The present application relates to LED control using modulation frequency detection techniques, and more particularly, to LED brightness and/or color control based on unique modulation frequencies used to drive independent LED strings.
LED control, in general, cannot be accomplished solely through the precise control of LED manufacturing variables, since the operating environment of the LED (temperature, current stability, infiltration of other light sources, etc.) may affect the color and intensity of the LED device. Known feedback control systems are used to control color and intensity of LEDs. One such known system involves the use of multichannel light sensors tuned to each color in the system. For example, a typical RGB system includes a string of red LEDs, a string of green LEDs and a string of blue LEDs. A multichannel RGB light sensor is placed in proximity to the light source in a location that is optimized to receive light flux from all three emitters. The sensor outputs signals indicative of the average total flux and the color point of the RGB system. A feedback controller compares this information to a set of preset or user-defined values. The multichannel sensor adds complexity and cost to the system design and architecture, and, in most cases, suffers from a lack of 1:1 correspondence between the light sensor and LED channels, making the color point calculations complex and limiting their accuracy.
Another known feedback control system utilizes a broadband sensor to sense the light from the LED channels. To control each individual channel, all other channels must be turned off so that the sensor can “focus” on a single color at a time. Thus, this system does not lend itself to continuous, simultaneous and independent control of all the channels in the system.
Reference should be made to the following detailed description which should be read in conjunction with the following figures, wherein like numerals represent like parts:
Generally, this application provides systems (and methods) for controlling the brightness of LEDs to compensate for uncontrolled changes in brightness and/or color. Temperature drift, aging of the LED devices, changes in the drive current, etc., can all cause changes in brightness, even if the duty cycle of the drive current to the LEDs remains fixed. To compensate for uncontrolled changes in brightness in one or more LED channels, one exemplary system drives each LED channel with a unique modulation frequency. Feedback control is provided that may utilize a single photodetector to sense the composite light from all the LED channels in the system, determine the amplitude of the light intensity at each unique modulation frequency, and compare that amplitude to preset and/or user programmable values to generate error signals. Each error signal, in turn, may be used to control the duty cycle in each channel to compensate for any detected changes in brightness. In some embodiments, all of the LED channels may be controlled simultaneously and continuously.
Driver circuitry 106-1, 106-2, . . . , 106-N may be configured to supply current to each respective LED string 110-1, 110-2, . . . , 110-N. Driver circuitry may include known DC/DC converter circuit topologies, for example, boost, buck, buck-boost, SEPIC, flyback and/or other known or after-developed DC/DC converter circuits. Of course, driver circuitry may also include AC/DC inverter circuitry if, for example, the front end of the drive circuitry is coupled to an AC power source. The current supplied by each driver circuitry may be the same, or different depending on, for example, the current requirements of each respective LED string. Typically, driver circuitry 106-1, 106-2, . . . , 106-N is configured to generate a maximum drive current, Idrive, that can power the LED string at full intensity. In operation, drive circuitry 106-1, 106-2, . . . , 106-N is configured to power a respective LED string 110-1, 110-2, . . . , 110-N with a respective modulated DC current 108-1, 108-2, . . . , 108-N that is modulated by a respective PWM signal modulated at a respective modulation frequency f1, f2, . . . , fN, having a respective duty cycle set by respective PWM circuitry 104-1, 104-2, . . . , 104N. Referring briefly to
Referring again to
