1. Field of the Invention
This invention relates to illumination devices comprising a plurality of light emitting diodes (LEDs) and, more particularly, to illumination devices and methods for calibrating and compensating individual LEDs in the illumination device, so as to obtain a desired luminous flux and chromaticity over time as the LEDs age.
2. Description of the Relevant Art
The following descriptions and examples are provided as background only and are intended to reveal information that is believed to be of possible relevance to the present invention. No admission is necessarily intended, or should be construed, that any of the following information constitutes prior art impacting the patentable character of the subject matter claimed herein.
Lamps and displays using LEDs (light emitting diodes) for illumination are becoming increasingly popular in many different markets. LEDs provide a number of advantages over traditional light sources, such as incandescent and fluorescent light bulbs, including low power consumption, long lifetime, no hazardous materials, and additional specific advantages for different applications. When used for general illumination, LEDs provide the opportunity to adjust the color (e.g., from white, to blue, to green, etc.) or the color temperature (e.g., from “warm white” to “cool white”) to produce different lighting effects.
Although LEDs have many advantages over conventional light sources, one disadvantage of LEDs is that their output characteristics (e.g., luminous flux and chromaticity) vary over changes in drive current, temperature and over time as the LEDs age. These effects are particularly evident in multi-colored LED illumination devices, which combine a number of differently colored emission LEDs into a single package.
An example of a multi-colored LED illumination device is one in which two or more different colors of LEDs are combined within the same package to produce white or near-white light. There are many different types of white light lamps on the market, some of which combine red, green and blue (RGB) LEDs, red, green, blue and yellow (RGBY) LEDs, phosphor-converted white and red (WR) LEDs, RGBW LEDs, etc. By combining different colors of LEDs within the same package, and driving the differently colored LEDs with different drive currents, these lamps may be configured to generate white or near-white light within a wide gamut of color points or correlated color temperatures (CCTs) ranging from “warm white” (e.g., roughly 2600K-3700K), to “neutral white” (e.g., 3700K-5000K) to “cool white” (e.g., 5000K-8300K). Some multi-colored LED illumination devices also enable the brightness and/or color of the illumination to be changed to a particular set point. These tunable illumination devices should all produce the same color and color rendering index (CRI) when set to a particular dimming level and chromaticity setting (or color set point) on a standardized chromacity diagram.
A chromaticity diagram maps the gamut of colors the human eye can perceive in terms of chromacity coordinates and spectral wavelengths. The spectral wavelengths of all saturated colors are distributed around the edge of an outlined space (called the “gamut” of human vision), which encompasses all of the hues perceived by the human eye. The curved edge of the gamut is called the spectral locus and corresponds to monochromatic light, with each point representing a pure hue of a single wavelength. The straight edge on the lower part of the gamut is called the line of purples. These colors, although they are on the border of the gamut, have no counterpart in monochromatic light. Less saturated colors appear in the interior of the figure, with white and near-white colors near the center.
In the 1931 CIE Chromaticity Diagram shown in
In practice, the luminous flux (i.e., lumen output) and chromaticity produced by prior art illumination devices often differs from the target settings, due to changes in drive current, temperature and over time as the LEDs age. In some devices, the drive current supplied to one or more of the emission LEDs may be adjusted to change the dimming level and/or color point setting of the illumination device. For example, the drive currents supplied to all emission LEDs may be increased to increase the lumen output of the illumination device. In another example, the color point setting of the illumination device may be changed by altering the drive currents supplied to one or more of the emission LEDs. Specifically, an illumination device comprising RGB LEDs may be configured to produce “warmer” white light by increasing the drive current supplied to the red LEDs and decreasing the drive currents supplied to the blue and/or green LEDs.
In addition to affecting changes in the lumen output and/or color point, adjusting the drive current supplied to a given LED inherently affects the junction temperature of that LED. As expected, higher drive currents result in higher junction temperatures (and vice versa). When the junction temperature of an LED increases, the lumen output of the LED generally decreases. For some colors of LEDs (e.g., white, blue and green LEDs), the relationship between luminous flux and junction temperature is relatively linear, while for other colors (e.g., red, orange and especially yellow) the relationship is significantly non-linear.
