1. Technical Field
The present disclosure relates to a LED driving circuit, in particular, to a LED driving circuit and method.
2. Description of Related Art
The light emitting diode (LED) has become widely used to various displays. Generally, the LED display to define n-bit grayscale means that the grayscale period T is divided into 2n or (2n−1) grayscale steps, and each grayscale step has a time interval T1, wherein T1=T/(2n) or T/(2n−1). A value of n-bit grayscale signal D [n−1:0] (referred to as the brightness value) is used to determine how many grayscale steps need to be turn-on (turn-on steps) in one grayscale period to determine the brightness. The grayscale period T may be equal to the frame period Tf, and the frame period Tf may also include the non-turn-on time Toff, wherein Tf=T+Toff.
The refresh rate has become more important because of the rapid development of displays. The turn-on time in one grayscale period can be divided to increase the refresh rate. For example, as shown in
Conventionally, the driving circuit only provides one constant current I. When the brightness value is lower than the amount of time intervals, the refresh rate cannot be sustained. As shown in
An exemplary embodiment of the present disclosure provides a LED driving circuit and method which provides the LED display with a higher refresh rate and/or better uniformity in low grayscale.
According to one exemplary embodiment of the present disclosure, a LED driving circuit used to generate a driving current to drive a LED during a grayscale period according to a grayscale signal is provided. The LED driving circuit includes a high bit driving circuit, a low bit driving circuit and a driving output terminal. The high bit driving circuit coupled to a high bit signal of the grayscale signal determines a first current continuously driven during a grayscale period according to a value of the high bit signal, wherein the first current is invariant during the grayscale period. The low bit driving circuit coupled to a low bit signal of the grayscale signal determines a second current driven in at least two time intervals during the grayscale period according to a value of the low bit signal. The driving output terminal coupled to the high bit driving circuit and the low bit driving circuit outputs the driving current added by the first current and the second current.
According to another exemplary embodiment of the present disclosure, a method of driving a LED used to generate a driving current to drive a LED during a grayscale period according to a grayscale signal is provided, and the method includes the following steps: defining a grayscale signal to be a high bit signal and a low bit signal; determining a first current continuously driven during a grayscale period according to a value of the high bit signal, wherein the first current is invariant during the grayscale period; determining a second current driven in at least two time intervals during the grayscale period according to a value of the low bit signal; and outputting the driving current added by the first current and the second current.
According to yet another exemplary embodiment of the present disclosure, a LED driving circuit used to generate a driving current to drive a LED during a grayscale period according to a grayscale signal is provided. The LED driving circuit generates a driving current during the grayscale period according to the grayscale signal, adjusts an initial current value of the driving current according to a high bit signal of the grayscale signal, and increases the driving current in at least two time intervals according to a low bit signal of the grayscale signal to enable the driving current to be greater than the initial current value in the at least two time intervals. The initial current value is ≧0.
To sum up, a LED driving circuit and method provided by the present disclosure applies two driving circuits to respectively process the turn-on state of different data bits. Accordingly, the LED display can be improved with higher refresh rate and/or better uniformity in low grayscale.
In order to further understand the techniques, means and effects of the present disclosure, the following detailed descriptions and appended drawings are hereby referred to, such that, and through which, the purposes, features and aspects of the present disclosure can be thoroughly and concretely appreciated; however, the appended drawings are merely provided for reference and illustration, without any intention to be used for limiting the present disclosure.
The accompanying drawings are included to provide a further understanding of the present disclosure, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments of the present disclosure and, together with the description, serve to explain the principles of the present disclosure.
Reference will now be made in detail to the exemplary embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
The LED driving circuit provided by the present disclosure generates a driving current to drive a LED during a grayscale period according to a grayscale signal. The LED driving circuit adjusts an initial current value of the driving current according to a high bit signal of the grayscale signal and increases the driving current in at least two time intervals according to a low bit signal of the grayscale signal to enable the driving current to be greater than the initial current value in the at least two time intervals. The initial current value is ≧0. The initial current value is a first current determined by the high bit signal, the low bit signal determines a second current, and the driving current in the at least two time intervals is a summation of the first and second currents. The LED driving circuit of the present disclosure will be described in the following paragraphs.
Please refer to
The control circuit 1 receives a grayscale signal D [n−1:0] and generates a high bit signal and a low bit signal. The high bit driving circuit 2 is coupled to the high bit signal of the grayscale signal D [n−1:0]. The low bit driving circuit 3 is coupled to the low bit signal of the grayscale signal D [n−1:0]. The driving output terminal 4 is coupled to the high bit driving circuit 2 and the low bit driving circuit 3. The control circuit 1 transmits the high bit signal to the high bit driving circuit 2, and transmits the low bit signal to low bit driving circuit 3. Here, the high bit signal and the low bit signal are, for example, control signals or bit value, but it is not limited thereto.
