Field of the Invention
The subject matter herein relates to solid state lighting (SSL) fixtures and, more particularly, to SSL fixtures having integrated driver circuitry.
Description of the Related Art
There is an ongoing effort to develop systems that are more energy-efficient. A large proportion (some estimates are as high as twenty-five percent) of the electricity generated in the United States each year goes to lighting, a large portion of which is general illumination (e.g., downlights, flood lights, spotlights and other general residential or commercial illumination products). Accordingly, there is an ongoing need to provide lighting that is more energy-efficient.
Solid state light emitters (e.g., light emitting diodes) are receiving much attention due to their energy efficiency. It is well known that incandescent light bulbs are very energy-inefficient light sources; about ninety percent of the electricity they consume is released as heat rather than light. Fluorescent light bulbs are more efficient than incandescent light bulbs but are still less efficient than solid state light emitters, such as light emitting diodes.
LEDs and other solid state light emitters may be energy efficient, so as to satisfy ENERGY STAR® program requirements. ENERGY STAR program requirements for LEDs are defined in “ENERGY STAR® Program Requirements for Solid State Lighting Luminaires, Eligibility Criteria-Version 1.1”, Final: Dec. 19, 2008, the disclosure of which is hereby incorporated herein by reference in its entirety as if set forth fully herein.
In addition, as compared to the normal lifetimes of solid state light emitters, e.g., light emitting diodes, incandescent light bulbs have relatively short lifetimes, i.e., typically about 750-1000 hours. In comparison, light emitting diodes, for example, have typical lifetimes between 50,000 and 70,000 hours. Fluorescent bulbs have longer lifetimes than incandescent lights (e.g., fluorescent bulbs typically have lifetimes of 10,000-20,000 hours), but provide less favorable color reproduction. The typical lifetime of conventional fixtures is about 20 years, corresponding to a light-producing device usage of at least about 44,000 hours (based on usage of 6 hours per day for 20 years). Where the light-producing device lifetime of the light emitter is less than the lifetime of the fixture, the need for periodic change-outs is presented. The impact of the need to replace light emitters is particularly pronounced where access is difficult (e.g., vaulted ceilings, bridges, high buildings, highway tunnels) and/or where change-out costs are extremely high.
LED lighting systems can offer a long operational lifetime relative to conventional incandescent and fluorescent bulbs. LED lighting system lifetime is typically measured by an “L70 lifetime”, i.e., a number of operational hours in which the light output of the LED lighting system does not degrade by more than 30%. Typically, an L70 lifetime of at least 25,000 hours is desirable, and has become a standard design goal. As used herein, L70 lifetime is defined by Illuminating Engineering Society Standard LM-80-08, entitled “IES Approved Method for Measuring Lumen Maintenance of LED Light Sources”, Sep. 22, 2008, ISBN No. 978-0-87995-227-3, also referred to herein as “LM-80”, the disclosure of which is hereby incorporated herein by reference in its entirety as if set forth fully herein, and/or using the lifetime projections found in the ENERGY STAR Program Requirements cited above or described by the ASSIST method of lifetime prediction, as described in “ASSIST Recommends . . . LED Life For General Lighting: Definition of Life”, Volume 1, Issue 1, February 2005, the disclosure of which is hereby incorporated herein by reference as if set forth fully herein.
Heat is a major concern in obtaining a desirable operational lifetime for solid state light emitters. As is well known, an LED also generates considerable heat during the generation of light. The heat is generally measured by a “junction temperature”, i.e., the temperature of the semiconductor junction of the LED. In order to provide an acceptable lifetime, for example, an L70 of at least 25,000 hours, it is desirable to ensure that the junction temperature should not be above 85° C. In order to ensure a junction temperature that is not above 85° C., various heat sinking schemes have been developed to dissipate at least some of the heat that is generated by the LED. See, for example, Application Note: CLD-APO6.006, entitled Cree® XLamp® XR Family&4550 LED Reliability, published at cree.com/xlamp, September 2008.
Although the development of solid state light emitters (e.g., light emitting diodes) has in many ways revolutionized the lighting industry, some of the characteristics of solid state light emitters have presented challenges, some of which have not yet been fully met. For example, solid state light emitters are commonly seen in indicator lamps and the like, but are not yet in widespread use for general illumination.
Accordingly, for these and other reasons, efforts have been ongoing to develop ways by which solid state light emitters, which may or may not include luminescent material(s), can be used in place of incandescent lights, fluorescent lights and other light-generating devices in a wide variety of applications. In addition, where light emitting diodes (or other solid state light emitters) are already being used, efforts are ongoing to provide solid state light emitters that are improved, e.g., with respect to energy efficiency, color rendering index (CRI Ra), contrast, efficacy (1 m/W), cost, duration of service, convenience and/or availability for use in different aesthetic orientations and arrangements.
In order to encourage development and deployment of highly energy efficient solid state lighting (SSL) products to replace several of the most common lighting products currently used in the United States, including 60-Watt A19 incandescent and PAR 38 halogen incandescent lamps, the Bright Tomorrow Lighting Competition (L Prize™) has been authorized in the Energy Independence and Security Act of 2007(EISA). The L Prize is described in “Bright Tomorrow Lighting Competition(L Prize™)”, May 28, 2008, Document No. 08NT006643. The L Prize winner must conform to many product requirements including light output, wattage, color rendering index, correlated color temperature, expected lifetime, dimensions and base type.
Presently, the predominant lighting fixture in specification homes is the dome light. Because the dome light is comparatively inexpensive, provides adequate light in a relatively even distribution, and in some cases does not require anything other than a simple junction box in a ceiling to install, it is in widespread use.
Currently, dome lights typically use two 60 Watt A-lamps shining light through a low optical efficiency dome to deliver between 600-900 lumens into the space. One approach to providing an energy-efficient replacement for such a fixture would be to simply replace the A-lamps with LED lamps. Such an approach could provide a drop from 120 Watts to 24 Watts (2×12 W) or less. Utilizing LED lamps in a traditional dome light would generally result in the premature failure of those lamps, because incandescent dome lights are not constructed in a manner that would allow the LED lamps to run cool.
Thus, there is a need to develop efficient LED fixtures that are lightweight, have a low height profile, and are easy to install in existing lighting spaces, such as ceiling or wall recesses, for example.
Cree, Inc. produces a variety of recessed downlights, such as the LR-6 and CR-6, which use LEDs for illumination. SSL panels are also commonly used as backlights for small liquid crystal display (LCD) screens, such as LCD display screens used in portable electronic devices, and for larger displays, such as LCD television displays.
SSL devices are typically powered with a DC signal. However, power is conventionally delivered in DC form. It is therefore generally desirable for a solid state light fixture to include an AC-DC converter to convert AC line voltage to a DC voltage.
Boost converters can be used to generate DC voltage from an ac line voltage with high power factor and low total harmonic distortion. The voltage of an LED-based load may be higher than the peak of the input (line) ac voltage. In that case, a single-stage boost converter can be employed as the driver, achieving high power efficiency and low cost. For example, a power factor corrected (PFC) boost converter which converts 120V ac, 60 Hz, to 200-250V dc output could be used to drive an array of high-voltage (HV) LEDs at a power level of 10-15 W.
For general lighting applications, it is desirable for an SSL apparatus to be compatible with a phase-cut dimming signal. Phase-cut dimmers are commonly used to reduce input power to conventional incandescent lighting fixtures, which causes the fixtures to dim. Phase-cut dimmers only pass a portion of the input voltage waveform in each cycle. Thus, during a portion of a phase-cut ac input signal, no voltage is provided to the fixture.