In addition to luminous flux, the chromaticity of an LED also changes with temperature, due to shifts in the dominant wavelength (for both phosphor converted and non-phosphor converted LEDs) and changes in the phosphor efficiency (for phosphor converted LEDs). In general, the peak emission wavelength of green LEDs tends to decrease with increasing temperature, while the peak emission wavelength of red and blue LEDs tends to increase with increasing temperature. While the change in chromacity is relatively linear with temperature for most colors, red and yellow LEDs tend to exhibit a more significant non-linear change.
While some prior art devices do perform some level of temperature compensation, they fail to provide accurate results by failing to recognize that temperature affects the lumen output and chromaticity of different colors of LEDs differently. Moreover, these prior art devices often fail to account for changes in lumen output and chromaticity that occur gradually over time as the LEDs age.
As LEDs age, the lumen output from both phosphor converted and non-phosphor converted LEDs, and the chromaticity of phosphor converted LEDs, also changes. Early on in life, the luminous flux can either increase (get brighter) or decrease (get dimmer), while late in life, the luminous flux generally decreases.
As a phosphor converted LED ages, the phosphor becomes less efficient and the amount of blue light that passes through the phosphor increases. This decrease in phosphor efficiency causes the overall color produced by the phosphor converted LED to appear “cooler” over time. Although the dominant wavelength and chromaticity of a non-phosphor converted LED (e.g., a red, green, blue, etc. LED) does not change over time, the lumen output decreases over time as the LED ages (see,
A need remains for improved illumination devices and methods for calibrating and compensating individual LEDs within an LED illumination device, so as to accurately maintain a desired luminous flux and a desired chromaticity for the illumination device over changes in temperature, changes in drive current and over and time as the LEDs age. This need is particularly warranted in multi-color LED illumination devices, since different colors of LEDs are affected differently by temperature and age, and in tunable illumination devices that enable the target dimming level and/or the target chromaticity setting to be changed by adjusting the drive currents supplied to one or more of the LEDs, since changes in drive current inherently affect the lumen output, color and temperature of the illumination device.
The following description of various embodiments of an illumination device and a method for calibrating an illumination device is not to be construed in any way as limiting the subject matter of the appended claims.
According to one embodiment, a method is provided herein for calibrating individual light emitting diodes (LEDs) and photodetector(s) in an LED illumination device, so that a desired luminous flux and a desired chromaticity of the device can be maintained over time as the LEDs age. In general, the method may be used to calibrate an LED illumination device comprising a plurality of emission LEDs, or a plurality of chains of emission LEDs, and at least one dedicated photodetector. For the sake of simplicity, the term “LED” will be used herein to refer to a single LED or a chain of serially connected LEDs supplied with the same drive current.
According to one embodiment, the method described herein may begin by subjecting the illumination device to a first ambient temperature, successively applying a plurality of different drive currents to a first emission LED to produce illumination at different levels of brightness, and obtaining wavelength and intensity measurement values for the illumination produced by the first emission LED at each of the different drive currents. In some embodiments, the intensity measurements may comprise radiance measurements. In other embodiments, the intensity measurements may comprise luminance measurements. Immediately before or after each of the different drive currents is applied to the first emission LED, the method may apply a non-operative drive current to the first emission LED to measure a forward voltage developed across the first emission LED. The non-operative drive current applied to the first emission LED for measuring forward voltage may range between approximately 1 mA and approximately 10 mA, depending on the size of the first emission LED.
