1. Field of the Invention
The present invention relates to floodlights for recreational boating and/or recreational vehicles.
2. Description of Related Art
Currently available halogen-based floodlights suffer from a number of disadvantages, including their large size, high amp draw, pre-set beam angle, no brightness adjustment, short bulb life and non-variable color temperature (red for the retention of night vision, for example).
There is a need in the recreational boating and/or vehicle industry or marketplace for a floodlight that addresses many of the aforementioned disadvantages associated with currently available halogen-based floodlights.
The present invention provides a new and unique LED-based floodlight having an LED light module and a control module. In operation, the LED light module responses to one or more control signals from the control module, and provides an LED array of light having a broad beam pattern from side-to-side with a selected lamp color, brightness, or some combination thereof; while the control module responds to one or more user inputs from a user, and provides the one or more control signals for operating the LED array module in order to provide the LED array of light having the broad beam pattern from side-to-side with the selected lamp color, brightness, or some combination thereof.
The broad beam pattern of the LED array of light effectively has a lumen output of about 200 lumens that is equivalent to a 35 watt halogen floodlight output of the same angle. The selected lamp color may include white, warm white, nav red, nav blue and a “bug” light, as well as other suitable lamp colors, while the selected brightness may include different dimming levels for setting the overall brightness of the LED-based floodlight.
The LED-based floodlight may include a user keypad controller having at least three buttons, including a color button, a dim button and an on/off button for receiving the one or more user inputs from the user.
In addition, the LED-based floodlight may also include a new and unique shut-down mode memory module that saves settings so that the floodlight may be re-started at a saved setting. The floodlight also includes a volt operation module for providing a 12/24 volt operation for the user.
The LED array may include dual red, green and blue (RGB) LEDs that are wired in parallel so that if one RGB LED fails, the floodlight may be operated with the other RGB LED.
The LED light module may take the form of a micro diffusion filter module arranged in relation to an LED color module for providing a substantially uniform broad beam pattern and brightness and to mask the LED array visually when the floodlight is off. The substantially uniform broad beam pattern may have a beam angle of, for example, about 20°×45°. The micro diffusion filter module may also include a holographic diffuser for homogenizing individual LED light beams and eliminating chromatic aberrations.
In one embodiment, the LED light module may include a plurality of micro diffusion filter modules that are interchangeable by the user for providing a plurality of different broad beam patterns, as desired by the user. In this case, the plurality of different broad beam patterns may include, for example, beam angles of about 20°×45°, about 45°×80°, as well as other suitable beam angles.
In a preferred embodiment of the present invention, the micro diffusion filter module is arranged in a cover of the floodlight. The cover may be pivotally arranged on a housing of the floodlight for opening and closing to change the micro diffusion filter module, when desired. The cover and the housing may have a fully sealed waterproof seal.
The LED light module may also include a plurality of interchangeable LED color cards for providing a plurality of different lamp colors, including white, warm white, nav red, nav blue and a “bug” light, as well as other suitable lamp colors.
The floodlight also includes a dual fresnel lens for collecting and collimating the LED array of light into a desirable light beam, that is also arranged and retained in the cover of the floodlight.
The LED light module may also include one or more microlens for focusing divergent light from the LED array.
In an alternative embodiment, the LED-based floodlight may include a movable holder having a dual fresnel lens for collecting and collimating the LED array of light into a desirable light beam and a holographic diffuser for homogenizing individual LED light beams and eliminating chromatic aberrations, both arranged therein. In this embodiment, the movable holder responds to the one or more control signals, for moving from one position to another position to change the broad beam pattern, for example, for providing a narrow beam pattern in one position and a wide beam pattern in the other position, or vice versa.
The LED-based floodlight according to the present invention addresses the aforementioned concerns and disadvantages of the currently available halogen-based floodlights by providing equivalent light from a much smaller LED light array which, by design, is more efficient and draws less amperage. The unique innovative use of RGB (red, green, blue) LED arrays coupled with microlens primary optics, and a movable holographic diffusion layer coupled to dual fresnel secondary optics, provides for a user-adjustable beam angle and light color selection. The LED array's rated life of 10,000 hours far exceeds the 500 hours rated life for halogen bulbs.
The LED-based floodlight according to the present invention is an important contribution to the state of the art for recreational boating and/or vehicles.
The selected lamp color may include white, warm white, nav red, nav blue and a “bug” light, as well as other suitable lamp colors. The scope of the invention is not intended to be limited to any particular lamp color either now known or later developed in the future.
The selected brightness may include different dimming levels, such as high, medium and low, for setting the overall brightness of the floodlight based on a particular need of the user.
In operation, the broad beam pattern of the LED array of light effectively has a lumen output of about 200 lumens that is equivalent to a 35 watt halogen floodlight output of the same angle. The LED-based floodlight according to the present invention also has a substantially longer minimum bulb life, before any bulb change would be needed.
The LED-based floodlight 10 according to the present invention may also include a new and unique shut-down mode memory module 16 that saves settings so that the floodlight may be re-started by the-user at a saved setting, so the user does not have to adjust the settings of the floodlight each time it is turned on and off.
