The light-emitting diode (LED) has become a popular alternative to the incandescent bulb due to lighting performance and efficacy (lumen/watt), color rendering, and operational life. In emergency lighting, LED lamps provide additional cost savings by down-sizing the required back-up energy (battery) and creating opportunities for equipment miniaturization. Given the technological differences between incandescent lamps and LEDs, the replacement of incandescent lamps with LEDs can require major design revisions for existing lighting fixtures including electrical power supply, thermal management, and light distribution.
The following detailed description refers to the accompanying drawings. The same reference numbers in different drawings may identify the same or similar elements.
A light engine for an emergency lighting fixture may include a bracket, with multiple mounting surfaces configured at different angles to form a substantially concave region, and a plurality of light emitting diode (LED) modules mounted to the multiple mounting surfaces. The bracket may be configured to project an axis of a light beam from each LED module in substantially the same plane. The light engine includes a first set of lenses with a first type of optical surface for focusing a first portion of the plurality of LED modules and a second set of lenses with a second type of optical surface, different than the first type, for focusing a second portion of the plurality of LED modules. The different sets of lenses enable precise design of the total light distribution from the light engine. The mounting surfaces allow the LED modules and lenses to be mounted in a compact manner with a small window size for the lighting fixture.
Housing 20 may include a metal enclosure to secure illumination window 30, fasteners 40, lighting engine 50, and other components, such as a power supply, a controller, mounting hardware, and/or electrical circuitry (not shown). In conjunction with a back cover (not shown), housing 20 may provide a watertight enclosure and enable lighting fixture 10 to be secured to a wall or another surface. Housing 20 may include a generally rectangular opening in which to secure illumination window 30. Housing 20 may provide a structure on which to mount lighting engine 50. More particularly, fasteners 40 may be used to secure and position a bracket of lighting engine 50 to so as to emit light through illumination window 30. As described further herein, the bracket of lighting engine 50 may have thermal conductivity with housing 20 on the areas around fasteners 40 to transfer heat from lighting engine 50.
Illumination window 30 may include a generally transparent panel inserted into the opening of housing 20. Window 30 may be made from, for example, clear polycarbonate or glass. Illumination window 30 may permit light from light engine 50 to pass through to provide illumination to an area below illumination window 30. As described further herein, the configuration of light engine 50 allows illumination window 30 to be relatively small in comparison to conventional LED fixtures (e.g., less than five percent of the surface area of housing 20) to protect against mechanical stress and provide unique aesthetics for emergency lighting fixture 10.
Light engine 50 may provide an illumination source for light fixture 10. Light engine 50 may generally include LEDs mounted to a bracket at different angles, with each LED fitted with a particular lens to optimize light distribution from light engine 50. Light engine 50 is described further in connection with
Although
Lenses 70 may be selected with specific optical surfaces 72 to orient light from LED modules 60 in particular manners, as described below. Each lens 70 may be mounted, for example, to one of PCBs 64 of a corresponding LED module 60. Lens 70 may be secured, for example, using an adhesive (e.g., epoxy, silicone, etc.) or mechanical attachment (e.g., clip, screw, rivet, etc.). Generally, lenses 70 have a high transmission efficiency sufficient to provide from a particular mounted height (and in combination with properties of LEDs 62) a code-specified illumination (e.g., at least one foot-candle) for a portion of a walking path. In one implementation, each lens 70 may include a base, posts, or a holder that may be integrated with or connected to lens 70.
Each of the optical surfaces 72 may provide one of a variety of beam angles or light distributions. For example, selected lenses 70 may provide a narrow circular (or spot) beam shape for some LED modules 60 and a wide beam or an elliptical beam shape for other LED modules 60. Other types of lenses 70 that may be used in other implementations include optical surfaces for rectangular beam shapes, for square beam shapes, side-emitting beam, ultra-wide (or “bubble”) beam, etc. Each lens 70 may be made from a known optic material, such as polycarbonate or polymethylmethacrylate (PMMA).