The control circuit 1 defines the grayscale signal D [n−1:0] to be the high bit signal and the low bit signal. For example, the high bit signal has k-bits and the low bit signal has (n−k)-bits, wherein k is a positive integer smaller than n, but it is not limited thereto. The high bit signal is D [n−1:n−k] and the low bit signal is D [n−k−1:0]. Regarding the LED brightness, as long as the driving current value and the turn-on time have a same product, the brightness is the same. For example, a pair of grayscale steps (2T1) applied to 10 mA current and a grayscale step (T1) applied to 20 mA current have the same brightness, namely, 10 mA×2T1=20 mA×T1. Generally, the grayscale signal is used to control the LED brightness, and the value of the grayscale signal corresponds to a product of the driving current and the turn-on time. Please refer to
Compared with the conventional driving method, the high bit driving circuit 2 of the LED driving circuit of the present embodiment determines a first current I_1 continuously driven during the grayscale period T according to the value of the high bit signal D [n−1:n−k], wherein the first current is invariant during the grayscale period T. The low bit driving circuit 2 determines a second current I_2 driven in at least two time intervals during the grayscale period T according to the value of the low bit signal D [n−k−1:0]. The driving output terminal 4 outputs the driving current Iout added by the first current I_1 and the second current I_2. Here, the LED driving circuit shown in
The control circuit 1 of the present disclosure transmits the high bit signal to the high bit driving circuit 2, and transmits the low bit signal to the low bit driving circuit 3. Here, the control circuit 1 may be a shift resistor or other circuit, and the high bit signal and the low bit signal are, for example, a control signal or bit value, but it is not limited thereto.
Please refer to
In the present embodiment, the first current I_1 is determined before the second current I_2, but the present disclosure is not limited thereto. According to the conventional LED driving method (applying the constant current I to drive the LED), the value of the grayscale signal D [n−1:0] is S, and the turn-on time of the constant current I is represented by S×T1. Please refer to
On the basis of the conventional LED driving method and the product of the constant current I and the time that is represented by (m×2(n−k)+p)×T1×I, the product of the constant current I and the time can be changed to be m×2(n−k)×T1×I+p×T1×I if m and p are separated. Thus the value of the first current I_1 is m/(2k)×I. Please refer to
In the present embodiment, the first current I_1 is set to be m/(2k)×I, and the product of the second current I_2 and the time is set to be p×T1×I. In certain embodiments, the second current I_2 is further set to be 1/(2k)×I, and the total turn-on time of all time intervals of the second current I_2 is the value of the low bit signal×2k×T1, that is, p×(2k)×T1.
Please refer to
As shown in the current sequence I2, the second current I_2 is set to be 1/(2k)×I. The high bit driving circuit does not generate the driving current during the grayscale period T because of D [4:3]=0, and the low bit driving circuit generates the 1/4×I current equally driven at four T1×1 time intervals during the grayscale period T because of D [2:0]=1. But it is not limited thereto. The position of four time intervals can be changed, and it is not limited by the current sequence I2 shown in
As shown in the current sequence I3, the second current I_2 is set to be 1/(2k)×I. When D [4:0]=00001, the high bit driving circuit does not generate the driving current during the grayscale period T because of D [4:3]=0, and the low bit driving circuit generates the 1/4×I current equally driven at two T1×2 time intervals during the grayscale period T because of D [2:0]=1. But it is not limited thereto. The position of the two time intervals can be changed. Compared with the current sequence I1, the product of the driving current value and the turn-on time in the current sequence I3 is 1/4×I×2T1×2=I×T1, and the brightness of the current sequence I3 is the same as the brightness of the current sequence I1. In addition, the refresh rate of the current sequence I3 has a double increase compared with the refresh rate of the current sequence I1. The brightness uniformity of the two time intervals of the current sequence I3 is more uniform than the current sequence I2, because the turn-on time of every time interval of I3 is longer than I2
The second current I_2 is set to be I/2 in the current sequence I4. When D [4:0]=00001, the high bit driving circuit does not generate the driving current during the grayscale period T because of D [4:3]=0, and the low bit driving circuit generates the I/2 current equally driven at two T1×1 time intervals during the grayscale period T because of D [2:0]=1. But it is not limited thereto. The position of the two time intervals can be changed. Compared with the current sequence I1, the product of the driving current value and the turn-on time in the current sequence I4 is 1/2×I×T1×2=I×T1, and the brightness of the current sequence I4 is the same as the brightness of the current sequence I1. In addition, the refresh rate during the grayscale period T has a double increase compared with the current sequence I1 because the current state of I4 changes two times during the grayscale period T.
Please refer to
Please refer to
Please refer to
Please refer to
Generally, there is a black insertion Toff generated in the frame period Tf whenever a scan is performed.
In the embodiments of the present disclosure the grayscale period T can be a time duration or a sum of a plurality of time intervals. For example, as shown in
In summary, the LED driving circuit and method of the present disclosure use two driving circuits to respectively process the turn-on time of different data bits to promote the refresh rate in low grayscale. In addition, when the turn-on time of the second current is greater than 1 at each time interval, the LED display can be improved with a higher refresh rate and/or better uniformity in low grayscale and setting the black insertion in the frame period is not interfered with. In other words, the present disclosure drives the LED by lower current and longer drive time, thereby achieving better brightness uniformity in low grayscale by prolonging the drive time in every time interval.
The above-mentioned descriptions represent merely the exemplary embodiment of the present disclosure, without any intention to limit the scope of the present disclosure thereto. Various equivalent changes, alterations or modifications based on the claims of present disclosure are all consequently viewed as being embraced by the scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
105108480 | Mar 2016 | TW | national |