A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the reproduction of the patent document or the patent disclosure, as it appears in the U.S. Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
This application claims benefit of the following patent application which is hereby incorporated by reference: Japanese Patent Application No. JP2008-165056 filed Jun. 24, 2008.
Not Applicable
Not Applicable
The present invention relates to a LED illuminating device that employs a plurality of LEDs emitting different light colors as a light source and that has a function for changing a light color by dimming each of the LEDs.
Japanese Unexamined Patent Publication No. 2001-93305 discloses a conventional LED illuminating device. This device includes a plurality of LED light sources; a plurality of light guides into which a light from each of the LED light sources is guided; and a control device for controlling each of the LED light sources, and emits a light of arbitrary color through an individual control of lighting states of the respective LED light sources by the control device.
However, a conventional LED illuminating device has a problem where a consistent color cannot be obtained because of an uneven luminance of the LEDs and unevenness of emission colors of the LEDs themselves, even in a case of lighting a plurality of LED illuminating devices in a same lighting state.
An object of the present invention is to provide, at a low cost, a LED illuminating device that reduces unevenness of the color even when the luminance of the LEDs are uneven and the emission colors of the LEDs themselves are uneven. To solve the above-mentioned problems, an LED illuminating device of the present invention includes a power source device, a controller, an LED lighting device, and an LED unit 4 incorporating LEDs of a plurality of emission colors. The device is configured to mix the lights of the LEDs in an arbitrary proportion and set the lights in an arbitrary color mixture proportion on the basis of a dimming signal from the controller. The LED illuminating device is configured so that: a coefficient specific to the LED unit at which an emission color of the LED unit becomes a desired color can be set to a signal value of the controller preliminarily set as a standard. The LED lighting device can control an emission amount of the LEDs having the respective emission colors by using a value calculated by a calculation expression employing the specific coefficient.
According to the present invention, the invention is configured so that a coefficient specified to a LED unit at which an emission color of the LED unit becomes a desired color can be set to a signal value of the controller preliminarily set as a standard. The LED lighting device can adjust an emission amount of the LEDs of respective emission colors by using a value calculated from the specific coefficient. Thus, an LED illuminating device having a small color unevenness between the respective devices regardless of unevenness of luminance of the LEDs and emission colors of LEDs themselves can be provided.
The power supply device 1 is a power supply for driving the LED lighting device, the power supply being supplied at, for example, DC 30V. The controller 2 includes three sliding volume faders red (R), green (G), and blue (B). Outputs of the controller 2 are connected to the LED lighting device 3, and are configured so as to transmit positional scale information of the respective volume faders R, G, and B to the LED lighting device 3. The positional scale information of the respective volume faders are shown as fR, fG, and fB, and a minimum value of their possible values is 0 and a maximum value is 1. The LED lighting device 3 changes a lighting state of the LED unit 4 on the basis of the positional scale information of the volume faders from the controller 2. Luminance of the LEDs controlled by the LED lighting device 3 are shown as φR, φG, and φB, and a minimum value of their possible values is 0 and a maximum value is 1.
Now, regarding certain LED unit 4, it is assumed that the luminance φR, φG, and φB at which the white (for example, X=0.281 and Y=0.287 in the chromaticity coordinates) and a maximum emission intensity is obtained by adjusting the LED lighting device 3 are φR0, φG0, and φB0, respectively.
Here, consider the following coefficients kR, kG, and kB,
kR=φR0,
kG=φG0, and
kB=φB0.
And, the LED lighting device 3 is configured to be controlled in accordance with following expressions,
φR=kR×fR,
φG=kG×fG, and
φB=kB×fB.
Due to the lighting control carried out in the above-mentioned manner, the white color can be certainly reproduced when fR, fG, and fB are equal to 1. In the similar manner, another LED unit 4 also can be lighted in the white color by obtaining other kR, kG, and kB (coefficients specific to the LED unit).
Comparing
According to the present embodiment, since the device is configured to employ values obtained by multiplying indication values fR, fG, and fB of the volume faders of the controller 2 by the preliminarily-set constants kR, kG, and kB specific to the LED unit 4 as the lighting control values φR, φG, and φB of each LED, the low-cost LED illuminating device that reduces the color unevenness between the illumination devices despite unevenness of the LED unit 4 can be provided.
Meanwhile, the output voltage of the power supply device 1 is DC 30V in one embodiment. However, other DC voltages and AC voltages may be employed. Information may be transmitted from the controller 2 to the LED lighting device 3 by a digital signal (the DMX signal, the PNM signal, and the like) and may be an analog signal (the DC voltage, the PWM signal, and the like). The lighting control circuitry in the LED lighting device 3 may control the lighting by changing a current passing through a LED load; and changing the duty of a pulsed load current. In addition, a technical concept of the present invention can be arbitrarily applied if applied to light sources of different colors, and can provide the same effect also to unevenness of light sources such as an organic EL, laser light, and an incandescent light through filter. It is the same with each embodiment.
