching device. The controller may be connected to an external controller, and may generate a predetermined control signal, and the switching device may operate in response to the control signal. For example, the switching device may be directly connected to the light source 30, and may control a plurality of LEDs included in the light source 30 in response to the control signal. The power supply may generate an internal power voltage necessary for operating the controller and the switching device using the driving power VDRV.
Referring to
The controller 120 may operate by receiving the first internal power voltage VINT1, and may generate a control signal CTR for controlling the switching device 130. For, the control signal CTR may be a pulse width modulation (PWM) signal. The controller 120 may be connected to communicate with an external controller, and may adjust a duty ratio and/or a frequency of the control signal CTR in response to a control command transmitted from the external controller. For, the controller 120 may adjust a duty ratio of the control signal CTR in response to a dimming command included in the control command. The controller 120 may increase the duty ratio of the control signal CTR when the dimming command is a brightness increase command, and the controller 120 may decrease the duty ratio of the control signal CTR when the dimming command is a brightness decrease command.
In embodiments, the controller 120 may be connected to an external controller through wired or wireless communication, and may receive a control command. For, the controller 120 may be connected to an external controller through wireless communication such as Bluetooth, Zigbee, Wi-Fi, Li-Fi, and infrared communication. Alternatively, the controller 120 may be connected to an external controller through wired communication such as digital addressable lighting interface (DALI) or digital multiplex (DMX). The controller 120 may include a microcontroller unit (MCU), a communication circuit, an antenna, and an oscillator to operate by being connected to an external controller through various wired and wireless communication.
A microcontroller unit of the controller 120 may generate a control signal CTR using a control command received from an external controller through a communication circuit. As described above, the duty ratio and/or frequency of the control signal CTR may be changed according to the control command.
The switching device 130 may be connected to the light source 105. According to an embodiment, the light source 105 may include two or more LED strings connected in parallel with each other, and at least one of the two or more LED strings may be connected to the switching device 130. In an embodiment, the switching device 130 may include a switch connected to the light source 105, and a switch driver for controlling the switch to turn on/off. In embodiments, the number of the switches and the number of the switch drivers included in the switching device 130 may vary. A detailed configuration of the switching device 130 will be described later with reference to
In the embodiment illustrated in
In the embodiments illustrated in
Referring to
In the embodiment illustrated in
In an embodiment, a dimming function for controlling brightness of the light source 105 by adjusting the duty ratio of the control signal CTR input to the switching device 130 may be implemented. In other words, by additionally connecting an LED control device to a lighting device which may not provide the dimming function, a lighting device having the dimming function may be provided, according to an embodiment. Also, since the switching module 130 only includes a single switch SW and a single switch driver SDV, production costs and power consumption of the LED control device may be lowered.
Referring to
In the embodiment illustrated in
As an, the first LEDs LED1 and the second LEDs LED2 may output light of different color temperatures or light of different colors. As in the embodiment illustrated in
In an embodiment, the first LED string 106 may output cool white light, and the second LED string 107 may output warm white light. As an, when it is assumed that the first color temperature of the light output from the first LED string 106 is 6000K, which may be a cool white color, and the second color temperature of the light output from the second LED string 107 is 2700K, which may be a warm white color, the color temperature CCT of light output from the light source 105 may be determined as in Table 1 depending on the duty ratio of the first control signal CTR1 which may determine the first switch SW1 to turn on/off and the duty ratio of the second control signal CTR2 which may determine the second switch SW2 to turn on/off.
The operation in Table 1 as an example may be implemented with a switching device having a configuration different from the embodiment described with reference to
Referring to
For example, a light source 205 may include at least one LED string. The switching device 230 may include a switch SW and a switch driver SDV, connected to the LED string. The switch driver SDV may control the switch SW to turn on/off in response to a control signal CTR received from the controller 220, and brightness of the light source 205 may be controlled according to a duty ratio of the control signal CTR.