Referring again to
Bracket 90 may provide mounting surfaces for LED modules 60. Bracket 90 may include a heat-conductive material to act as a heat sink and provide heat transfer from LED modules 60. Bracket 90 may, for example, be formed from a die-cast or extruded metal such as aluminum. Bracket 90 may include a set of mounting surfaces 92-1 through 92-5 (referred to herein collectively as “mounting surfaces 92” or generically as “mounting surface 92”) and a set of flanges 94-1 through 94-5 (referred to herein collectively as “flanges 94” or generically as “flange 94”) with fastener holes 96.
For example, as shown in
As shown in
As shown in
In one implementation, lenses 70 may include different optical surfaces 72 for different LED modules 60 to distribute light evenly along, for example, a corridor or walking path. The use of different types of lens allows for a precise design of the total light distribution from lighting engine 50 with a minimum number of LED modules 60 (e.g., only four or five LED modules).
Bracket 160 may include multiple mounting surfaces 162 and flanges 164 with fastener holes 166. In one implementation, flanges 164 may be configured to align fastener holes 166 in the same manner as fastener holes 96 of bracket 50. Thus, light engine 150 may be interchangeable (e.g., as part of a factory installation) with other light engines so that a single housing 20 for emergency light fixture 10 may be configured with different light engines and light distribution patterns. For example, light engines may be provided as modular units to provide different light distributions for particular height or distance requirements along a wall. Additionally, a different modular light engine may be provided with a forward throw light pattern for use in housing 20.
LED modules 60-1 and 60-4 may be mounted on bracket 160 as mirror images to provide light beams at a first angle, C, with respect to a bisecting line 161. Similarly, LED modules 60-2 and 60-3 may be mounted on bracket 160 as mirror images to provide light beams at a second angle, D, with respect to the bisecting line 161. Similar to angles A and B described above, angles C and D may be measured within the same illuminating plane P described in connection with
Similar to descriptions above in connection with light engine 50, lenses 70 in light engine 150 may have different optical surfaces 72 for different LED modules 60 to distribute light along a corridor or walking path. The use of different optical surfaces allows for a precise design of the total light distribution from lighting engine 150.
Implementations described herein provide a light engine for a lighting fixture, such as an emergency lighting fixture. The light engine may uses multiple lens types to permit fine-tuned light distribution of LED modules and can eliminates use of reflectors. Light beams from the light engine may cross each other to provide a space-efficient design, allowing the light engine to employ a small window in the housing of the lighting fixture.
The foregoing description of exemplary implementations provides illustration and description, but is not intended to be exhaustive or to limit the embodiments described herein to the precise form disclosed. Modifications and variations are possible in light of the above teachings or may be acquired from practice of the embodiments.
Although the invention has been described in detail above, it is expressly understood that it will be apparent to persons skilled in the relevant art that the invention may be modified without departing from the spirit of the invention. Various changes of form, design, or arrangement may be made to the invention without departing from the spirit and scope of the invention. Therefore, the above mentioned description is to be considered exemplary, rather than limiting, and the true scope of the invention is that defined in the following claims.
No element, act, or instruction used in the description of the present application should be construed as critical or essential to the invention unless explicitly described as such. Also, as used herein, the article “a” is intended to include one or more items. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
This application claims priority under 35 U.S.C. §119, based on U.S. Provisional Patent Application No. 61/720,418 filed Oct. 31, 2012, the disclosure of which is hereby incorporated by reference herein.