Photodetector circuitry 112 may be configured to detect superimposed PWM brightness signals from the LED strings and generate an LED brightness signal 114 (e.g., current signal) proportional to the superimposed PWM brightness signals. To enable simultaneous control of all the LED strings in the system, photodetector 112 may be configured to detect the combined, superimposed PWM brightness signals of all the LED sources. An example of a PWM brightness signal for channel 102-1 is depicted in
LED controller circuitry 118 may include frequency and amplitude detection circuitry 120 and error processor circuitry 124. As an overview, controller circuitry 118 may be configured to receive the LED brightness signal 114 (as may be amplified by amplifier 116), and detect the product of the amplitude and duty cycle, hereinafter referred to as the “pulse area”, of each respective PWM brightness signal superimposed within the LED brightness signal at each respective unique modulating frequency. Controller circuitry 118 may also generate signals proportional to the pulse area (“pulse area signals”) and compare the pulse area signals to user defined and/or preset brightness values to generate error signals proportional to the difference between the detected brightness and the user defined and/or preset brightness values. Frequency and amplitude detection circuitry 118 may include a plurality of physical and/or logical detector circuits 120-1, 120-2, . . . , 120-N. Each respective detector circuit 120-1, 120-2, . . . , 120-N may be configured to filter the signal 114 at each respective modulation frequency f1, f2, . . . fN and detect the amplitude of each respective signal at the respective modulation frequency. Thus, as an example, circuit 120-1 may be configured to filter the incoming LED brightness signal 114 (which is the composite signal of superimposed PWM brightness signals) to filter out all of the signals except the PWM brightness signal having a frequency of f1 (being emitted by the LED string 110-1). Once the appropriate PWM brightness signal is isolated from the collection of signals in signal 114, circuit 120-1 may be configured to detect the pulse area of the PWM brightness signal at frequency f1. Each of circuits 120-2-120N may be configured in a similar manner to filter and detect at their respective modulation frequencies, and to generate pulse area signals 122-2-122-N proportional to the respective pulse area of the PWM brightness signal.
Circuitry 120 may also include pulse area detection circuitry 306. Pulse area detection circuitry 306 may be configured to detect a pulse area of each respective PWM brightness signal at each respective modulation frequency f1, f2, . . . , fN and for each respective duty cycle. The output of pulse area detection circuitry 306 may includes a plurality of pulse area signals 122-1, 122-2, . . . , 122-N that are proportional to the respective pulse area of each channel, i.e., proportional to the product of the amplitude and the duty cycle of each PWM brightness signal for each channel.
While the foregoing description of the frequency and amplitude detection circuitry 120 may utilize digital filtering and detection, in other embodiments the circuitry 120 may include hardwired circuitry to perform operations as described above. For example, filter circuits may be formed using known electronic components (transistors, resistors, capacitors, amplifiers, etc.) and each may be tuned to filter at a specific frequency, e.g., f1, f2, . . . , fN. Similarly, amplitude detection circuits and multiplier circuits may be formed using hardwired circuitry to perform operations as described above.
Comparator circuitry 406 may be configured to compare the space coordinates from circuitry 402 to a user defined and/or programmed set of values 410. The values 410 may represent the target or desired overall brightness and/or color (temperature) of the LED strings. Continuing with the N=3 example given above, comparator 406 may be configured to compare the (x, y, Y) data point of the detected signal with the (x, y, Y) data point of the preset and/or user defined values 410. The output of comparator 406 may be a set of error signals 412-1, 412-2, 412-3 in the selected (x,y,Y) space. Thus, for example, error signal 412-1 may include a value representing the difference between the measured x chromaticity value of the source and the preset and/or user definable value 410. Similarly, error signals 412-2 and 412-3 may be generated for the y and Y coordinate.