In general, the drive currents supplied to the first emission LED for obtaining wavelength and intensity measurements may be operative drive current levels (e.g., about 20 mA to about 500 mA), and thus, may be substantially greater than the non-operative drive current (e.g., about 0.1 mA to about 10 mA) supplied to first emission LED to measure forward voltage. In some cases, increasingly greater drive current levels may be successively applied to the first emission LED to obtain the wavelength and intensity measurements. In other cases, the wavelength and intensity measurements may be obtained upon successively applying decreasing levels of drive current to the first emission LED. The order in which the drive currents are applied during the calibration method is largely unimportant, only that the drive currents be different from one another.
Sometime after the wavelength, intensity and emitter forward voltage measurement values are obtained at the first ambient temperature, the method may store at least a subset of the measurement values within the illumination device to calibrate the first emission LED at the first temperature. In one embodiment, the entirety or the subset of the wavelength, intensity and emitter forward voltage measurement values obtained at the first ambient temperature may be stored within a table of calibration values.
In some cases, the calibration method may continue by subjecting the illumination device to a second ambient temperature, which is different from the first ambient temperature, and repeating the steps of successively applying a plurality of different drive currents to the first emission LED, obtaining wavelength and intensity measurement values for the illumination produced by the first emission LED at each of the different drive currents, measuring a forward voltage developed across the first emission LED, and storing at least a subset of the wavelength, intensity and forward voltage measurements within a storage medium of the illumination device to characterize the first emission LED at the second ambient temperature. In one embodiment, the wavelength, intensity and forward voltage measurement values obtained at the second ambient temperature may also be stored within the table of calibration values.
In one embodiment, the second ambient temperature may be substantially less than the first ambient temperature. For example, the second ambient temperature may be approximately equal to room temperature (e.g., roughly 25° C.), and the first ambient temperature may be substantially greater than room temperature. In one example, the first ambient temperature may be closer to an elevated temperature (e.g., roughly 70° C.) or a maximum temperature (e.g., roughly 85° C.) at which the device is expected to operate. In an alternative embodiment, the second ambient temperature may be substantially greater than the first ambient temperature
It is worth noting that the exact values, number and order in which the temperatures are applied to calibrate the first emission LED are somewhat unimportant. However, it is generally desired to obtain the wavelength and intensity measurements from the first emission LED at a sufficient number of different drive current levels, so that relationships between these measurements and drive current can be accurately characterized across the operating current level range of the first emission LED. While the method steps described above refer to a first emission LED, it is generally understood that the illumination device comprises a plurality of emission LEDs including the first emission LED. Thus, the method described above should be performed for each of the plurality of emission LEDs, so as to characterize how the wavelength and intensity of each emission LED changes over drive current and temperature.
In addition to individually characterizing the emission LEDs, the calibration method may characterize at least one photodetector included within the LED illumination device. For example, the calibration method may generally begin by measuring a photocurrent induced on the photodetector by the illumination produced by the first emission LED at each of the different drive currents, and by measuring a forward voltage developed across the photodetector before or after each photocurrent is measured when the illumination device is subjected to the first ambient temperature. When the illumination device is subjected to the second ambient temperature, the calibration method may repeat the steps of measuring a photocurrent induced on, and measuring a forward voltage developed across, the photodetector. Since it is generally the case that the LED illumination device will comprise a plurality of emission LEDs, including the first emission LED, it should be understood that the photocurrent and forward voltage measurements are obtained from the photodetector separately for each emission LED.
As with the emitter forward voltages, the detector forward voltages are generally measured across the photodetector by applying a non-operative drive current to the photodetector. The non-operative drive current applied to the photodetector for measuring forward voltages may range between approximately 100 μA and approximately 1 mA, depending on the number of photodetectors included within the illumination device, the size of the photodetector(s) and the manner in which they are connected.