Compatibility with phase cut dimming signals is also feasible for LED drivers based on boost converters. One low cost approach is to use open-loop control, which means a driver will not respond to the LED current decrease due to phase cut dimming, but rather keep the preset input current during dimmer conduction time. In this way, a “natural” dimming performance is achieved, and input power, and thus LED current, will reduce as the dimmer conduction time decreases. Another approach uses closed-loop control for the driver. As control loops are complete and in effect, these drivers will try to compensate the input power decrease due to dimmer phase cut. In order to dim LEDs in these cases, the control loops should be saturated so that the input current cannot increase. The control loop saturation can be realized by clamping the output of an error amplifier, for example.
An embodiment of a lighting device comprises the following elements. A housing comprises a base and an open end opposite the base. The housing is shaped to define an internal optical chamber. At least one LED is in the optical chamber. A driver circuit is in the optical chamber.
An embodiment of a lighting device comprises the following elements. A housing comprises a base and an open end opposite the base. The housing is shaped to define an internal optical chamber. A driver circuit is in the optical chamber. A junction box is detachably connected to the base. The junction box comprises a mount structure for mounting the lighting device to an external surface.
Embodiments of the invention provide a solid state lighting fixture with an integrated driver circuit. A housing designed to protect the light sources and the electronic components has a base end and an open end through which light is emitted from the fixture. The reflective interior surface of the fixture and the base define an optical chamber. At least one, and often multiple, light sources are mounted at the fixture base along with the circuitry necessary to drive and/or control the light sources. In order to minimize the overall size of the fixture, the drive circuit and the light sources are both located in the optical chamber. A reflective cone fits within the optical chamber such that it covers most of the drive circuit and other components at the base of fixture that might absorb light. The reflective cone is shaped to define a hole that is aligned with the light sources so that light may be emitted through the hole toward the open end of the fixture.
Embodiments of the present invention are described herein with reference to conversion materials, wavelength conversion materials, phosphors, phosphor layers and related terms. The use of these terms should not be construed as limiting. It is understood that the use of the term “phosphor” or “phosphor layers” is meant to encompass and be equally applicable to all wavelength conversion materials.
It is understood that when an element is referred to as being “on” another element, it can be directly on the other element or intervening elements may also be present. Furthermore, relative terms such as “inner”, “outer”, “upper”, “above”, “lower”, “beneath”, and “below”, and similar terms, may be used herein to describe a relationship of one element to another. It is understood that these terms are intended to encompass different orientations of the device in addition to the orientation depicted in the figures.
Although the ordinal terms first, second, etc., may be used herein to describe various elements, components, regions and/or sections, these elements, limited by these terms. These terms are only used to distinguish one element, component, region, or section from another. Thus, unless expressly stated otherwise, a first element, component, region, or section discussed below could be termed a second element, component, region, or section without departing from the teachings of the present invention.
As used herein, the term “source” can be used to indicate a single light emitter or more than one light emitter functioning as a single source. For example, the term may be used to describe a single blue LED, or it may be used to describe a red LED and a green LED in proximity emitting as a single source. Thus, the term “source” should not be construed as a limitation indicating either a single-element or a multi-element configuration unless clearly stated otherwise.
The term “color” as used herein with reference to light is meant to describe light having a characteristic average wavelength; it is not meant to limit the light to a single wavelength. Thus, light of a particular color (e.g., green, red, blue, yellow, etc.) includes a range of wavelengths that are grouped around a particular average wavelength.
Embodiments of the invention are described herein with reference to cross-sectional view illustrations that are schematic illustrations. As such, the actual thickness of elements can be different, and variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances are expected. Thus, the elements illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region of a device and are not intended to limit the scope of the invention.
The lighting device 100 and other embodiments of the present invention provide a variety of advantages over traditional fixtures. During remodeling of a commercial or residential space, for example, it may not initially be known that there is not enough space or that there may be obstructions (e.g., piping, wiring, ductwork) that would prevent the use of a housing (can) in the ceiling. In many instances, this is discovered after cutting a hole in the ceiling. Some embodiments of the invention eliminate the need for the housing (can) altogether. This would be very important for consumers as material and installation costs associated with the fixture are reduced. For example, attaching a junction box 108 to the fixture provides enough space to terminate the electrical wiring. The junction box 108 may be detachable allowing for easy maintenance or replacement. In some embodiments, a junction box may be located on the side of the fixture to minimize the height of the fixture. The device 100 may be mounted with spring clips directly to the ceiling tile or drywall (as shown in
The reflector cone 112 is shown removed from the housing 102. The reflector cone 112 is shaped to define a hole 118. When the reflector cone 112 is mounted inside the housing 102, the hole 118 aligns with the LEDs 114, and in some embodiments, the LEDs 114 protrude through the hole 118 into the optical chamber 110. Thus, when mounted the reflector cone 112 prevents light emitted from the LEDs 114 from being absorbed by any elements of the drive circuit 116 by shielding off those absorptive elements from the rest of the optical chamber 110. In this particular embodiment, a flange 120 of reflector cone 118 is mounted with screws or pins to a ridge 120 on the interior of the housing 102. In some embodiments the reflective cone may be omitted for cost savings, and the drive circuit may be covered by a reflective paint. Other structures and/or materials may also be used to reflect light away from the drive circuit 116.
The circuit element can be mounted to a housing using various mechanisms.
The lens plate 908 is used to further mix the outgoing light and reduce imaging of the sources in the optical chamber (i.e., hotspots). In this embodiment, the plate 908 is attached to the housing 902 with a snap-fit connection. In other embodiments, the plate 908 may be attached to the housing with an adhesive, screws, or the like. Here, the lens plate 908 comprises a diffusive element. The lens plate 908 functions in several ways. For example, it can prevent direct visibility of the sources 918 and provide additional mixing of the outgoing light to achieve a visually pleasing uniform source. However, a diffusive lens plate can introduce additional optical loss into the system. Thus, in embodiments where the light is sufficiently mixed by a reflector cone or by other elements within the optical chamber, a diffusive lens plate may be unnecessary. In such embodiments, a transparent glass lens plate may be used, or the lens plates may be removed entirely. In still other embodiments, scattering particles may be included in the lens plate.
Diffusive elements in the lens plate 908 can be achieved with several different structures. A diffusive film inlay can be applied to the top- or bottom-side surface of the lens plate 908. It is also possible to manufacture the lens plate 908 to include an integral diffusive layer, such as by coextruding the two materials or insert molding the diffuser onto the exterior or interior surface. A clear lens may include a diffractive or repeated geometric pattern rolled into an extrusion or molded into the surface at the time of manufacture. In another embodiment, the lens plate material itself may comprise a volumetric diffuser, such as an added colorant or particles having a different index of refraction, for example.
In other embodiments, the lens plate 908 may be used to optically shape the outgoing beam with the use of microlens structures, for example. Many different kinds of beam shaping optical features can be included integrally with the lens plate 908.
The device 900 has a compact profile such that it can easily fit within existing fixture spaces. Embodiments of the invention provide for a downlight fixture in which the light sources (e.g., LEDs) and the driver circuitry can be housed in the optical chamber which is recessed from the ceiling plane. A recessed fixture is desirable from an architectural perspective as the glare is reduced for the occupants in a living or work space. In some LED fixtures, the driver circuitry is mounted outside the optical chamber which increases the overall height of the fixture. In many buildings there is not enough space above the ceiling to accommodate such a fixture. Embodiments of the present invention provide a fixture with reduced height such that it can be used even when plenum space is limited.