While the error signals 412-1, 412-2, . . . 412-N may represent a difference between a target and actual set point for the light source, these signals may be converted back into a signal form usable by the PWM circuitry. To that end, error processor circuitry 124 may also include error signal to duty cycle control signal converter circuitry 408. Circuitry 408 may be configured to receive the error signals 412-1, 412-2, . . . 412-N in the selected space coordinates and convert those signals into respective control signals 126-1, 126-2, . . . , 126-N that are in a form that is usable by respective PWM circuitry 104-1, 104-2, . . . , 104-N. To that end, circuitry 124 may include a second LUT 412 that circuitry 408 may use to correlate the error signals in the selected chromaticity space to a DC value. In one embodiment, LUT 412 may include the same information as LUT 404 but represented in an inverse fashion to enable circuitry 408 to determine a DC value based on the inputs (i.e., LUT 412 may be the inverse of LUT 404. Thus, control signals 126-1, 126-2, . . . , 126-N may be DC signals having values based on the error detected by comparator circuitry 406. In operation, control signals 126-1, 126-2, . . . , 126-N may control respective PWM circuitry 104-1, 104-2, . . . , 104-N to adjust the respective duty cycle in proportion to a detected error in each photometric quantity. One example of error processor circuitry that may be utilized with the present application is the PIC24F MCU family of microprocessors manufactured by Microchip Technology Inc., and described in Microchip Application Note AN1257 published by Microchip Technology Inc.
The calibration of a light source with feedback properties as described herein is for the purpose of generating LUT 404 and the LUT 412 in
Operations according to the method of this embodiment may also include, for each channel, determining a pulse area of the luminosity signal at the modulation frequency 508. The pulse area is proportional to the product of the amplitude of the luminosity signal times the duty cycle of the luminosity signal. For each channel, the method may also include generating a pulse area signal that is proportional to the pulse area 510. Operations according to this embodiment may also include, for each channel, generating an error signal by comparing the pulse area signal to predetermined values 512. The predetermined values may be, for example, preset or user programmable values of brightness and/or color. The error signals may represent a difference between the pulse area signals and the predetermined values. Operations of this embodiment may also include adjusting a duty cycle of a respective modulation frequency based on a respective error signal 514. This operation may include controlling a PWM signal generator to control the duty cycle of the PWM signal based on the error signal. In this embodiment, the method may enable continuous and simultaneous feedback control of the LED channels by continuing operations at 504.
While
As used in any embodiment herein, “circuitry” may comprise, for example, singly or in any combination, hardwired circuitry, programmable circuitry, state machine circuitry, and/or firmware that stores instructions executed by programmable circuitry. In at least one embodiment, controller 118, photodetector 112, PWM circuitry 104 and/or driver circuitry 106 may collectively or individually comprise one or more integrated circuits. An “integrated circuit” may be a digital, analog or mixed-signal semiconductor device and/or microelectronic device, such as, for example, but not limited to, a semiconductor integrated circuit chip.
Embodiments of the methods described herein may be implemented using one or more processors and/or other programmable device. To that end, the operations described herein may be implemented on a tangible computer readable medium having instructions stored thereon that when executed by one or more processors perform the operations. Thus, for example, controller 118 may include a storage medium (not shown) to store instructions (in, for example, firmware or software) to perform the operations described herein. The storage medium may include any type of tangible medium, for example, any type of disk including floppy disks, optical disks, compact disk read-only memories (CD-ROMs), compact disk rewritables (CD-RWs), and magneto-optical disks, semiconductor devices such as read-only memories (ROMs), random access memories (RAMs) such as dynamic and static RAMs, erasable programmable read-only memories (EPROMs), electrically erasable programmable read-only memories (EEPROMs), flash memories, magnetic or optical cards, or any type of media suitable for storing electronic instructions.
Unless specifically stated otherwise, terms such as “operations,” “processing,” “computing,” “calculating,” “comparing,” generating,” “determining,” or the like, may refer to the action and/or processes of a processing system, hardwire electronics, or an electronic computing device or apparatus, that manipulate and/or transform data represented as physical, such as electronic, quantities within, for example, registers and/or memories into other data similarly represented as physical quantities within the registers and/or memories.