The power supply 210 may include a first regulator 211 and a second regulator 212. Each of the first regulator 211 and the second regulator 212 may include an input terminal IN and an output terminal OUT, and a resistor terminal ADJ connected to resistors. For, a magnitude of each of first and second internal power voltages VINT1 and VINT2 output to the output terminal OUT may vary depending on a resistor value connected to the resistor terminal ADJ.
The input terminal IN of each of the first regulator 211 and the second regulator 212 may be connected to a node between a first diode D1 and a first capacitor C1, and the first diode D1 may be connected to the first driving node 201. Accordingly, driving power VDRV may be input through the input terminal IN. The output terminal OUT of each of the first regulator 211 and the second regulator 212 may be connected to a second capacitor C2 or a third capacitor C3 functioning as an output capacitor.
In the first regulator 211, a first resistor R1 and a second resistor R2 may be connected to the output terminal OUT. A node between the first resistor R1 and the second resistor R2 may be connected to the resistor terminal ADJ of the first regulator 211, and a magnitude of the first internal power voltage VINT1 may be determined depending on a resistor value of each of the first resistor R1 and the second resistor R2. Similarly, a magnitude of the second internal power voltage VINT2 may be determined depending on a resistor value of each of a third resistor R3 and a fourth resistor R4.
In an embodiment, the first internal power voltage VINT1 may be a power voltage necessary for operation of the controller 220, and the second internal power voltage VINT2 may be a power voltage necessary for operation of the switching device 230. For, the magnitude of the first internal power voltage VINT1 may be smaller than the second internal power voltage VINT2. However, an embodiment thereof is not limited thereto, and the magnitude of each of the first internal power voltage VINT1 and the second internal power voltage VINT2 may vary depending on the embodiments.
The controller 220 may generate a control signal CTR as a PWM signal, and may output the control signal CTR to a switch driver SDV. The controller 220 may be connected to an external controller 240 through various wired/wireless communication methods. For, the external controller 240 may be a mobile device such as a smartphone or a tablet PC, or a lighting controller installed and fixed in a space adjacent to the LED control device 200.
As an, the controller 220 may recognize a voice command of a user through the external controller 240, and may generate a control signal CTR according to the command. In this case, the external controller 240 may be implemented as an AI speaker rather than a mobile device or a lighting controller. When the user transmits a command by voice using a voice recognition function of the AI speaker, the controller 220 may generate a control signal CTR in response to the command, and may turn on/off the light source 205 or may adjust brightness of the light source 205.
A user may monitor a state of the light source 205 included in the LED device 200 through the external controller 240 and also a state of the LED driver supplying the driving power VDRV to the LED control device 200. For, when a failure occurs in at least one of LEDs included in the light source 205, a voltage applied to the entire light source 205 may become different. The LED control device 200 may monitor the voltage and/or current output from the LED driver, thereby monitoring whether the LEDs are broken and also power consumption.
The power consumption of the LED driver supplying the driving power VDRV to the light source 205 may be determined by a maximum value of a rated voltage and a rated current of the LED driver, and may be defined by specification of the LED driver. When a forward voltage of the LEDs included in the light source 205 is similar to a minimum voltage of a rated voltage range of the LED driver, there may be a difference between the power consumption described in the specification of the LED driver and the power actually consumed by the light source 205. In an embodiment, by further including a voltage/current detection circuit connected to the light source 205, the controller 220 may calculate the actual power consumption of the light source 205, and may transmit the actual power consumption to the external controller 240, and may notify a user of the consumption.
Also, the LED control device 200 in an embodiment may determine whether flicker occurs in the light source 205. As described above, the LED control device 200 may include a voltage/current detection circuit which may detect a voltage and a current of the light source 205, and may transmit the voltage and the current to the controller 220. In this case, the controller 220 may determine whether flicker occurs using a ripple component of a sensing voltage detecting a driving current ILED input to the light source 205, and may transmit a result of the determination to the external controller 240. Alternatively, an optical sensor for detecting a light output from the light source 205 may be added to the LED control device 200, and the controller 220 may calculate an accurate flicker index. The flicker index may be determined to be a value between 0 and 1, and the more flickering, the higher the value may be. When it is determined that flicker occurs, the controller 220 may adjust a frequency of the control signal CTR, and may minimize flicker of the light source 205.
