This application claims priority of Taiwanese Patent Application No. 106109313, filed on Mar. 21, 2017.
The disclosure relates to failure detection, and more particularly to a light emitting diode (LED) failure detecting device.
Light emitting diodes (LEDs) are widely used today in lighting and display applications. It is important to provide a device (such as that disclosed in U.S. Patent Application Publication No. 2014/0097849) for detecting LED failures in these applications, thereby informing relevant personnel of possible occurrences of LED failures in order to have failed LEDs or LED strings replaced in a timely fashion.
Therefore, an object of the disclosure is to provide a light emitting diode (LED) failure detecting device that can detect a failure of an LED unit or LED.
According to an aspect of the disclosure, the LED failure detecting device is operatively associated with an LED array. The LED array includes a plurality of scan lines, a plurality of data lines, and a plurality of LED units that are arranged in a matrix with a plurality of rows and a plurality of columns. Each of the LED units has a first terminal and a second terminal, and permits current flow therethrough from the first terminal thereof to the second terminal thereof. For each of the rows of the LED units, the first terminals of the LED units are coupled to a respective one of the scan lines. For each of the columns of the LED units, the second terminals of the LED units are coupled to a respective one of the data lines. The LED failure detecting device includes a driving circuit and a determining circuit. The driving circuit is used to be coupled to the scan lines and the data lines, receives a first control input that corresponds to selection of one of the LED units, and drives the LED units based on the first control input in such a way that a current flows through said one of the LED units. The determining circuit is used to be coupled to the data lines for receiving a plurality of voltages respectively thereat, and further receives a second control input that at least corresponds to selection of one of the data lines which is coupled to said one of the LED units. The determining circuit generates, based at least on the voltages at the data lines and the second control input, a determination output that indicates whether said one of the LED units is determined to have failed.
According to another aspect of the disclosure, the LED failure detecting device is operatively associated with an LED unit. The LED unit has a first terminal and a second terminal, and permits current flow therethrough from the first terminal thereof to the second terminal thereof. The LED failure detecting device includes a driving circuit and a determining circuit. The driving circuit is used to be coupled to the second terminal of the LED unit, receives a control input, and drives the LED unit based on the control input in such a way that a current flows through the LED unit. The determining circuit includes a subtractor and a comparing module. The subtractor is used to be coupled to the second terminal of the LED unit for receiving a first voltage thereat, is used to further receive a second voltage, and obtains a difference between the first and second voltages to generate a difference voltage. The comparing module is coupled to the subtractor for receiving the difference voltage therefrom, is used to further receive a predetermined first threshold voltage and a predetermined second threshold voltage, and compares the difference voltage with the predetermined first and second threshold voltages to generate a determination output that indicates whether the LED unit is determined to have failed.
According to yet another aspect of the disclosure, the LED failure detecting device is operatively associated with an LED unit. The LED unit includes a first terminal, a second terminal, and a plurality of LEDs that are coupled in series between the first and second terminals of the LED unit. The LED unit permits current flow from the first terminal thereof through the LEDs thereof to the second terminal thereof. The LED failure detecting device includes a driving circuit and a determining circuit. The driving circuit is used to be coupled to the second terminal of the LED unit, receives a control input, and drives the LED unit based on the control input in such a way that a current flows through the LED unit. The determining circuit is used to be coupled to the LEDs, generates a plurality of difference voltages that respectively correspond to respective voltages across the LEDs, and generates, based on the difference voltages, a determination output that indicates whether each of the LEDs is determined to have failed.
Other features and advantages of the disclosure will become apparent in the following detailed description of the embodiments with reference to the accompanying drawings, of which:
Before the disclosure is described in greater detail, it should be noted that where considered appropriate, reference numerals or terminal portions of reference numerals have been repeated among the figures to indicate corresponding or analogous elements, which may optionally have similar characteristics.
Referring to
The LED lure detecting device 2 of this embodiment includes a driving circuit 21, a determining circuit 24 and a control circuit 30.
The driving circuit 21 is used to be coupled to the scan lines 111-114 and the data lines 121-124, and receives a first control input that corresponds to selection of one of the LED units 13 (e.g., the LED unit 13 that is coupled to an mth one of the scan lines (11m) and an nth one of the data lines (12n), where 1≤m≤M (1≤m≤4 in this embodiment) and 1≤n≤N (1≤n≤4 in this embodiment)). The driving circuit 21 drives the LED units 13 based on the first control input in such a way that a current flows through said one of the LED units 13 (hereinafter referred to as the target LED unit 13 for simplicity), and that no current flows through each remaining one of the LED units 13.