Thus, in one embodiment, the present disclosure provides an LED controller that includes detection circuitry configured to receive an LED brightness signal having a plurality of superimposed PWM brightness signals each having a duty cycle and a unique modulation frequency. Each PWM brightness signal is proportional to the brightness of a respective LED channel. The detection circuitry is further configured to determine a pulse area for each respective PWM brightness signal. The pulse area is proportional to the product of the amplitude and duty cycle of each respective PWM brightness signal at each respective unique frequency. The detection circuitry is further configured to generate respective pulse area signals proportional to the respective pulse area. Error processor circuitry is provided to compare the respective pulse area signals to user defined and/or preset photometric quantities and generate respective error signals proportional to the difference between the respective pulse area signals and the user defined and/or preset photometric quantities.
In another embodiment, the present disclosure provides a method for controlling a plurality of LED channels. The method includes receiving an LED brightness signal having a plurality of superimposed PWM brightness signals each having a duty cycle and a unique modulation frequency, each PWM brightness signal being proportional to the brightness of a respective LED channel. The method also includes determining a pulse area of each PWM brightness signal at each respective unique frequency, the pulse is being proportional to the product of the amplitude and duty cycle of each respective PWM brightness signal at each respective unique frequency. The method also includes generating respective pulse area signals proportional to the respective pulse area. The method also includes comparing each respective pulse area signal to user defined and/or preset photometric quantities and generate respective error signals proportional to the difference between the respective pulse area signals and the user defined and/or preset photometric quantities.
In another embodiment, the present disclosure provides an apparatus that includes at least one storage medium having stored thereon, individually or in combination, instructions. The instructions, when executed by at least one processor, result in the following operations including receiving an LED brightness signal having a plurality of superimposed PWM brightness signals each having a duty cycle and a unique modulation frequency, each PWM brightness signal being proportional to the brightness of a respective LED channel; determining a pulse area of each PWM brightness signal at each respective unique frequency, the pulse area being proportional to the product of the amplitude and duty cycle of each respective PWM brightness signal at each respective unique frequency; generating respective pulse area signals proportional to the respective pulse area; and comparing the respective pulse area signal to user defined and/or preset photometric quantities and generating respective error signals proportional to the difference between the respective pulse area signals and the user defined and/or preset photometric quantities.
In still another embodiment, the present disclosure provides a system that includes a plurality of light emitting diode (LED) channels, each channel comprising pulse width modulation (PWM) circuitry configured to generate a PWM signal at a unique modulation frequency and a duty cycle, driver circuitry configured to generate a current modulated by the respective PWM signal and controlled by the duty cycle, and an LED string configured to be driven by the driver circuitry and to generate a PWM brightness signal having a brightness corresponding to the duty cycle of the PWM signal. The system also includes a photodetector circuit configured to receive each brightness signal from each LED string, and generate a proportional LED brightness signal that includes superimposed PWM brightness signals each having a duty cycle and amplitude at the unique modulation frequency. The system also includes an LED controller configured to receive the proportional LED brightness signal, to determine a pulse area of each PWM brightness signal at each respective unique frequency, the pulse area being proportional to the product of an amplitude and duty cycle of each respective PWM brightness signal at each respective unique frequency; generate respective pulse area signals proportional to the respective pulse area; and compare the respective pulse area signal to user defined and/or preset photometric quantities and generate respective error signals proportional to the difference between the respective pulse area signals and the user defined and/or preset photometric quantities.
Thus, the embodiments described herein may be configured to compensate, via negative feedback, for unintended changes in brightness in one or more LED channels by changing the duty cycle for one or more LED channels in proportion to the error signal and thereby reducing the total error signal towards zero. Advantageously, by simultaneously processing the brightness information in each channel, the present disclosure can make continuous duty cycle adjustments to accurately control brightness and color in each LED channel. In addition, modulating each channel with a unique modulation may enable inexpensive detection and may further enhance simultaneous control of the channels. Also, modulating each channel with a unique modulation frequency may enable the use of a broadband photodetector, instead of more costly multichannel detectors or single channel detectors with colored filters over each detector.
Modifications and substitutions by one of ordinary skill in the art are considered to be within the scope of the present disclosure, which is not to be limited except by the following claims.