The LED-based floodlight according to the present invention may also include a volt operation module 18 for providing a 12/24 volt operation, that enables the operation of the floodlight at different voltage levels consistent with that shown and described herein. Although the present invention is described with 12/24 volt operation, embodiments are envisioned using other voltages; and the scope of the invention is not intended to be limited to any particular number of different voltages or voltage values of operation either now known or later developed in the future.
Overall, the LED-based floodlight according to the present invention that can be bracket, flush or surface mounted, consistent with that shown and described herein. The floodlight features beam angle adjustment, electronically controlled color temperature selection and brightness adjustment (dimmable).
The keypad controller 20 may be surface mounted, if possible, with dimensions not to exceed 3″H×2″W×0.5″D deep. By way of example depending on the particular application, if the controller 20 requires through-hole mounting on a boat or other recreational vehicle, the cut-out may be the standard 1.45″×0.83″ panel rocker switch size, including an 8-foot cable to be included with a weatherproof connector at the light end and a water resistant connector at the controller end.
In
As shown by way of example, the micro diffusion filter module 54 is arranged in a cover 53 (shown in the open position) of the floodlight 50 in relation to the LED color card or module 56 for providing a substantially uniform broad beam pattern and brightness and to mask the LED array visually when the floodlight is off. Micro diffusion filter module such as 54 are known in the art and the scope of the invention is not intended to be limited to any particular type or kind either now known or later developed in the future. The substantially uniform broad beam pattern may have a beam angle of, for example, about 20°×45°, although the scope of the invention is intended to include other broad beam patterns having other beam angles. The floodlight according to the present invention may also include, and be sold with, a plurality of micro diffusion filter modules such as 54 that are interchangeable by the user for providing a plurality of different broad beam patterns, as desired by the user depending on a particular application. In this embodiment, the micro diffusion filter modules 54 may be detachably arranged and frictionally engaged in the cover 53 for changing by the user. Many different ways detachably arranging and frictionally engaging one device in relation to another device are known in the art, and the scope of the invention is not intended to be limited to any particular type or kind thereof either now known or later developed in the future. In this case, the plurality of different broad beam patterns provided by the plurality of micro diffusion filter modules such as 54 may include, for example, beam angles of about 20°×45°, or about 45°×80°, as well as other suitable beam angles, although the scope of the invention is intended to include other broad beam patterns having other beam angles.
The micro diffusion filter module 54 may also include a diffuser, such as holographic diffuser, for homogenizing individual LED light beams and eliminating chromatic aberrations. Diffuser such as 54 are known in the art, and the scope of the invention is not intended to be limited to any particular type or kind thereof either now known or later developed in the future.
The LED color module 56 may take the form of an LED color card for providing the LED array of light in a particular lamp color, for example, in response to the one or more control signals from the control module 14 in
The LED-based floodlight according to the present invention may also include, and be sold with, a plurality of different LED color cards or modules such as 58a, 58b, 58c, 58d as best shown in FIGS. c1, c2, c3, c4, that are interchangeable by a user for providing a plurality of different lamp colors, including white, warm white, nav red, nav blue and a “bug” light, as well as other suitable lamp colors. The interchangeable LED color cards or modules 58a, 58b, 58c, 58d may be changed by a user to provide a particular lamp color based on a particular needs or application of the user. In this case, the LED color card 56 may be detachably arranged and frictionally engaged in the housing 57 of the floodlight 50 for changing by the user. Consistent with that discussed above, many different ways detachably arranging and frictionally engaging one device in relation to another device are known in the art, and the scope of the invention is not intended to be limited to any particular type or kind thereof either now known or later developed in the future.
The LED floodlight optical system includes two RGB (Red, Green, Blue) LEDs 110 that are controlled by the module 109. Similar to that discussed above, the color of the floodlight is user-adjustable. For example, the electronic control circuit or module 109 may vary the current to each of the red, green, and blue LEDs 110 in the arrays to achieve lamp colors such as yellow-white, blue-white, red and green. The control circuit (aka electronics module) 109 may also provide brightness control (dimmable) consistent with that discussed above.
As shown, the optical system 100 consists of the LED arrays 110, a microlens primary optic 112 and a dual fresnel secondary optic generally indicated as 114. In operation, the microlenses 112 focus divergent light from the LED array 110, directing it into the remaining optical system. The holographic diffuser 116 serves to homogenize the individual beams from the microlenses 112 and eliminate chromatic aberrations with very little backscatter and transmission losses. A dual fresnel lens 118 array collects and collimates the LED light into a desirable beam angle. The LED arrays 110 may also be positioned horizontally off-axis in relation to the fresnel lenses 118 such that the resulting output beam is elliptical in shape.
FIGS. 4(a) and (b) show the secondary optics 114 that include the fresnel lens 118 and the holographic diffuser 116 placed in the movable holder 104 so that the effective beam angle becomes user adjustable.
Other features of LED-based floodlights according to the present invention may include the following:
The basic functionality of the control module 14 in
Accordingly, the invention comprises the features of construction, combination of elements, and arrangement of parts which will be exemplified in the construction hereinafter set forth.
It will thus be seen that the objects set forth above, and those made apparent from the preceding description, are efficiently attained and, since certain changes may be made in the above construction without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawing shall be interpreted as illustrative and not in a limiting sense.
This application claims benefit to provisional patent application Ser. No. 60/673,978, filed Apr. 22, 2005, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60673978 | Apr 2005 | US |