The determining circuit 24 is used to be coupled to the data lines 121-124 for receiving a number (N) (four in this embodiment) of first voltages (Vd1-Vd4) respectively thereat, and further receives a second control input (S1) that corresponds to selection of the data line (12n) which is coupled to the target LED unit 13. The determining circuit 24 generates, based on the first voltages (Vd1-Vd4) and the second control input (S1), a determination output (S2) that indicates whether the target LED unit 13 is determined to have failed.
The control circuit 30 is coupled to the driving circuit 21 and the determining circuit 24, and is used to be coupled further to the display device 29. The control circuit 30 controls the driving circuit 21 and the determining circuit 24 in such a way that the LED units 13 take turns to serve as the target LED unit, and that the determination output (S2) indicates the respective states (having failed or not having failed) of the LED units 13 one by one. For each LED unit 13, the control circuit 30 performs the following: (a) generating, for receipt by the driving circuit 21, the first control input that corresponds to the selection of the LED unit 13 as the target LED unit; (b) generating, for receipt by the determining circuit 24, the second control input (S1) that corresponds to the selection of the data line (12n) which is coupled to the target LED unit 13; (c) receiving the determination output (S2) from the determining circuit 24; and (d) generating, for receipt by the display device 29, a detection output based on the selection of the target LED unit 13 and on the determination output (S2) in such a way that the display device 29 can display the position of the target LED unit 13 in the LED array 1 and the state (having failed or not having failed) of the target LED unit 13.
In this embodiment, the first control input includes a number (M) (four in this embodiment) of switching control signals (Vy1-Vy4) and a number (N) (four in this embodiment) of current control signals (Vx1-Vx4), and the driving circuit 21 includes a number (M) (four in this embodiment) of switches 221-224 and a number (N) (four in this embodiment) of current sources 231-234. Each switch 221-224 has a first terminal that is used to receive a supply voltage (Vdd), a second terminal that is used to be coupled to a respective scan line 111-114, and a control terminal that is coupled to the control circuit 30 for receiving a respective switching control signal (Vy1-Vy4) therefrom. Each current source 231-234 is coupled to the control circuit 30 for receiving a respective current control signal (Vx1-Vx4) therefrom, generates a respective driving current signal based on the respective current control signal (Vx1-Vx4), and is used to be coupled further to a respective data line 121-124 for providing the respective driving current signal thereto. For the LED unit 13 that is coupled to the scan line 11i and the data line 12j, a current flows through the LED unit 13 when the switch 22i conducts while the driving current signal generated by the current source 23j is non-zero, and no current flows through the LED unit 13 otherwise, where 1≤i≤M (1≤i≤4 in this embodiment) and 1≤j≤N (1≤j≤4 in this embodiment).
Referring to
In view of the above, for the first embodiment, by virtue of the determining circuit 24 that generates the determination output (S2) which indicates whether the target LED unit 13 is determined to have failed, relevant personnel can be informed of possible occurrences of LED failures in order to have the failed LED units 13 replaced in a timely fashion.
Referring to
Referring to
Referring to
The LED failure detecting device 2 of this embodiment includes a driving circuit 21, a determining circuit 24 and a control circuit 30.
The driving circuit 21 is used to be coupled to the second terminal of the LED unit 13, receives a control input (S3) and drives the LED unit 13 based on the control input (S3) in such a way that a current flows through the LED unit 13.
In this embodiment, the driving circuit 21 includes a current source 23. The current source 23 receives the control input (S3), generates a driving current signal based on the control input (S3), and is used to be coupled to the second terminal of the LED unit 13 for providing the driving current signal thereto. A current flows through the LED unit 13 when the driving current signal is non-zero, and no current flows through the LED unit 13 otherwise.
The determining circuit 24 is used to be coupled to the second terminal of the LED unit 13 for receiving a first voltage (Vd) thereat, and generates, based on the first voltage (Vd), a determination output (S2) that indicates whether the LED unit 13 is determined to have failed.