For each emission LED, the calibration method may calculate a photodetector responsivity value at each of the different drive currents and each of the ambient temperatures. In one embodiment, the photodetector responsivity values may be calculated as a ratio of the photocurrent over the intensity (preferably the radiance) measured at each of the different drive currents and each of the ambient temperatures. Next, the calibration method may characterize a change in the photodetector responsivity over emitter wavelength and temperature separately for each emission LED. Specifically, for each emission LED, the calibration method may generate relationships between the calculated photodetector responsivity values, the wavelengths measured from the emission LED and the forward voltages measured across the photodetector. The calibration method may then apply a first-order polynomial to the photodetector responsivity vs. wavelength relationships generated for each emission LED to characterize the change in the photodetector responsivity over emitter wavelength and photodetector forward voltage. According to one embodiment, the first-order polynomial may be in the form of:
Responsivity=m*λ+b+d*Vfd, or EQ. 1
Responsivity=(m+km)*λ+b+d*Vfd EQ. 2
where the coefficient ‘m’ corresponds to the slope of the responsivity vs. wavelength relationship, the coefficient ‘km’ corresponds to a difference in the slope of the relationships generated at different ambient temperatures, the coefficient ‘b’ corresponds to the offset or y-axis intercept value, and the coefficient ‘d’ corresponds to the shift due to temperature.
Next, the calibration method may store results of such characterizations within the storage medium of the illumination device to characterize the photodetector responsivity over wavelength and temperature separately for each emission LED. In some embodiments, the calibration method may store only the coefficient values of the first order polynomial (e.g., m, km, b and d) with the storage medium to characterize the photodetector responsivity separately for each emission LED.
According to another embodiment, an illumination device is provided herein as having a plurality of emission light emitting diodes (LEDs) configured to produce illumination for the illumination device, an LED driver and receiver circuit coupled to the plurality of emission LEDs and configured for successively applying a plurality of different drive currents to each of the emission LEDs, one emission LED at a time, to produce illumination at different levels of brightness, and an interface configured for receiving wavelength and intensity values, which are measured by an external calibration tool upon receiving the illumination produced by each of the emission LEDs at each of the plurality of different drive currents.
In some embodiments, the interface may be a wireless interface configured to communicate using radio frequency (RF), infrared (IR) light or visible light. For example, the wireless interface may be configured to operate according to at least one of ZigBee, WiFi, or Bluetooth communication protocols. In other embodiments, the interface may be a wired interface, which is configured to communicate over an AC mains, a dedicated conductor or a set of conductors.
In addition, the illumination device may further include a storage medium, which is configured for storing at least a subset of the wavelength and intensity values obtained for each of the emission LEDs within a table of calibration values. According to one embodiment, the table of calibration values may comprise, for each emission LED, a first plurality of wavelength values detected from the emission LED upon applying the plurality of different drive currents to the emission LED when the emission LED is subjected to a first ambient temperature, and a second plurality of wavelength values detected from the emission LED upon applying the plurality of different drive currents to the emission LED when the emission LED is subjected to a second ambient temperature, which is different than the first ambient temperature. In addition, the table of calibration values may comprise, for each emission LED, a first plurality of intensity values detected from the emission LED upon applying the plurality of different drive currents to the emission LED when the emission LED is subjected to the first ambient temperature, and a second plurality of intensity values detected from the emission LED upon applying the plurality of different drive currents to the emission LED when the emission LED is subjected to the second ambient temperature.
In some embodiments, the LED driver and receiver circuit may be further configured for applying a non-operative drive current to each emission LED before or after each of the different drive currents is applied to the emission LED, and measuring a plurality of forward voltages that develop across the emission LED in response to the applied non-operative drive currents. In such embodiments, the table of calibration values may further comprise, for each emission LED, a first plurality of forward voltages measured across the emission LED when the emission LED is subjected to a first ambient temperature, and a second plurality of forward voltages measured across the emission LED when the emission LED is subjected a second ambient temperature, which is different from the first ambient temperature.
In some embodiments, the illumination device may further include a photodetector, which is configured for detecting the illumination produced by each of the plurality of emission LEDs. In such embodiments, the LED driver and receiver circuit may be configured for measuring photocurrents that are induced on the photodetector by the illumination produced by each of the emission LEDs at each of the different drive currents when the emission LEDs are subjected to a first ambient temperature, measuring forward voltages that develop across the photodetector before or after each induced photocurrent is measured, and repeating the steps of measuring photocurrents that are induced on the photodetector and measuring forward voltages that develop across the photodetector when the emission LEDs are subjected to a second ambient temperature, which is different from the first ambient temperature.