Referring to
The converter circuit 330 may supply driving power VDRV to a plurality of LEDs, and may be configured in various manners according embodiments. For, the converter circuit 330 may include a power factor correction (PFC) converter which may improve a power factor, and may increase a voltage, and a DC-DC converter. The converter circuit 330 may generate the driving power VDRV for driving a plurality of LEDs using the rectified power VREC generated by rectifying the AC power VAC by the rectifier circuit 320. A magnitude of a voltage of the driving power VDRV may be determined by characteristics of a plurality of LEDs connected to an output terminal of the converter circuit 330, a forward voltage of each of the LEDs, for example. In an embodiment, the LED driver 300 may output an LED current ILED for driving the LEDs as a constant current.
When the first converter switch Q1 is turned on by the controller 333, a current by the rectified power VREC may flow to a switch resistor RS, and energy may be charged in the first inductor L1. When the controller 333 turns the first converter switch Q1 off, the current charged in the first inductor L1 may be discharged, and a voltage greater than the rectified voltage VREC input to the PFC converter 331 may be generated. In this case, a high frequency component may be removed by the first capacitor C1 connected to the first diode D1.
The DC-DC converter 332 connected in series with the PFC converter 331 may operate as a buck converter circuit, and may include a second inductor L2, a second diode D2, a second capacitor C2, and a first converter switch Q2. Similarly to the first converter switch Q1, the second converter switch Q2 may be controlled by the controller 333.
When the controller 331 turns the second converter switch Q2 on, a current may flow to the second inductor L2, and energy may be charged in the second inductor L2. When the controller 331 turns the second converter switch Q2 off, a current may flow by the energy charged in the second inductor L2, and the driving power VDRV may be output. The second diode D2 may provide a path through which a current may flow when the second converter switch Q2 is turned off, and the second capacitor C2 may function as a rectifying capacitor.
The LED current ILED output from the LED driver 300 to a plurality of LEDs include in a light source may have a fixed value. Also, the LED driver 300 may have a rated voltage within a predetermined rated range, and power consumption of the LED driver 300 may be determined by a maximum value of the rated voltage and the LED current ILED. The LED current ILED, the rated voltage, and the power consumption of the LED driver 300 may be provided as specifications of the LED driver 300.
However, when a sum of forward voltages of the plurality of LEDs falls below an intermediate voltage within the a rated voltage range for reasons such as a failure in which at least a portion of the plurality of LEDs connected to the LED driver 300 is broken, power consumption of the plurality of LEDs connected to the LED driver 300 as a load may be reduced. Accordingly, there may be a difference between the power consumption described in the specifications of the LED driver 300 and power actually consumed by the LED driver 300 in operation.
In an embodiment, the above issue may be addressed using an LED control device connected between a light source including a plurality of LEDs and the LED driver 300. The LED control device may monitor actual power consumption of the LED driver 300 by detecting a voltage applied to the plurality of LEDs and a current flowing in the plurality of LEDs. As an, when the plurality of LEDs provide a plurality of LED strings, and it is detected that a relatively small voltage is applied to one of the LED strings, it may be determined that a portion of the LEDs included in the corresponding LED strings may have failed. Accordingly, the power consumption of the LED driver 300 and also a state of the LED strings connected to the LED driver 300 may be monitored.
Referring to a first graph in
The driving current ILED output from the LED driver 300 may be supplied to the light source 205 only at the turn-on time TON1, TON2, TON3, and TON4 of the control signal CTR. As the duty ratio of the control signal CTR increases, brightness of the light source 205 may increase, and as the duty ratio decreases, brightness of the light source 205 may decrease. For, when the duty ratio of the control signal CTR is 30%, only 30% of a rated current may be supplied to the light source 205.