| Number | Name | Date | Kind |
|---|---|---|---|
| 4985814 | Lyons | Jan 1991 | A |
| D468046 | Bernard et al. | Dec 2002 | S |
| 6752515 | Evans et al. | Jun 2004 | B2 |
| 7064674 | Pederson | Jun 2006 | B2 |
| 7147348 | Heaton et al. | Dec 2006 | B2 |
| 7296913 | Catalano et al. | Nov 2007 | B2 |
| 7414546 | Singer et al. | Aug 2008 | B2 |
| 7434959 | Wang | Oct 2008 | B1 |
| 7497587 | Klose | Mar 2009 | B2 |
| 7674013 | Leslie et al. | Mar 2010 | B2 |
| 7703951 | Piepgras et al. | Apr 2010 | B2 |
| 7771087 | Wilcox et al. | Aug 2010 | B2 |
| 7824067 | Martineau et al. | Nov 2010 | B2 |
| 8061869 | Lo | Nov 2011 | B2 |
| 8092035 | Mandy et al. | Jan 2012 | B2 |
| 8414155 | Catone et al. | Apr 2013 | B2 |
| 8434900 | Yang | May 2013 | B2 |
| 8540397 | Gill | Sep 2013 | B2 |
| 8950896 | Nishimori | Feb 2015 | B2 |
| 20030053310 | Sommers | Mar 2003 | A1 |
| 20090122546 | Liu | May 2009 | A1 |
| 20090230833 | Kao et al. | Sep 2009 | A1 |
| 20090323343 | Wang | Dec 2009 | A1 |
| 20100079087 | Watanabe | Apr 2010 | A1 |
| 20100238671 | Catone et al. | Sep 2010 | A1 |
| 20100277906 | Choi et al. | Nov 2010 | A1 |
| 20110026253 | Gill | Feb 2011 | A1 |
| 20110051420 | Gill | Mar 2011 | A1 |
| 20110246146 | Kauffman et al. | Oct 2011 | A1 |
| 20110261567 | Lee et al. | Oct 2011 | A1 |
| 20120051055 | Kauffman et al. | Mar 2012 | A1 |
| 20120155088 | Spaccasassi et al. | Jun 2012 | A1 |
| 20120182731 | Kretschmann et al. | Jul 2012 | A1 |
| 20120206918 | Lee et al. | Aug 2012 | A1 |
| 20140066722 | Marka et al. | Mar 2014 | A1 |
| Number | Date | Country |
|---|---|---|
| 2249423 | Jul 1998 | CA |
| 2396813 | Mar 2003 | CA |
| 2475675 | Aug 2003 | CA |
| 2634288 | Dec 2003 | CA |
| 2475496 | Jan 2005 | CA |
| 2684214 | Nov 2008 | CA |
| 2729785 | Jan 2010 | CA |
| 2736395 | Mar 2010 | CA |
| 2654224 | Aug 2010 | CA |
| 2759812 | Sep 2010 | CA |
| 2702685 | Nov 2010 | CA |
| 2767142 | Feb 2011 | CA |
| Entry |
|---|
| “WPC15-WP-Q” QSSI Wall Pack Series WP-35 Catalog Page revised Nov. 2, 2012 and accessed from http://www.qssi.com/wp-content/uploads/catalog/qssi/WPC15-WP-Q.pdf on Jul. 1, 2015. |
| “PGN Emergency Light, Wet Location, LED, Die-Cast Aluminum,” Dual Lite Life Safety Solutions. http://www.dual-lite.com/products/pgn. Aug. 26, 2013. |
| “Diskuss LED Wall Light,” Philips Chloride. http://www.chloridesys.com/pdfspecs/CM-25400.pdf. Aug. 26, 2013. |
| “AFN Affinity Architectural Die-Cast Emergency Lighting,” Lithonia Lighting. http://www.lithonia.com/commercial/afn.html?pt=emergency#.UhtzVYzD-Uk. Aug. 26, 2013. |
| “CM-25050 Architectural Emergency Patron LED Series Die-Cast Aluminum LED Wall Light/Unit,” Philips Chloride. http://www.chloridesys.com/pdfspecs/CM-25050.pdf. Aug. 26, 2013. |
| Number | Date | Country | |
|---|---|---|---|
| 20140119013 A1 | May 2014 | US |
| Number | Date | Country | |
|---|---|---|---|
| 61720418 | Oct 2012 | US |