In some embodiments, the illumination device may further include control circuitry, which is coupled to the LED driver and receiver circuitry. For each emission LED, the control circuitry may be configured for calculating a photodetector responsivity value for each of the different drive currents by dividing the photocurrent measured at a given drive current by the received intensity value obtained at the same drive current. In addition, the control circuit may be configured for characterizing a change in the photodetector responsivity over emitter wavelength and photodetector forward voltage.
According to one embodiment, the control circuit may characterize the change in the photodetector responsivity over emitter wavelength and photodetector forward voltage by generating relationships between the photodetector responsivity values calculated by the control circuit, the wavelength values received from the interface, and the forward voltages measured across the photodetector by the LED driver and receiver circuit at each of the different drive currents. Once the relationships are generated, the control circuit may apply a first order polynomial to the generated relationships to characterize the change in the photodetector responsivity over emitter wavelength and photodetector forward voltage. According to one embodiment, the control circuit may apply a first-order polynomial in the form EQ. 1 or EQ. 2 shown above. Next, the control circuit may calculate a plurality of coefficient values (e.g., m, km, b and d) from the first order polynomial, and may store a separate set of coefficient values within the storage medium for each emission LED.
Other objects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the accompanying drawings.
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
An LED generally comprises a chip of semiconducting material doped with impurities to create a p-n junction. As in other diodes, current flows easily from the p-side, or anode, to the n-side, or cathode, but not in the reverse direction. Charge-carriers—electrons and holes—flow into the junction from electrodes with different voltages. When an electron meets a hole, it falls into a lower energy level, and releases energy in the form of a photon (i.e., light). The wavelength of the light emitted by the LED, and thus its color, depends on the band gap energy of the materials forming the p-n junction of the LED.
Red and yellow LEDs are commonly composed of materials (e.g., AlInGaP) having a relatively low band gap energy, and thus produce longer wavelengths of light. For example, most red and yellow LEDs have a peak wavelength in the range of approximately 610-650 nm and approximately 580-600 nm, respectively. On the other hand, green and blue LEDs are commonly composed of materials (e.g., GaN or InGaN) having a larger band gap energy, and thus, produce shorter wavelengths of light. For example, most green and blue LEDs have a peak wavelength in the range of approximately 515-550 nm and approximately 450-490 nm, respectively.
In some cases, a “white” LED may be formed by covering or coating, e.g., a blue LED having a peak emission wavelength of about 450-490 nm with a phosphor (e.g., YAG), which down-converts the photons emitted by the blue LED to a lower energy level, or a longer peak emission wavelength, such as about 525 nm to about 600 nm. In some cases, such an LED may be configured to produce substantially white light having a correlated color temperature (CCT) of about 3000K. However, a skilled artisan would understand how different colors of LEDs and/or different phosphors may be used to produce a “white” LED with a potentially different CCT.
When two or more differently colored LEDs are combined within a single package, the spectral content of the individual LEDs are combined to produce blended light. In some cases, differently colored LEDs may be combined to produce white or near-white light within a wide gamut of color points or CCTs ranging from “warm white” (e.g., roughly 2600K-3000K), to “neutral white” (e.g., 3000K-4000K) to “cool white” (e.g., 4000K-8300K). Examples of white light illumination devices include, but are not limited to, those that combine red, green and blue (RGB) LEDs, red, green, blue and yellow (RGBY) LEDs, white and red (WR) LEDs, and RGBW LEDs.