The reflector cone 914 comprises a reflective inner surface that functions to redirect light emitted from the sources 918 away from absorptive elements at the housing base 912, such as the driver circuit 916. Thus, the reflector cone 914 surface may comprise a diffuse white reflector such as a microcellular polyethylene terephthalate (MCPET) material or a Dupont/WhiteOptics material, for example. Other white diffuse reflective materials can also be used.
Diffuse reflective coatings mix the light from solid state light sources having different spectra (i.e., different colors). These coatings are particularly well-suited for multi-source designs where two different spectra are mixed to produce a desired output color point. For example, LEDs emitting blue light may be used in combination with LEDs emitting yellow (or blue-shifted yellow) light to yield a white light output. A diffuse reflective coating may eliminate the need for additional spatial color-mixing schemes that can introduce lossy elements into the system; although, in some embodiments it may be desirable to use a diffuse reflector cone in combination with other diffusive elements. For example, in this particular embodiment, the reflector cone 914 is paired with the diffuser plate 908 to effectively mix the outgoing light.
By using a diffuse white reflective material for the reflector cone 914 several design goals are achieved. For example, the reflector cone 914 performs a color-mixing function. A diffuse white material also provides a uniform luminous appearance in the output.
The reflector cone 914 can comprise materials other than diffuse reflectors. In other embodiments, the reflector cone 914 can comprise a specular reflective material or a material that is partially diffuse reflective and partially specular reflective. In some embodiments, it may be desirable to use a specular material in one area and a diffuse material in another area. For example, a semi-specular material may be used on the center region with a diffuse material used in the side regions to give a more directional reflection to the sides. Many combinations are possible. It may also be desirable to texture the inner surface of the reflector cone 914 to achieve a desired optical effect.
Various driver circuits may be used to power the light sources. Suitable circuits are compact enough to fit within the base of a particular housing while still providing the power delivery and control capabilities necessary to drive high-voltage LEDs, for example.
At the most basic level a driver circuit may comprise an AC to DC converter, a DC to DC converter, or both. In one embodiment, the driver circuit comprises an AC to DC converter and a DC to DC converter both of which are located inside the optical chamber. In another embodiment, the AC to DC conversion is done remotely (i.e., outside the optical chamber), and the DC to DC conversion is done at the control circuit inside the optical chamber. In yet another embodiment, only AC to DC conversion is done at the control circuit within the optical chamber.
Referring to both
As shown in
In some embodiments, the switched-mode power supply 1404 is a boost circuit including a boost inductor L2, a switch Q1, a boost diode D1 and a boost or output capacitor C2. The switch Q1 may be a MOSFET switch. The boost inductor L2 may include a transformer having a primary winding and an auxiliary winding. The primary winding of the boost inductor is coupled at one end to the input of the switched-mode power supply 1404 and at the other end to the anode of the boost diode D1 and the drain of the switch Q1.
Operation of the switched-mode power supply 1404 is controlled by boost controller circuitry 1410, which is coupled to the output of the rectifier 1402, the gate and source of the switch Q1, and the output of the switched-mode power supply 1404. In addition, the boost controller circuitry 1410 is coupled to the auxiliary winding of the boost inductor L2. However, the boost controller circuitry 1410 may not draw bias or housekeeping power from the auxiliary winding of the boost inductor L2.
In one embodiment the boost controller, which may be implemented, for example, using a TPS92210 Single-Stage PFC Driver Controller for LED Lighting manufactured by Texas Instruments can be configured in a constant on time-boundary conduction mode. In this mode the switch Q1 is turned on for a fixed time (Ton) allowing for a ramp up of the current in the inductor L2. The switch Q1 is turned off and the inductor current ramps down to zero while supplying current to the output capacitor C2 through D1. The controller detects when the current falls to zero and initiates another turn-on of Q1. The peak input current in a switching period is given by given by Vin*Ton/L which is proportional to Vin. Although the switching frequency varies over the line period, the average input current remains near sinusoidal and achieves a close to unity power factor.
In another embodiment, a boost controller, such as an L6562 PFC controller manufactured by STMicroelectronics, can be used in constant off-time continuous conduction mode. In this mode, the current reference for the switch current is obtained from the input waveform. The switch is operated with a fixed off time. In another embodiment, the average inductor current is sensed with a resistor, and is controlled to follow the sinusoidal input voltage with a controller IC such as an IRF1155S manufactured by International Rectifier. Any of these controllers can be operated in constant power mode by operating them in open loop and fixing the controller reference, such as on-time or error-amplifier output, to a value that determines the power. The power transferred to the output is dumped into the load LEDs, which clamp the output voltage and in doing so define the output current.
Although a connection is shown from the auxiliary winding of L2 to the boost controller 1410, a power factor compensating (PFC) boost converter for an LED driver circuit according to some embodiments may not draw bias or housekeeping power from the auxiliary winding of the boost converter. Rather, the boost controller may draw the auxiliary power from bottom of the LED string or from the drain node of the switch. Moreover, a PFC boost converter for an LED driver according to some embodiments may not use feedback from the LED voltage (VOUT) to control the converter.
The boost circuit 1404 steps up the input voltage using basic components, which keeps the cost of the circuit low. Moreover, additional control circuitry can be minimal and the EMI filter 1408 can be small.
The boost circuit 1404 achieves high efficiency by boosting the output voltage to a high level (for example about 170V or more). The load currents and circuit RMS currents can thereby be kept small, which reduces the resulting I2R losses. An efficiency of 93% can be achieved compared to 78-88% efficiency of a typical flyback or buck topology.
The boost converter 1404 typically operates from 120V AC, 60 Hz (169 V peak) input and converts it to around 200V DC output. Different output voltages within a reasonable range (170V to 450V) can be achieved based on various circuit parameters and control methods while maintaining a reasonable performance. If a 230V AC input is used (such as conventional in Europe), the output may be 350V DC or higher.
In one embodiment the boost converter is driven in constant power mode in which the output LED current is determined by the LED voltage. In constant power mode, the boost controller circuitry may attempt to adjust the controller reference in response to changes in the input voltage so that the operating power remains constant.
When operated in constant power mode, a power factor correcting boost voltage supply appears nearly as an incandescent/resistive load to the AC supply line or a phase cut dimmer. In case of a resistive load, the input current has the same shape as the input voltage, resulting in a power factor of 1. In constant power mode the power supply circuit 1404 and light source 1406 offer an equivalent resistance of approximately 1440Ω at the input, which means 10 W of power is drawn from the input at 120V AC. If the input voltage is dropped to 108V AC, the power will drop to approximately 8.1 W. As the AC voltage signal on the input line is chopped (e.g. by a phase cut dimmer), the power throughput gets reduced in proportion and the resulting light output by the light source 1406 is dimmed naturally. Natural dimming refers to a method which does not require additional dimming circuitry. Other dimming methods need to sense the chopped rectified AC waveform and convert the phase-cut information to LED current reference or to a PWM duty cycle to the dim the LEDs. This additional circuitry adds cost to the system.
A boost converter according to some embodiments does not regulate the LED current or LED voltage in a feedback loop. That is, the boost converter may not use feedback from the LED voltage (VOUT) to control the converter. However both of these inputs could be used for protection such as over-voltage protection or over-current protection. Since the boost converter operates in open loop, it appears as a resistive input. When a PWM converter controls its output voltage or output current and when the input voltage is chopped with a dimmer, it will still try to control the output to a constant value and in the process increase the input current.