As described with reference to
Referring to
In the embodiment illustrated in
As an example, the current sensing circuit 440 may be connected to the first driving node 401, and may detect a driving current ILED input to the light source 405 through the first driving node 401 to generate a sensing voltage. The controller 420 may determine whether flicker occurs in the light source 405 by comparing an amount of fluctuation of the sensing voltage with a reference value. In an embodiment, the controller 420 may compare a difference between a maximum value and a minimum value of the sensing voltage for a predetermined period of time with the reference value, and when the difference between the maximum value and the minimum value is greater than the reference value, the controller 420 may determine that flicker occurs in the light source 405.
When it is determined that flicker occurs in the light source 405, the controller 420 may increase or decrease the frequency of the control signal CTR. Thereafter, while the switching device 430 operates with the control signal CTR at the changed frequency, the controller 420 may compare an amount of fluctuation of the sensing voltage with the reference value again. When the amount of fluctuation of the sensing voltage is less than the reference value, the control signal CTR at the changed frequency may be continuously output to the switching device 430, and when the amount of fluctuation of the sensing voltage is greater than the reference value, the controller 420 may change the frequency of the control signal CTR.
In the description below, operation of the LED control device 400 will be described in greater detail with reference to
The first amount of fluctuation ΔV1 may be smaller than a reference value for determining whether flicker occurs by the controller 420. In this case, although flicker does not occur in the light source 405 or flicker actually occurs in the light source 405, flicker may not be recognized by the human eye. Accordingly, in an embodiment based on the first graph in
As an example, the reference value may be determined in proportion to the magnitude of the sensing voltage. For, the controller 420 may determine the reference value by multiplying an intermediate value of the sensing voltage by a predetermined coefficient. Accordingly, a reference value may be determined to be an optimal voltage for determining whether flicker occurs in consideration of the magnitude of the driving current ILEA and a load of the light source 405.
A second graph in
When it is determined that flicker occurs in the light source 405, the controller 420 may adjust the frequency of the control signal CTR such that the amount of fluctuation of the sensing voltage may be reduced. For, referring to
In the embodiment illustrated in
Referring to
The controller 420 may reduce the period of the control signal CTR from the initial period TD0 to the fourth period TD4. While the control signal CTR has a fourth period TD4, the controller 420 may compare the amount of fluctuation of the sensing voltage with a reference value, and when the amount of fluctuation of the sensing voltage is less than the reference value, the controller 420 may maintain the period of the control signal CTR to be the fourth period TD4. When the amount of fluctuation of the sensing voltage exceeds the reference value, the controller 420 may further reduce the period of the control signal CTR to the fifth period TD5. When the amount of fluctuation of the sensing voltage exceeds the reference value while the control signal CTR has the fifth period TD5, the controller 420 may reduce the period of the control signal CTR back to the sixth period TD6. As described above, the controller 420 may compare the amount of fluctuation of the sensing voltage output from the current sensing circuit 440 with a reference value while increasing the frequency of the control signal CTR, and the frequency of the control signal CTR at which no flicker occurs or flicker is minimized.
Operations in the embodiments described with reference to
Referring to
The power supply 510 may supply a first internal power voltage VINT2 to the controller 520 using driving power VDRV, and may supply a second internal power voltage VINT2 to the switching device 530. The controller 520 may generate a control signal CTR, and may transmit the control signal CTR to the switching device 530, and the switching device 530 may control the light source 505 based on the control signal CTR.
As described above, the control signal CTR may be a PWM signal having a predetermined period and a duty ratio, and the control signal CTR may have a first level during a turn-on time, and may have a second level smaller than the first level during a turn-off time. For, the first level may be a level at which the switch included in the switching device 530 may be turned on, and the second level may be a level at which the switch is turned off. As described above, in an embodiment, the second level may be a ground voltage.