The present invention is generally directed to illumination devices having a plurality of light emitting diodes (LEDs) and one or more photodetectors. In some embodiments, the one or more photodetectors may comprise one or more dedicated photodetectors, which are configured solely for detecting light. In other embodiments, the one or more photodetectors may additionally or alternatively comprise one or more of the emission LEDs, which are configured only at certain times for detecting light. For the sake of simplicity, the term “LED” will be used throughout this disclosure to refer to a single LED, or a chain of serially connected LEDs supplied with the same drive current. According to one embodiment, the present invention provides improved methods for calibrating and compensating individual LEDs within an LED illumination device, so as to accurately maintain a desired luminous flux and a desired chromaticity for the illumination device over changes in drive current, temperature and time.
Although not limited to such, the present invention is particularly well suited to illumination devices (i.e., multi-colored illumination devices) in which two or more different colors of LEDs are combined to produce blended white or near-white light, since the output characteristics of differently colored LEDs vary differently over drive current, temperature and time. The present invention is also particularly well suited to illumination devices (i.e., tunable illumination devices) that enable the target dimming level and/or the target chromaticity setting to be changed by adjusting the drive currents supplied to one or more of the LEDs, since changes in drive current inherently affect the lumen output, color and temperature of the illumination device.
When differently colored LEDs are combined within a multi-colored illumination device, the color point of the resulting device often changes significantly with variations in temperature and over time. For example, when red, green and blue LEDs are combined within a white light illumination device, the color point of the device may appear increasingly “cooler” as the temperature rises. This is because the luminous flux produced by the red LEDs decreases significantly as temperatures increase, while the luminous flux produced by the green and blue LEDs remains relatively stable over temperature (see,
Furthermore, as LEDs age, the lumen output from both phosphor converted and non-phosphor converted LEDs, and the chromaticity of phosphor converted LEDs, also changes over time. Early on in life, the luminous flux can either increase (get brighter) or decrease (get dimmer), while late in life, the luminous flux generally decreases. As expected, the lumen output decreases faster over time when the LEDs are subjected to higher drive currents and higher temperatures. As a phosphor converted LED ages, the phosphor becomes less efficient and the amount of blue light that passes through the phosphor increases. This decrease in phosphor efficiency causes the overall color produced by the phosphor converted LED to appear “cooler” over time. Although the dominant wavelength and chromaticity of a non-phosphor converted LED does not change over time, the luminous flux decreases as the LED ages, which in effect causes the chromaticity of a multi-colored LED illumination device to change over time.
To account for temperature and aging effects, some prior art illumination devices attempt to maintain a consistent lumen output and/or a consistent chromaticity over temperature and time by measuring characteristics of the emission LEDs and increasing the drive current supplied to one or more of the emission LEDs. For example, some prior art illumination devices measure the temperature of the illumination device (either directly through an ambient temperature sensor or heat sink measurement, or indirectly through a forward voltage measurement), and adjust the drive currents supplied to one or more of the emission LEDs to account for temperature related changes in lumen output. Other prior art illumination devices measure the lumen output from individual emission LEDs, and if the measured value differs from a target value, the drive currents supplied to the emission LED are increased to account for changes in luminous flux that occur over time.
However, changing the drive currents supplied to the emission LEDs inherently affects the luminous flux and the chromaticity produced by the LED illumination device.
Although some prior art illumination devices may adjust the drive currents supplied to the emission LEDs, these devices fail to provide accurate temperature and age compensation by failing to account for the non-linear relationship that exists between luminous flux and junction temperature for certain colors of LEDs (
Improved illumination devices and methods for calibrating and compensating individual LEDs included within such illumination devices are described in commonly assigned U.S. application Ser. Nos. 13/970,944; 13/970,964; and 13/970,990, which were filed on Aug. 20, 2013, and in commonly assigned U.S. application Ser. Nos. 14/314,451; 14/314,482; 14/314,530; 14/314,556; and 14/314,580, which were filed on Jun. 25, 2014. The entirety of these applications is incorporated herein by reference.