More details of circuits similar to the circuit 1400 are given in U.S. application Ser. No. 13/662,618 titled “DRIVING CIRCUITS FOR SOLID-STATE LIGHTING APPARTUS WITH HIGH VOLTAGE LED COMPONENTS AND RELATED METHODS,” which is commonly owned with the present application by CREE, INC., which was filed on 29 Oct. 2012, and which is incorporated by reference as if fully set forth herein.
Additional details regarding driver circuits are given in U.S. application Ser. No. 13/462,388 titled “DRIVER CIRCUITS FOR DIMMABLE SOLID STATE LIGHTING APPARATUS,” which is commonly owned with the present application by CREE, INC., which was filed on 2 May 2012, and which is incorporated by reference as if fully set forth herein.
Additional details regarding driver circuits are given in U.S. application Ser. No. 13/207,204 titled “BIAS VOLTAGE GENERATION USING A LOAD IN SERIES WITH A SWITCH,” which is commonly owned with the present application by CREE, INC., which was filed on 10 Aug. 2011, and which is incorporated by reference as if fully set forth herein.
It is understood that embodiments presented herein are meant to be exemplary. Embodiments of the present invention can comprise any combination of compatible features shown in the various figures, and these embodiments should not be limited to those combinations expressly illustrated and discussed. For example, many different driver circuits and LED components may be used without departing from the scope of the invention. Although the present invention has been described in detail with reference to certain configurations thereof, other versions are possible. Therefore, the spirit and scope of the invention should not be limited to the versions described above.
The present application is a continuation of U.S. patent application Ser. No. 13/787,727, filed on Mar. 6, 2013, which is a continuation-in-part of U.S. patent application Ser. No. 13/429,080, filed on 23 March 2012, and which claims the benefit of U.S. Prov. App. Ser. No. 61/672,020, filed on 16 Jul. 2012 and U.S. Prov. App. Ser. No. 61/676,310 filed 26 Jul. 2012.
Number | Name | Date | Kind |
---|---|---|---|
D85382 | Guth | Oct 1931 | S |
2356654 | Cullman | Aug 1944 | A |
2675766 | Frederick | Apr 1954 | A |
3302918 | Cohen | Feb 1967 | A |
3381124 | Eisenberg | Apr 1968 | A |
3743826 | Halfaker | Jul 1973 | A |
3790774 | Miller | Feb 1974 | A |
4044246 | Docimo | Aug 1977 | A |
4302798 | Sit | Nov 1981 | A |
4939627 | Herst et al. | Jul 1990 | A |
5025356 | Gawad | Jun 1991 | A |
5526190 | Hubble, III | Jun 1996 | A |
5546291 | Sims | Aug 1996 | A |
5823663 | Bell et al. | Oct 1998 | A |
D407473 | Wimbock | Mar 1999 | S |
6079851 | Altman | Jun 2000 | A |
6102550 | Edward, Jr. | Aug 2000 | A |
6127783 | Pashley | Oct 2000 | A |
6149283 | Conway et al. | Nov 2000 | A |
6155699 | Miller et al. | Dec 2000 | A |
6210025 | Schmidt et al. | Apr 2001 | B1 |
6234643 | Lichon, Jr. | May 2001 | B1 |
6402347 | Maas et al. | Jun 2002 | B1 |
6443598 | Morgan | Sep 2002 | B1 |
6523974 | Engel | Feb 2003 | B2 |
6545216 | Bell | Apr 2003 | B1 |
6578979 | Truttmann-Battig | Jun 2003 | B2 |
6598998 | West | Jul 2003 | B2 |
D496121 | Santoro | Sep 2004 | S |
6871983 | Jacob et al. | Mar 2005 | B2 |
6948838 | Kunstler | Sep 2005 | B2 |
6948840 | Grenda et al. | Sep 2005 | B2 |
6951415 | Amano | Oct 2005 | B2 |
7021797 | Minano et al. | Apr 2006 | B2 |
7025477 | Blessing | Apr 2006 | B2 |
7049761 | Timmermans et al. | May 2006 | B2 |
7063449 | Ward | Jun 2006 | B2 |
7102172 | Lynch | Sep 2006 | B2 |
7111969 | Bottesch | Sep 2006 | B2 |
7125146 | Willis | Oct 2006 | B2 |
7175296 | Cok | Feb 2007 | B2 |
7213940 | Van de Ven et al. | May 2007 | B1 |
7217004 | Park | May 2007 | B2 |
7237924 | Martineau et al. | Jul 2007 | B2 |
D556358 | Santoro | Nov 2007 | S |
7338182 | Hastings et al. | Mar 2008 | B1 |
7341358 | Hsieh | Mar 2008 | B2 |
7374327 | Schexnaider | May 2008 | B2 |
7510299 | Timmermans et al. | Mar 2009 | B2 |
7520636 | Van der Poel | Apr 2009 | B2 |
D593246 | Fowler et al. | May 2009 | S |
7559672 | Parkyn et al. | Jul 2009 | B1 |
7594736 | Kassay et al. | Sep 2009 | B1 |
D604446 | Fowler et al. | Nov 2009 | S |
7614767 | Zulim | Nov 2009 | B2 |
7614769 | Sell | Nov 2009 | B2 |
7618157 | Galvez et al. | Nov 2009 | B1 |
7618160 | Chinniah et al. | Nov 2009 | B2 |
D608932 | Castelli | Jan 2010 | S |
7654688 | Li | Feb 2010 | B2 |
7654702 | Ding et al. | Feb 2010 | B1 |
7661844 | Sekiguchi et al. | Feb 2010 | B2 |
D611183 | Duarte | Mar 2010 | S |
7670021 | Chou | Mar 2010 | B2 |
7674005 | Chung et al. | Mar 2010 | B2 |
7686470 | Chiang | Mar 2010 | B2 |
7686484 | Heiking et al. | Mar 2010 | B2 |
7712918 | Siemiet et al. | May 2010 | B2 |
7722220 | Van de Ven | May 2010 | B2 |
7722227 | Zhang et al. | May 2010 | B2 |
D617487 | Fowler et al. | Jun 2010 | S |
7768192 | Van de Ven et al. | Aug 2010 | B2 |
7771085 | Kim | Aug 2010 | B2 |
7794114 | Medendorp | Sep 2010 | B2 |
7810736 | Smith | Oct 2010 | B2 |
7815338 | Siemiet et al. | Oct 2010 | B2 |
7824056 | Madireddi et al. | Nov 2010 | B2 |
7828465 | Roberts | Nov 2010 | B2 |
7828468 | Mayfield et al. | Nov 2010 | B2 |
7854616 | Janos | Dec 2010 | B2 |
7868484 | Groff et al. | Jan 2011 | B2 |
D633247 | Kong et al. | Feb 2011 | S |
7906793 | Negley | Mar 2011 | B2 |
7918591 | Lynch | Apr 2011 | B2 |
7922354 | Everhart | Apr 2011 | B2 |
7926982 | Liu | Apr 2011 | B2 |
7950832 | Tanaka | May 2011 | B2 |
7959332 | Tickner | Jun 2011 | B2 |
7980736 | Soderman | Jul 2011 | B2 |
7988321 | Wung et al. | Aug 2011 | B2 |
7988335 | Liu et al. | Aug 2011 | B2 |
7991257 | Coleman | Aug 2011 | B1 |