The turn-on time and the turn-off time of the control signal CTR is an extremely short time, and the driving current ILED output from the LED driver 300 (
In the embodiment, to address the above problem, the switching device 530 may include a bleeder circuit 535. The bleeder circuit 535 may function to maintain a predetermined load impedance even during the turn-off time. In other words, a current may flow to the light source 505 even during the turn-off time of the control signal CTR by the bleeder circuit 535. The current flowing to the light source 505 during the turn-off time may be smaller than the driving current ILED supplied to the light source 505 during the turn-on time. In the description below, an operation of the switching device 530 including the bleeder circuit 535 will be described in greater detail with reference to
Operation of the switching device 530 will be described with reference to
The switching device 530 may be connected between the light source 505 and the second driving node 502, and may include a first switch SW1, a second switch SW2, a first switch driver SDV1, and a second switch driver SDV2. The first switch SW1 and the second switch SW2 may be connected in parallel with each other, and may be connected to the first LED string 506 and the second LED string 507 in common. The first switch SW1 may be turned on/off by a first control signal CTR1, and the second switch SW2 may be turned on/off by a second control signal CTR2.
In the embodiment illustrated in
In an embodiment, the second control signal CTR2 may be a complementary signal of the first control signal CTR1, and the first switch SW1 and the second switch SW2 may have different characteristics. As an example, the first turn-on current flowing through the first switch SW1 while the first switch SW1 is turned on may be greater than the second turn-on current flowing through the second switch SW2 while the second switch SW2 is turned on. Accordingly, the light source 505 may not actually emit light while the second switch SW2 is turned on.
Alternatively, the first switch SW1 and the second switch SW2 may have the same characteristics, and the first control signal CTR1 and the second control signal CTR2 may have different levels. For, a level of the first control signal CTR1 during the turn-on time of the first switch SW1 may be greater than the level of the second control signal CTR2 during the turn-on time of the second switch SW2. Accordingly, the second turn-on current may be smaller than the first turn-on current.
In the embodiment illustrated in
In the embodiment illustrated in
In the embodiment illustrated in
In the embodiment illustrated in
The dimming switching device 634 may operate at the third internal power voltage VINT3, and may generate a dimming control voltage in response to the dimming control signal CTRDIM. In the embodiment illustrated in
As an, the dimming control signal CTRDIM may be a PWM signal, and the dimming switching device 634 may determine a magnitude of a dimming control voltage depending on a duty ratio of the dimming control signal CTRDIM. For, when it is assumed that the dimming control voltage outputting the maximum brightness is 3V, and the duty ratio of the dimming control signal CTRDIM is 50%, the dimming control voltage may be 1.5V. Also, when the duty ratio of the dimming control signal CTRDIM is 30%, the dimming control voltage may be 0.9V, and when the duty ratio of the dimming control signal CTRDIM is 80%, the dimming control voltage may be 2.4V. The magnitude of the LED current ILED output from the LED driver 530 may change according to the magnitude of the dimming control voltage, and thus, brightness of light output from the light source 610 may be adjusted. In the embodiment illustrated in
The LED driver 710 may generate the driving power using the AC power input through the input harness 712. The LED driver 710 may include an EMI filter, a rectifier circuit, a converter circuit, and a controller. The rectifier circuit may convert the AC power into DC power, and the converter circuit may generate the driving power using the DC power. Depending on an application field of the lighting device 700, the LED driver 710 may have waterproof and dustproof performance. In an embodiment, the LED driver 710 may be sealed with a sealing member for blocking permeation of moisture and dust.
In an embodiment, the LED driver 710 may output a constant current to drive the LEDs connected to the output harness 715, and a magnitude of the constant current may be determined by the controller of the LED driver 710. The controller may provide a dimming function for adjusting the magnitude of the constant current output from the LED driver 710 within a rated current range. The controller may adjust the magnitude of the constant current according to a dimming control signal input through the dimming terminals DIM+ and DIM− described above in reference to
Referring to
In the embodiment illustrated in
According to the aforementioned embodiments, by connecting an LED control device to driving nodes which may connect an LED driver and a light source, communication with an external controller and a dimming function may be implemented without exchanging or upgrading the LED driver included in an existing lighting device. Accordingly, the lighting device which is able to reduce waste of already installed devices and increase user convenience may be implemented.