In these prior applications, various methods are described for precisely controlling the luminous flux and chromaticity of an LED illumination device over changes in temperature, drive current and over time, as the LEDs age. Temperature and drive current compensation is achieved, in some of the prior applications, by characterizing the relationships between luminous flux, chromaticity and emitter forward voltage over changes in drive current and ambient temperature, and storing such characterizations within a table of stored calibration values. Interpolation techniques (and other calculations) are subsequently performed to determine the drive currents that should be supplied to the individual emission LEDs to achieve a desired luminous flux (or a target luminance and/or chromaticity setting) based on a forward voltage presently measured across each individual emission LED.
In some of the prior applications, LED aging affects are additionally or alternatively accounted for by characterizing the photodetector forward voltages and the photocurrents, which are induced on the photodetector by the illumination individually produced by each emission LED over changes in drive current and ambient temperature. During operation, an expected photocurrent value is determined for each emission LED corresponding to the drive current presently applied to an emission LED and the forward voltage presently measured across the photodetector. Specifically, expected photocurrents are determined by applying interpolation technique(s) to a table of stored calibration values correlating forward voltage and photocurrent to drive current at a plurality of different temperatures. For each emission LED, the expected photocurrent is compared to a photocurrent measured across the photodetector at the drive current currently applied to the emission LED to determine if the currently applied drive current should be adjusted to counteract LED aging affects.
While the methods disclosed in the prior applications provide accurate control of luminous flux and chromaticity of an LED illumination device over changes in temperature, drive current and time, and also provide significant improvements and advantages over prior art illumination devices, the accuracy of the previously disclosed methods is somewhat dependent on temperature differences that may exist between the emission LEDs and the photodetector(s) included within the emitter module. U.S. application Ser. No. 14/314,482 provides one solution for maintaining a substantially fixed temperature difference between the emission LEDs and the photodetector(s), which increases the accuracy of the age compensation method disclosed in the prior applications. However, emitter modules that do not include the improvements set forth in U.S. application Ser. No. 14/314,482 are often unable to maintain a fixed temperature difference between the emission LEDs and photodetectors, and thus, cannot provide the same level of compensation accuracy.
Alternative methods are needed to account for LED aging affects in emitter modules that are unable to maintain a fixed temperature difference between the emission LEDs and photodetector(s). The present invention addresses such need by characterizing the emission LEDs and photodetector(s) separately, and by providing additional ways to characterize the emission LEDs and photodetector(s) over changes in drive current and temperature beyond the characterizations disclosed in the prior applications. These additional characterizations may be used in the calibration and compensation methods described herein to counteract the effects of LED aging, and may be especially useful in emitter module designs where the temperature between the emission LEDs and photodetectors is not well controlled. In some embodiments, the calibration and compensation methods described herein may be combined, or used along with, one or more of the calibration and compensation methods described in the prior applications to provide accurate control of the illumination device over changes in drive current and temperature, as well as time.
Wavelength and intensity are key characteristics of the emission LEDs, which are affected by drive current and emitter junction temperature. As noted above, the peak emission wavelength of green LEDs tends to decrease with increasing temperature/drive current, while the peak emission wavelength of red and blue LEDs tends to increase with increasing temperature/drive current. In order to fully characterize the emission LEDs, the wavelength and intensity (e.g., radiance or luminance) of the illumination produced by the individual emission LEDs should be carefully calibrated over a plurality of different drive currents and ambient temperatures.
In addition to emitter characteristics, the responsivity of the photodetector should be individually characterized for each emission LED. The photodetector responsivity can be defined as the ratio of the electrical output (e.g., photocurrent) of the photodetector over the optical input (e.g., radiance or luminance) to the photodetector. Since the responsivity of the photodetector necessarily changes with emitter wavelength and photodetector junction temperature, the photodetector can be effectively characterized for each emission LED by calculating the photodetector responsivity over changes in drive current (which affect emitter wavelength) and temperature. In preferred embodiments, the photodetector may be configured to operate at a relatively low current, so that aging of the photodetector is negligible over the lifetime of the illumination device. This allows the photodetector responsivities to be used as a reference for the emission LEDs during the compensation method described herein. Further description of the presently described calibration and compensation methods is set forth below.