7993034 | Wegner | Aug 2011 | B2 |
7997762 | Wang et al. | Aug 2011 | B2 |
8022641 | Janik | Sep 2011 | B2 |
8038314 | Ladewig | Oct 2011 | B2 |
8038321 | Franck et al. | Oct 2011 | B1 |
8070326 | Lee | Dec 2011 | B2 |
D653376 | Kong et al. | Jan 2012 | S |
8092042 | Wilcox | Jan 2012 | B2 |
8092043 | Lin et al. | Jan 2012 | B2 |
8092049 | Kinnune et al. | Jan 2012 | B2 |
8096671 | Cronk | Jan 2012 | B1 |
D657488 | Lown et al. | Apr 2012 | S |
8162504 | Zhang et al. | Apr 2012 | B2 |
8186855 | Wassel et al. | May 2012 | B2 |
8197086 | Watanabe et al. | Jun 2012 | B2 |
8201968 | Maxik et al. | Jun 2012 | B2 |
8215799 | Vanden Eynden et al. | Jul 2012 | B2 |
8232739 | Underwood | Jul 2012 | B2 |
8246203 | Hancock | Aug 2012 | B2 |
8246219 | Teng | Aug 2012 | B2 |
8256919 | Holder | Sep 2012 | B2 |
8256927 | Hu | Sep 2012 | B2 |
8287160 | Shen | Oct 2012 | B2 |
D670849 | Lay et al. | Nov 2012 | S |
8317354 | Gassner et al. | Nov 2012 | B2 |
D676848 | Pickard et al. | Apr 2013 | S |
8410514 | Kim | Apr 2013 | B2 |
D684291 | Goelz et al. | Jun 2013 | S |
8480252 | Bertram et al. | Jul 2013 | B2 |
8506135 | Oster | Aug 2013 | B1 |
8523383 | Grigore | Sep 2013 | B1 |
8556452 | Simon | Oct 2013 | B2 |
8591058 | Concepcion | Nov 2013 | B2 |
8591071 | Hochstein | Nov 2013 | B2 |
8602601 | Khazi | Dec 2013 | B2 |
8616723 | Zhang | Dec 2013 | B2 |
D698975 | Blessit et al. | Feb 2014 | S |
8641243 | Rashidi | Feb 2014 | B1 |
D701988 | Clements | Apr 2014 | S |
8696154 | Hutchens | Apr 2014 | B2 |
8702264 | Rashidi | Apr 2014 | B1 |
8764244 | Jeon | Jul 2014 | B2 |
D714988 | Park et al. | Oct 2014 | S |
D721198 | Glasbrenner | Jan 2015 | S |
9010956 | Davis | Apr 2015 | B1 |
9052075 | Demuynck et al. | Jun 2015 | B2 |
20030063476 | English et al. | Apr 2003 | A1 |
20040001344 | Hect | Jan 2004 | A1 |
20040085779 | Pond et al. | May 2004 | A1 |
20040100796 | Ward | May 2004 | A1 |
20040240230 | Kitajima | Dec 2004 | A1 |
20050180135 | Mayer | Aug 2005 | A1 |
20050264716 | Kim et al. | Dec 2005 | A1 |
20050281023 | Gould | Dec 2005 | A1 |
20060077684 | Yuen | Apr 2006 | A1 |
20060221611 | No | Oct 2006 | A1 |
20060245208 | Sakamoto | Nov 2006 | A1 |
20060262521 | Piepgras et al. | Nov 2006 | A1 |
20060279671 | Han | Dec 2006 | A1 |
20060291206 | Angelini et al. | Dec 2006 | A1 |
20070041220 | Lynch | Feb 2007 | A1 |
20070070625 | Bang | Mar 2007 | A1 |
20070109779 | Sekiguchi et al. | May 2007 | A1 |
20070115670 | Roberts et al. | May 2007 | A1 |
20070211457 | Mayfield et al. | Sep 2007 | A1 |
20070230172 | Wang | Oct 2007 | A1 |
20070253205 | Welker | Nov 2007 | A1 |
20070279910 | Lin | Dec 2007 | A1 |
20070297181 | Mayfield et al. | Dec 2007 | A1 |
20080019147 | Erchak | Jan 2008 | A1 |
20080037284 | Rudisill | Feb 2008 | A1 |
20080049422 | Trenchard et al. | Feb 2008 | A1 |
20080122364 | McCelian | May 2008 | A1 |
20080170398 | Kim | Jul 2008 | A1 |
20080232093 | Kim | Sep 2008 | A1 |
20080232116 | Kim | Sep 2008 | A1 |
20080278943 | Van Der Poel | Nov 2008 | A1 |
20080303977 | Sekiguchi | Dec 2008 | A1 |
20090034247 | Boyer | Feb 2009 | A1 |
20090073693 | Nall | Mar 2009 | A1 |
20090161356 | Negley et al. | Jun 2009 | A1 |
20090168439 | Chiang | Jul 2009 | A1 |
20090196024 | Heiking et al. | Aug 2009 | A1 |
20090225543 | Roberts et al. | Sep 2009 | A1 |
20090237958 | Kim | Sep 2009 | A1 |
20090262543 | Ho | Oct 2009 | A1 |
20090296388 | Wu et al. | Dec 2009 | A1 |
20090310354 | Zampini et al. | Dec 2009 | A1 |
20090323334 | Roberts et al. | Dec 2009 | A1 |
20100039579 | Park | Feb 2010 | A1 |
20100061108 | Zhang et al. | Mar 2010 | A1 |
20100097794 | Teng et al. | Apr 2010 | A1 |
20100103678 | Van de Ven et al. | Apr 2010 | A1 |
20100110679 | Teng et al. | May 2010 | A1 |
20100142202 | Sugishita | Jun 2010 | A1 |
20100172133 | Lie | Jul 2010 | A1 |
20100177514 | Liu | Jul 2010 | A1 |
20100177532 | Simon et al. | Jul 2010 | A1 |
20100188609 | Matsuki et al. | Jul 2010 | A1 |
20100253591 | Hwu et al. | Oct 2010 | A1 |
20100254128 | Pickard et al. | Oct 2010 | A1 |
20100254145 | Yamaguchi | Oct 2010 | A1 |
20100254146 | McCanless | Oct 2010 | A1 |
20100270903 | Jao et al. | Oct 2010 | A1 |
20100271843 | Holten et al. | Oct 2010 | A1 |
20100277905 | Janik et al. | Nov 2010 | A1 |
20100277934 | Oquendo, Jr. | Nov 2010 | A1 |
20100295468 | Pederson et al. | Nov 2010 | A1 |
20100302778 | Dabiet | Dec 2010 | A1 |
20100327768 | Kong et al. | Dec 2010 | A1 |
20110032714 | Chang | Feb 2011 | A1 |
20110043132 | Kim et al. | Feb 2011 | A1 |
20110090671 | Bertram et al. | Apr 2011 | A1 |
20110141722 | Acampora et al. | Jun 2011 | A1 |
20110141734 | Li | Jun 2011 | A1 |
20110156584 | Kim | Jun 2011 | A1 |
20110164417 | Huang | Jul 2011 | A1 |
20110175533 | Homan | Jul 2011 | A1 |
20110199005 | Bretschneider et al. | Aug 2011 | A1 |
20110199769 | Bretschneider et al. | Aug 2011 | A1 |
20110222291 | Peng | Sep 2011 | A1 |
20110246146 | Kauffman et al. | Oct 2011 | A1 |
20110255292 | Shen | Oct 2011 | A1 |
20110267810 | Higman et al. | Nov 2011 | A1 |
20110267823 | Angelini et al. | Nov 2011 | A1 |
20110286225 | Konishi | Nov 2011 | A1 |
20110305024 | Chang | Dec 2011 | A1 |
20120033420 | Kim et al. | Feb 2012 | A1 |
20120038289 | Jee et al. | Feb 2012 | A1 |
20120051041 | Edmond et al. | Mar 2012 | A1 |
20120120658 | Wilk | May 2012 | A1 |
20120127714 | Rehn | May 2012 | A1 |
20120134146 | Smith | May 2012 | A1 |
20120140442 | Woo | Jun 2012 | A1 |
20120140461 | Huang et al. | Jun 2012 | A1 |
20120206926 | Chou | Aug 2012 | A9 |
20120320576 | Wald | Dec 2012 | A1 |
20130235568 | Green et al. | Sep 2013 | A1 |
20130242550 | Suen | Sep 2013 | A1 |