In this embodiment, the determining circuit 24 includes a subtractor 26 and a comparing module 27. The subtractor 26 is used to be coupled to the second terminal of the LED unit 13 for receiving the first voltage (Vd) thereat, is used to further receive a predetermined second voltage (Vp), and obtains a difference between the first and second voltages (Vd, Vp) to generate a difference voltage (Vdif) (e.g., Vdif=Vp−Vd) that is correlated to a voltage across the LED unit 13. The comparing module 27 is coupled to the subtractor 26 for receiving the difference voltage (Vdif) therefrom, is used to further receive a predetermined first threshold voltage (Vr1) and a predetermined second threshold voltage (Vr2), and compares the difference voltage (Vdif) with the predetermined first and second threshold voltages (Vr1, Vr2) to generate the determination output (S2). Like all previous examples, the comparing module 27 in this example has a configuration as shown in
The control circuit 30 is coupled to the current source 23 and the comparing module 27, and is used to be coupled further to the display device 29. The control circuit 30 generates the control input (S3) for receipt by the current source 23, receives the determination output (S2) from the comparing module 27, and generates, for receipt by the display device 29, a detection output based on the determination output (S2) in such a way that the display device 29 can display the state (having failed or not having failed) of the LED unit 13.
In view of the above, for the third embodiment, by virtue of the determining circuit 24 that generates the determination output (S2) which indicates whether the LED unit 13 is determined to have failed, relevant personnel can be informed of possible occurrence of an LED failure in order to have the failed LED unit 13 replaced in a timely fashion.
Referring to
Referring to
The LED failure detecting device 2 of this embodiment includes a driving circuit 21, a determining circuit 24 and a control circuit 30.
The driving circuit 21 is used to be coupled to the second terminal of the LED unit 13, receives a control input (S3), and drives the LED unit 13 based on the control input (S3) in such a way that a current flows through the LED unit 13.
In this embodiment, the driving circuit 21 includes a current source 23. The current source 23 receives the control input (S3), generates a driving current signal based on the control input (S3), and is used to be coupled to the second terminal of the LED unit 13 for providing the driving current signal thereto. A current flows through the LED unit 13 when the driving current signal is non-zero, and no current flows through the LED unit 13 otherwise.
The determining circuit 24 is used to be coupled to the LEDs 131, generates a number (P) (three in this embodiment) of difference voltages (Vdif) that respectively correspond to respective voltages across the LEDs 131, and generates, based on the difference voltages (Vdif), a determination output that indicates whether each LED 131 is determined to have failed.
In this embodiment, the determining circuit 24 includes a number (P) (three in this embodiment) of subtractors 26 and a number (P) (three in this embodiment) of comparing module 27. Each subtractor 26 is used to be coupled to the anode and the cathode of a respective LED 131 for receiving two terminal voltages respectively thereat, and obtains a difference between the terminal voltages to generate a respective one of the difference voltages (Vdif). Each comparing module 27 is coupled to a respective subtractor 26 for receiving the respective difference voltage (Vdif) therefrom, is used to further receive a predetermined first threshold voltage (Vr1) and a predetermined second threshold voltage (Vr2), and compares the respective difference voltage (Vdif) with the predetermined first and second threshold voltages (Vr1, Vr2) to generate a respective determination signal (S21-S23). The determination output includes the determination signals (S21-S23). As with the previous examples, each comparing module 27 has a configuration as shown in
The control circuit 30 is coupled to the current source 23 and the comparing modules 27, and is used to be coupled further to the display device 29. The control circuit 30 generates the control input (S3) for receipt by the current source 23, receives the determination signals (S21-S23) respectively from the comparing modules 27, and generates, for receipt by the display device 29, a detection output based on the determination signals (S21-S23) in such a way that the display device 29 can display the state (having failed or not having failed) of each LED 131.
In view of the above, for the fifth embodiment, by virtue of the determining circuit 24 that generates the determination output which indicates whether each LED 131 is determined to have failed, relevant personnel can be informed of possible occurrences of LED failures in order to have the failed LEDs 131 replaced in a timely fashion.
In the description above, for the purposes of explanation, numerous specific details have been set forth in order to provide a thorough understanding of the embodiments. It will be apparent, however, to one skilled in the art, that one or more other embodiments may be practiced without some of these specific details. It should also be appreciated that reference throughout this specification to “one embodiment,” “an embodiment,” an embodiment with an indication of an ordinal number and so forth means that a particular feature, structure, or characteristic may be included in the practice of the disclosure. It should be further appreciated that in the description, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of various inventive aspects, and that one or more features or specific details from one embodiment may be practiced together with one or more features or specific details from another embodiment, where appropriate, in the practice of the disclosure.
While the disclosure has been described in connection with what are considered the exemplary embodiments, it is understood that the disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
106109313 | Mar 2017 | TW | national |