A configuration according to a second embodiment of the present invention is the configuration of
φR=fR×(kR+(1−max(fG,fB))×(1−kR))
φG=fG×(kG+(1−max(fB,fR))×(1−kG))
φB=fB×(kB+(1−max(fR,fG))×(1−kB))
Here, the max(a, b) is a function for showing the larger value, a or b.
Comparing
According to the present embodiment, the device is configured to calculate an amount of the light flux to be outputted according to the above-mentioned calculation expressions by using values obtained by multiplying indication values of the volume faders of the controller by the preliminarily-set constants specific to the LED unit, and to employ the amount as a lighting control value of the LED. Accordingly, a low-cost LED illuminating device that reduces the color unevenness between different illumination devices despite unevenness of the LED unit 4 can be provided. Additionally, in the present embodiment, the coefficient multiplied by the indication value of the volume fader is 1 in a case of setting the volume fader to be a single color, and thus the device is configured not to lower the light flux of the single color even when the LED is uneven.
A configuration according to a third embodiment of the present invention is the configuration of
φR=fR×(kR+(1−fG)×(1−fB)×(1−kR))
φG=fG×(kG+(1−fB)×(1−fR)×(1−kG))
φB=fB×(kB+(1−fR)×(1−fG)×(1−kB))
Comparing
Comparing
According to the present embodiment, the device is configured to calculate an amount of the light flux to be outputted according to the above-mentioned calculation expressions by using values obtained by multiplying indication values of the volume faders of the controller by the preliminarily-set constants specific to the LED load, and to employ the amount as the lighting control value of the LED. Accordingly, a low-cost LED illuminating device that reduces the color unevenness between the illumination devices despite unevenness of the LED load can be provided. In the present embodiment, the coefficient multiplied by the indication value of the volume fader is 1 in a case of setting the volume fader to be a single color, and thus the device is configured not to lower the light flux of the single color even when the LED is uneven. In addition, since the characteristic has no changing point in operation of the volume fader and linearly changes, an intuitive operation is realized.
Meanwhile, to simplify the description, a relationship between the operation of the volume fader and a fading time is described as a proportional relationship in the graph of the present embodiment, and a non-linear specific function (the Munsell curve, a 2.3th power curve, and the like) of time is generally used to smooth an appearance of light. However, when any relationship is employed as the relationship between the volume fader and the time, a same effect can be obtained regardless of a way of thinking of the present invention, and when there is no relationship between an actual operation amount of the volume fader and a value of the volume fader, a same effect can be obtained.
In addition, a LED component mounting LEDs of three colors, RGB, in a single 3-in-1 package exists, and, in the LED, a current value able to flow when the LED is lighted in a single color is different from a current value able to flow when the three colors of RGB are lighted at the same time. In that case, when the current value of the LED is adjusted according to the following expressions by using the luminance values φR, φG, and φB of the LEDs obtained by the calculation expressions of the above-mentioned embodiments, the light is naturally-dimmed in both of the light flux and the chromaticity.
IR=IR0×A×φR(φR+(φG+φB)
IG=IG0×A×φG(φR+(φG+φB)
IB=IB0×A×φB(φR+φG+φB)
A=1−(1−φR)×(1−φG)×(1−φB)
In the above-mentioned expressions, IR0, IG0, and IB0 represent electric currents passing through each of the LEDs of R, G, and B to output φR, φG, and φB, respectively, and IR, IG, and IB represent current values adjusted for the 3-in-1 LED.
It is now apparent to those of skill in the art that the present invention can be applied to an LED illumination device including an LED unit having four types of light colors.
In the first, second, and third embodiments, the light colors are adjusted by changing current values of the respective LEDs of R, G, and B. In the case where the LEDs are fixed to have the identical position relationship, the mixing state of colors is sometimes uneven when a mixed light color, for example, an even white is represented. However, the mixing state of colors can be variously adjusted and an even mixed color can be represented by changing the configuration as shown in
The configurations shown in
Additionally, in the present embodiment, light outputs of R, G, and B are changed independently by the mechanistic operation. However, by simultaneously changing the respective current values of LEDs also as in the first to third embodiments, an optimum light color may be set by the current value and the changing means for configuration.
Concrete examples of the mechanistic color correction means mounted on each LED illuminating device will be explained below.
The example of
As shown in
The example of
The LEDs 4a, 4b, and 4c of R, G, and B are mounted on one piece of a rectangular LED substrate 5 as shown in
The example of
As shown in
In the case where the synthetic light color is different from a predetermined light color due to the color unevenness of the LEDs R, G, and B, the synthetic light is adjusted to be the predetermined light color by rotating the lens part 9 to change transmittance of the respective lights of the LEDs of R, G, and B.
The example of
As shown in
The example of
As shown in
Thus, although there have been described particular embodiments of the present invention of a new and useful LED ILLUMINATING DEVICE it is not intended that such references be construed as limitations upon the scope of this invention except as set forth in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
JP2008-165056 | Jun 2008 | JP | national |