20130258652 | Hsieh | Oct 2013 | A1 |
20140265930 | Harris | Sep 2014 | A1 |
20150016100 | Ishii | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
1762061 | Apr 2006 | CN |
1934389 | Mar 2007 | CN |
1963289 | May 2007 | CN |
101188261 | May 2008 | CN |
201069133 | Jun 2008 | CN |
101660715 | Mar 2010 | CN |
101776254 | Jul 2010 | CN |
101776254 | Jul 2010 | CN |
101790660 | Jul 2010 | CN |
101790660 | Jul 2010 | CN |
102072443 | May 2011 | CN |
202580962 | Dec 2012 | CN |
102007030186 | Jan 2009 | DE |
102007030186 | Jan 2009 | DE |
202010001832 | Jul 2010 | DE |
1298383 | Apr 2003 | EP |
1298383 | Apr 2003 | EP |
1357335 | Oct 2003 | EP |
1653254 | Mar 2006 | EP |
1737051 | Dec 2006 | EP |
1847762 | Oct 2007 | EP |
1847762 | Oct 2007 | EP |
1860467 | Nov 2007 | EP |
1950491 | Jul 2008 | EP |
2287520 | Feb 2011 | EP |
2290690 | Mar 2011 | EP |
2636945 | Sep 2013 | EP |
774198 | May 1957 | GB |
1069809 | Mar 1998 | JP |
2002244027 | Nov 2002 | JP |
U3097327 | Aug 2003 | JP |
2004140327 | May 2004 | JP |
2004345615 | Dec 2004 | JP |
2004345615 | Dec 2004 | JP |
2006173624 | Jun 2006 | JP |
2008147044 | Jun 2008 | JP |
3151501 | Jun 2009 | JP |
2009295577 | Dec 2009 | JP |
2010103687 | May 2010 | JP |
2011018571 | Aug 2011 | JP |
2011018572 | Aug 2011 | JP |
200524186 | Jul 2005 | TW |
200524186 | Jul 2005 | TW |
200914759 | Apr 2009 | TW |
201018826 | May 2010 | TW |
201018826 | May 2010 | TW |
WO 03102467 | Nov 2003 | WO |
WO 2006105346 | Mar 2006 | WO |
WO 2007099860 | Sep 2007 | WO |
WO 2009030233 | Mar 2009 | WO |
WO 2009140761 | Nov 2009 | WO |
WO 2009157999 | Dec 2009 | WO |
WO 2009157999 | Dec 2009 | WO |
WO 2009157999 | Dec 2009 | WO |
WO 2010024583 | Mar 2010 | WO |
WO 2010024583 | Mar 2010 | WO |
WO 2010042216 | Apr 2010 | WO |
WO 2010042216 | Apr 2010 | WO |
WO 2011074424 | Jun 2011 | WO |
WO 2011096098 | Aug 2011 | WO |
WO 2011098191 | Aug 2011 | WO |
WO 2011118991 | Sep 2011 | WO |
WO 2011140353 | Nov 2011 | WO |
WO 03102467 | Dec 2013 | WO |
Entry |
---|
Office Action for U.S. Appl. No. 14/020,757; dated Jul. 19, 2016. |
Examination Report from Taiwan Application No. 100131021; dated Jul. 21, 2016. |
Office Action for U.S. Appl. No. 14/716,480; dated Aug. 26, 2016. |
European Summons for Oral Proceedings for Application No. 12743003.1; dated Sep. 2, 2016. |
Office Action for U.S. Appl. No. 13/464,745; dated Sep. 7, 2016. |
Examination Report from Taiwanese Patent Appl. No. 100131021, dated Jan. 5, 2016. |
Examination from European Patent Appl. No. 12743003.1-1757, dated Jan. 8, 2016. |
Notice of Reasons for Rejection from Japanese Patent Appl. No. 2013-543207, dated Feb. 2, 2016. |
Examination from European Patent Appl. No. 13 701 525.1-1757, dated Feb. 3, 2016. |
Office Action from U.S. Appl. No. 13/189,535; dated Jan. 6, 2016. |
Office Action from U.S. Appl. No. 13/341,741; dated Jan. 8, 2016. |
Office Action from U.S. Appl. No. 13/873,303; dated Feb. 2, 2016. |
Office Action from U.S. Appl. No. 13/464,745; dated Mar. 1, 2016. |
Office Action from U.S. Appl. No. 14/716,480; dated Mar. 3, 2016. |
Office Action from U.S. Appl. No. 13/368,217; dated Mar. 4, 2016. |
Office Action from U.S. Appl. No. 13/189,535; dated Mar. 18, 2016. |
Office Action from U.S. Appl. No. 14/020,757; dated Apr. 7, 2016. |
Office Action from U.S. Appl. No. 29/466,391; dated May 10, 2016. |
Second Office Action for Application No. 2011800588770; dated Mar. 29, 2016. |
Notice of Completion of Pretrial Re-examination from Japanese Patent appl. No. 2013-543207. dated Jun. 30, 2015. |
Pretrial Report from Japanese Appl. No. 2013-543207, dated Jun. 19, 2015. |
Decision of Rejection from Chinese Patent Appl. No. 201180052998.4, dated Jul. 16, 2015. |
Office Action from U.S. Appl. No. 12/873,303, dated Jun. 22, 2015. |
Response to OA from U.S. Appl. No. 12/873,303, filed Aug. 21, 2015. |
Office Action from U.S. Appl. No. 13/341,741, dated Jun. 22, 2015. |
Office Action from U.S. Appl. No. 13/443,630, dated Jun. 23, 2015. |
Response to OA from U.S. Appl. No. 13/443,630, filed Aug. 21, 2015. |
Office Action from U.S. Appl. No. 13/189,535, dated Jul. 14, 2015. |
Office Action from U.S. Appl. No. 13/453,924, dated Jul. 21, 2015. |
Office Action from U.S. Appl. No. 13/442,746, dated Jul. 27, 2015. |
Office Action from U.S. Appl. No. 14/020,757, dated Aug. 3, 2015. |
First Office Action from Chinese Patent Appl. No. 2012800369142, dated Mar. 26, 2015. |
First Official Action from European Patent Appl. No. 12 743 003.1-1757, dated Jan. 16, 2015. |
Second Office Action and Search Report from Chinese Appl. No. 2011800529984, dated Dec. 26, 2014. |
Grant Notice from European Appl. No. 13701525.1, dated Nov. 19, 2014. |
International Report and Written Opinion from PCT/US2013/049225, dated Jan. 22, 2015. |
Office Action from U.S. Appl. No. 13/464,745, dated Apr. 2, 2015. |
Office Action from U.S. Appl. No. 13/442,746, dated Apr. 28, 2015. |
Office Action from U.S. Appl. No. 13/368,217, dated May 13, 2015. |
Office Action from U.S. Appl. No. 13/828,348, dated May 27, 2015. |
Office Action from U.S. Appl. No. 13/787,727, dated Jan. 29, 2015. |
Office Action from U.S. Appl. No. 13/429,080, dated Feb. 18, 2015. |
Office Action from U.S. Appl. No. 13/453,924, dated Mar. 10, 2015. |
Office Action from U.S. Appl. No. 13/828,348, dated Nov. 20, 2014. |
Office Action from U.S. Appl. No. 12/873,303, dated Nov. 28, 2014. |
Office Action from U.S. Appl. No. 13/464,745, dated Dec. 10, 2014. |
Office Action from U.S. Appl. No. 13/341,741, dated Dec. 24, 2014. |
Office Action from U.S. Appl. No. 13/189,535, dated Jan. 13, 2015. |