At least one of the components, elements, modules or units (collectively “components” in this paragraph) represented by a block in the drawings may be embodied as various numbers of hardware, software and/or firmware structures that execute respective functions described above, according to an example embodiment. These components may include the LED driver 20, the power supply 110, the controller 120, the switch driver SDV, and the dimming controller 734, not being limited thereto. According to embodiments, at least one of these components may use a direct circuit structure, such as a memory, a processor, a logic circuit, a look-up table, etc. that may execute the respective functions through controls of one or more microprocessors or other control apparatuses. Also, at least one of these components may be specifically embodied by a module, a program, or a part of code, which contains one or more executable instructions for performing specified logic functions, and executed by one or more microprocessors or other control apparatuses. Further, at least one of these components may include or may be implemented by a processor such as a central processing unit (CPU) that performs the respective functions, a microprocessor, or the like. Two or more of these components may be combined into one single component which performs all operations or functions of the combined two or more components. Also, at least part of functions of at least one of these components may be performed by another of these components. Functional aspects of the above embodiments may be implemented in algorithms that execute on one or more processors.
While the embodiments have been illustrated and described above, it will be apparent to those skilled in the art that modifications and variations could be made without departing from the scope of the present disclosure as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2021-0010169 | Jan 2021 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
6372608 | Shimoda et al. | Apr 2002 | B1 |
6645830 | Shimoda et al. | Nov 2003 | B2 |
RE38466 | Inoue et al. | Mar 2004 | E |
6818465 | Biwa et al. | Nov 2004 | B2 |
6818530 | Shimoda et al. | Nov 2004 | B2 |
6858081 | Biwa et al. | Feb 2005 | B2 |
6967353 | Suzuki et al. | Nov 2005 | B2 |
7002182 | Okuyama et al. | Feb 2006 | B2 |
7084420 | Kim et al. | Aug 2006 | B2 |
7087932 | Okuyama et al. | Aug 2006 | B2 |
7154124 | Han et al. | Dec 2006 | B2 |
7208725 | Sherrer et al. | Apr 2007 | B2 |
7288758 | Sherrer et al. | Oct 2007 | B2 |
7319044 | Han et al. | Jan 2008 | B2 |
7501656 | Han et al. | Mar 2009 | B2 |
7709857 | Kim et al. | May 2010 | B2 |
7759140 | Lee et al. | Jul 2010 | B2 |
7781727 | Sherrer et al. | Aug 2010 | B2 |
7790482 | Han et al. | Sep 2010 | B2 |
7940350 | Jeong | May 2011 | B2 |
7959312 | Yoo et al. | Jun 2011 | B2 |
7964881 | Choi et al. | Jun 2011 | B2 |
7985976 | Choi et al. | Jul 2011 | B2 |
7994525 | Lee et al. | Aug 2011 | B2 |
8008683 | Choi et al. | Aug 2011 | B2 |
8013352 | Lee et al. | Sep 2011 | B2 |
8049161 | Sherrer et al. | Nov 2011 | B2 |
8129711 | Kang et al. | Mar 2012 | B2 |
8179938 | Kim | May 2012 | B2 |
8263987 | Choi et al. | Sep 2012 | B2 |
8324646 | Lee et al. | Dec 2012 | B2 |
8399944 | Kwak et al. | Mar 2013 | B2 |
8432511 | Jeong | Apr 2013 | B2 |
8459832 | Kim | Jun 2013 | B2 |
8502242 | Kim | Aug 2013 | B2 |
8536604 | Kwak et al. | Sep 2013 | B2 |
8735931 | Han et al. | May 2014 | B2 |
8766295 | Kim | Jul 2014 | B2 |
20190306949 | Murray | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
10-2009-0037422 | Apr 2009 | KR |
10-1082218 | Nov 2011 | KR |
10-2012-0081775 | Jul 2012 | KR |
10-2012-0116201 | Oct 2012 | KR |
10-2015-0051080 | May 2015 | KR |
10-1638599 | Jul 2016 | KR |
10-1698346 | Jan 2017 | KR |
10-2019-0021929 | Mar 2019 | KR |
10-2094860 | Mar 2020 | KR |
10-2099202 | Apr 2020 | KR |
Number | Date | Country | |
---|---|---|---|
20220240356 A1 | Jul 2022 | US |