Decision of Rejection from Japanese Appl. No. 2013-543207, dated Nov. 25, 2014. |
Office Action from Mexican Appl. No. 100881, dated Nov. 28, 2014. |
Grant Notice from European Appl. No. 13701525.1-1757, dated Nov. 24, 2014. |
Preliminary Report on Patentability from PCT/US2013/035668, dated Oct. 14, 2014. |
Office Action from U.S. Appl. No. 13/442,746, dated Sep. 15, 2014. |
Office Action from U.S. Appl. No. 13/429,080, dated Sep. 16, 2014. |
Office Action from U.S. Appl. No. 13/844,431, dated Oct. 10, 2014. |
Office Action from U.S. Appl. No. 13/443,630, dated Oct. 10, 2014. |
Office Action from U.S. Appl. No. 13/368,217, dated Oct. 22, 2014. |
Office Action from U.S. Appl. No. 12/961,385, dated Nov. 6, 2014. |
Office Action from U.S. Appl. No. 13/453,924, dated Nov. 7, 2014. |
Communication from European Patent Appl No. 13701525.1-1757, dated Sep. 26, 2014. |
Office Action from U.S. Appl. No. 13/464,745, dated Jul. 16, 2014. |
International Preliminary Report on Patentability and Written Opinion from PCT/US2013/021053, dated Aug. 21, 2014. |
Office Action from U.S. Appl. No. 13/189,535, dated Jun. 20, 2014. |
International Preliminary Report on Patentabiliby from PCT/US2012/071800 dated Jul. 10, 2014. |
Office Action from U.S. Appl. No. 13/453,924, dated Jun. 25, 2014. |
Office Action from U.S. Appl. No. 13/443,630, dated Jul. 1, 2014. |
Reasons for Rejection from Japanese Patent Appl No. 2013-543207, dated May 20, 2014. |
First Office Action from Chinese Patent Appl. No. 2011800529984, dated May 4, 2014. |
Office Action from U.S. Appl. No. 13/544,662, dated May 5, 2014. |
Office Action from U.S. Appl. No. 13/844,431, dated May 15, 2014. |
Office Action from U.S. Appl. No. 13/341,741, dated Jun. 6, 2014. |
Office Action from U.S. Appl. No. 13/429,080, dated Apr. 18, 2014. |
Office Action from U.S. Appl. No. 12/961,385, dated Mar. 11, 2014. |
Preliminary Report and Written Opinion from PCT appl. No. PCT/US2012/047084, dated Feb. 5, 2014. |
Office Action from U.S. Appl. No. 13/464,745, dated Feb. 12, 2014. |
Office Action from U.S. Appl. No. 13/453,924, dated Feb. 19, 2014. |
Office Action from U.S. Appl. No. 13/341,741, dated Jan. 14, 2014. |
Office Action from U.S. Appl. No. 13/370,252, dated Dec. 20, 2013. |
International Search Report and Written Opinion from Appl. No. PCT/CN2013/072772, dated Dec. 19, 2013. |
U.S. Appl. No. 13/649,052, filed Oct. 10, 2012, Lowes, et al. |
U.S. Appl. No. 13/649,067, filed Oct. 10, 2012, Lowes, et al. |
U.S. Appl. No. 13/207,204, filed Aug. 10, 2011, Athalye, et al. |
U.S. Appl. No. 13/365,844. |
U.S. Appl. No. 13/662,618, filed Oct. 29, 2012. |
U.S. Appl. No. 13/462,388, filed May 2, 2012. |
XLamp® C family from Cree®, Inc., Product Family Data Sheet, 15 pages. |
XLamp® M family from Cree®, Inc., Product Family Data Sheet, 14 pages. |
XLamp® X family from Cree®, Inc., Product Family Data Sheet, 17 pages. |
Energy Star® Program Requirements for Solid State Lighting Luminaires. Eligibility Criteria—Version 1.1, final: Dec. 19, 2008. |
Assist Recommends . . . LED Life for General Lighting: Definition of Life, vol. 1, Issue 1, Feb. 2005. |
“IES Approved Method for Measuring Lumen Maintenance of LED light Sources”, Sep. 22, 2008, ISBN No. 978-0-87995-227-3. (LM-80). |
International Search Report and Written Opinion for PCT Application No. PCT/US2011/062396, dated Jul. 13, 2012. |
U.S. Appl. No. 12/873,303, filed Aug. 31, 2010, Edmond, et al. |
U.S. Appl. No. 12/961,385, filed Dec. 6, 2010, Pickard, et al. |
Cree's XLamp XP-E LED's, data sheet, pp. 1-16. |
Cree's XLamp XP-G LED's, data sheet, pp. 1-12. |
U.S. Appl. No. 12/418,796, filed Apr. 6, 2009, Pickard, et al. |
U.S. Appl. No. 13/429,080, filed Mar. 23, 2012, Edmond, et al. |
U.S. Appl. No. 13/028,946, filed Jan. 26, 2011, Le, et al. |
U.S. Appl. No. 13/306,589, filed Nov. 29, 2011, Tarsa, et al. |
International Search Report and Written Opinion for Patent Application No. PCT/US2011/001517, dated Feb. 27, 2012. |
Notice to Submit a Response from Korean Patent Application No. 30-2011-0038115, dated Dec. 12, 2012. |
Notice to Submit a Response from Korean Patent Application No. 30-2011-0038116, dated Dec. 12, 2012. |
Office Action from U.S. Appl. No. 29/387,171. dated May 2, 2012. |
Response to OA from Patent Appl. No. 29/387,171, filed Aug. 2, 2012. |
Office Action from U.S. Appl. No. 12/961,385, dated Apr. 26, 2013. |
Response to OA from U.S. Appl. No. 12/961,385, filed Jul. 24, 2013. |
Office Action from U.S. Appl. No. 13/464,745, dated Jul. 16, 2013. |
Office Action from U.S. Appl. No. 29/368,970, dated Jun. 19, 2012. |
Office Action from U.S. Appl. No. 29/368,970, dated Aug. 24, 2012. |
Response to OA from U.S. Appl. No. 29/368,970, filed Nov. 26, 2012. |
Final Rejection issued in Korean Design Appl. No. 30-2011-0038114, dated Jun. 14, 2013. |
Final Rejection issued in Korean Design Appl. No. 30-2011-0038115, dated Jun. 14, 2013. |
Final Rejection issued in Korean Design Appl. No. 30-2011-0038116, dated Jun. 17, 2013. |
International Search Report and Written Opinion from PCT Patent Appl. No. PCT/US2013/035668, dated Jul. 12, 2013. |
International Search Report and Written Opinion from PCT Application No. PCT/US2013/021053, dated Apr. 17, 2013. |
Search Report and Written Opinion from PCT Patent Appl. No. PCT/US2012/047084, dated Feb. 27, 2013. |
Search Report and Written Opinion from PCT Patent Appl. No. PCT/US2012/071800, dated Mar. 25, 2013. |
Office Action from Japanese Design Patent Application No. 2011-18570. |
Reason for Rejection from Japanese Design Patent Application No. 2011-18571. |
Reason for Rejection from Japanese Design Patent Application No. 2011-18572. |
International Search Report and Written Opinion from PCT/US2013/049225, dated Oct. 24, 2013. |
Sea Gull Lighting Installation Instructions www.seagullighting.com/pics/pdf/InstructionsSheets/HC-387.pdf. |
“PIER Lighting Research Program Project 2.3 Low-Profile LED Luminaries”, by Narendran, et al., Apr. 2007. Lighting Research Center, California Energy Commission, pp. 1-70. |
Philips eW Downlight Powercore Retailer Guide, © 2009: Philips Solid-State Lighting Solutions, Inc., pp. 1-16. |
Specification sheets for Cree LR6, 2012; 2 pages. |
Cree LED Lighting Catalog 2013; 148 pgs. |
Installation Instructions for Cree LR6. 2013; 2 pgs. |
Matsushita Electric Works, Ltd., Annual Report. 2007; Jun. 30, 2007, Matsushita Electric Works/Panasonic; 2 pgs. |
Controlling LED Lighting Systems: Introducing the LED driver 2004; Craig DiLouis, LED's Magazine, 22 pages. |
Luminaires, A Pacific Energy Center Factsheet 1997; 7 pgs. |
Gary Steffy, “Architectural Lighting Design”, Third Edition, Published by John Wiley & Sons, Inc. |
Catalog Page for MFORCE, Matsushita Electric Works/Panasonic. |
Sybil P. Parker, “Concise Encyclopedia of Science & Technology”, Fourth Edition. McGraw-Hill. |
LEDs Magazine, Issue 18 Jan./Feb. 2008. |
Lighting Answers. LED Lighting Systems, vol. 2, Issue 3, May 2003. |
Matsushita MFOURCE specification Sheet NNN20605, Matsushita Electric Works/Panasonic. |
Matsushita MFOURCE specification Sheet NNN20608, Matsushita Electric Works/Panasonic. |
Seagull Lighting Brochure, Dec. 21, 2009, Seagull Lighting/Generation Brands. |
Silescent 100i LV Light Product Specification Sheet. Seagull Lighting/Generations Brand. 2 pgs. |
Lighting Design & Installation: Techniques & Projects for Lighting Your Home and Landscape. |
2009 NGL Showcase, Dec. 3-4, 2009: IES/ILAD/US Dept. of Energy. |
U.S. Appl. No. 13/365,844, filed Feb. 3, 2012, Pickard, et al. |
U.S. Appl. No. 13/462,388, filed May 2, 2012, Hu, et al. |
U.S. Appl. No. 13/662,618, filed Oct. 29, 2012, Athalye, et al. |
U.S. Appl. No. 13/307,204, filed Aug. 10, 2011, Athalye, et al. |
“Cree XLamp® Family & 4550 LED Reliability”, Sep. 2008, www.cree.com/xlamp, 6 pages. |
Office Action for U.S. Appl. No. 13/828,348; dated Jun. 2, 2016. |
Notice of Reason for Rejection for Japanese Appl. No. 2013-543207; dated May 24, 2016. |
Office Action for Chinese Patent Application No. 2011800588770; dated Sep. 26, 2016. |
Notification of Reexamination for Chinese Application No. 2011800529984; dated Oct. 10, 2016. |
Office Action for U.S. Appl. No. 13/828,348; dated Oct. 17, 2016. |
Office Action for European Application No. 11754767.9; dated Oct. 31, 2016. |
Office Action for U.S. Appl. No. 12/873,303; dated Nov. 25, 2016. |
Notice of Allowance for Taiwan Application No. 100131021; dated Nov. 28, 2016. |
Office Action for U.S. Appl. No. 13/368,217; dated Jan. 3, 2017. |
Office Action from U.S. Appl. No. 13/429,080, dated Sep. 1, 2015. |
Office Action from U.S. Appl. No. 14/716,480, dated Sep. 24, 2015. |
Office Action from U.S. Appl. No. 14/170,627, dated Oct. 5, 2015. |
Office Action from U.S. Appl. No. 13/368,217, dated Oct. 8, 2015. |
Office Action from U.S. Appl. No. 13/464,745, dated Oct. 8, 2015. |
Office Action from U.S. Appl. No. 29/466,391, dated Oct. 14, 2015. |
Office Action from U.S. Appl. No. 12/961,385, dated Nov. 27, 2015. |
Office Action from U.S. Appl. No. 13/828,348, dated Nov. 4, 2015. |
Office Action from U.S. Appl. No. 14/020,757, dated Nov. 24, 2014. |
First Office Action from Chinese Patent Appl. No. 2011800588770, dated Sep. 25, 2015. |
Office Action for U.S. Appl. No. 14/170,627; dated Jun. 16, 2017. |
Office Action for U.S. Appl. No. 14/716,480; dated Jul. 5, 2017. |
Office Action for U.S. Appl. No. 12/873,303; dated Aug. 9, 2017. |
Office Action for U.S. Appl. No. 13/828,348; dated Sep. 1, 2017. |
Office Action for U.S. Appl. No. 14/716,480; dated Feb. 8, 2017. |
Foreign Office Action for Japanese Application No. 2013-543207; dated Feb. 14, 2017. |
Office Action for U.S. Appl. No. 14/225,327; dated Mar. 14, 2017. |
European Notice of Allowance for Application No. 12743003.1; dated Mar. 17, 2017. |
Office Action for U.S. Appl. No. 13/189,535; dated Mar. 23, 2017. |
Office Action for U.S. Appl. No. 13/464,745; dated Mar. 23, 2017. |
Foreign Office Action for Chinese Application No. 2011800529984; dated Apr. 5, 2017. |
Office Action for U.S. Appl. No. 13/443,630; dated May 18, 2017. |
Office Action for U.S. Appl. No. 14/225,327; dated Oct. 2, 2017. |
Office Action for U.S. Appl. No. 13/189,535; dated Oct. 30, 2017. |
Office Action for U.S. Appl. No. 14/170,627; dated Nov. 29, 2017. |
Office Action for U.S. Appl. No. 13/464,745; dated Dec. 11, 2017. |
Office Action for U.S. Appl. No. 14/716,480; dated Jan. 17, 2018. |
Office Action for U.S. Appl. No. 13/189,535; dated Apr. 5, 2018. |
Office Action for U.S. Appl. No. 14/225,327; dated Apr. 19, 2018. |
Office Action for U.S. Appl. No. 13/464,745; dated May 2, 2018. |
Foreign Office Action for European Application No. 11754767.9; dated May 7, 2018. |
Office Action for U.S. Appl. No. 14/170,627; dated Jun. 4, 2018. |
Office Action for U.S. Appl. No. 12/873,303; dated Jun. 19, 2018. |
Office Action for U.S. Appl. No. 13/828,348; dated Jun. 26, 2018. |
Office Action for U.S. Appl. No. 14/716,480; dated Jul. 13, 2018. |
Number | Date | Country | |
---|---|---|---|
20150252970 A1 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13787727 | Mar 2013 | US |
Child | 14721806 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13429080 | Mar 2012 | US |
Child | 13787727 | US |