Exemplary embodiments of an improved illumination device will be described below with reference to
As shown in
In general, the wavelength and intensity measurements may be obtained from the emission LEDs using an external calibration tool, such as a spectrophotometer. The measurement values obtained from the external calibration tool may be transmitted to the illumination device, as described in more detail below with respect to
In addition to optical measurements, a plurality of electrical measurements may be obtained from each of the emission LEDs and each of the dedicated photodetector(s) at each of the different drive current levels. These electrical measurements may include, but are not limited to, photocurrents induced on the dedicated photodetector(s) and forward voltages measured across the dedicated photodetector(s) and the emission LEDs. Unlike the optical measurements described above, the electrical measurements may be obtained from the dedicated photodetector(s) and the emission LEDs using the LED driver and receiver circuit included within the illumination device. An exemplary embodiment of such a circuit is shown in
At each of the different drive currents levels, the LED driver and receiver circuit measures the photocurrents that are induced on the dedicated photodetector by the illumination individually produced by each emission LED (in step 16). In one embodiment, three or more photocurrent (Iph) measurements may be obtained from the dedicated photodetector for each emission LED when the emission LEDs are successively driven to produce illumination at three or more different drive current levels (e.g., 100%, 30% and 10% of a max drive level). In other embodiments, each emission LED may be driven with about 10 to about 30 different drive currents selected over the operating current range of the emission LED, and the resulting photocurrents may be measured across the photodetector at each of these different drive currents. In some embodiments, the LED driver and receiver circuit may obtain the photocurrent (Iph) measurements at substantially the same time the external calibration tool is measuring the wavelength and intensity measurements from the illumination produced by the emission LEDs at each of the different drive current levels.
In general, the drive currents applied to the emission LEDs to measure wavelength, intensity and induced photocurrent may be operative drive current levels (e.g., about 20 mA to about 500 mA). In some cases, increasingly greater drive current levels may be successively applied to each of the emission LEDs to obtain the measurements described herein. In other cases, the measurements may be obtained upon successively applying decreasing levels of drive current to the emission LEDs. The order in which the drive current levels are applied is largely unimportant, only that the drive currents be different from one another.
Although examples are provided herein, the present invention is not limited to any particular value or any particular number of drive current levels, and may apply substantially any value and any number of drive current levels to an emission LED within the operating current level range of that LED. However, it is generally desired to obtain the wavelength and intensity measurements from the emission LEDs and the photocurrent measurements from the photodetector at a sufficient number of different drive current levels, so that non-linear relationships between these measurements and drive current can be accurately characterized across the operating current range of the LED.
While increasing the number of measurements does improve the accuracy with which the non-linear relationships are characterized, it also increases calibration time and costs. While the increase in calibration time and cost may not be warranted in all cases, it may be beneficial in some. For example, additional wavelength and intensity measurements may be beneficial when attempting to characterize the wavelength vs. drive current relationship and the intensity vs. drive current relationship for certain colors of LEDs (e.g., blue and green LEDs), which tend to exhibit a significantly more non-linear relationship than other colors of LEDs (e.g., red LEDs; see,
Since increasing drive currents affect the junction temperature of the emission LEDs, a forward voltage may be measured across each emission LED, one LED at a time, immediately before or after each operative drive current level is supplied to each emission LED (in step 18). In addition, a forward voltage can be measured across each photodetector (in step 20) before or after each photocurrent measurement is obtained (in step 16).
In one embodiment, a forward voltage (Vfe) measurement may be obtained from each emission LED (in step 18) and a forward voltage (Vfd) measurement may be obtained from each dedicated photodetector (in step 20) immediately before or after each of the different drive current levels is applied to the emission LED to measure the wavelength and intensity of the illumination produced by that emission LED at those drive current levels. The forward voltage (Vfe and Vfd) measurements can also be obtained before or after the induced photocurrents (Iph) are measured at each of the different drive current levels. By measuring the forward voltage (Vfe) developed across each emission LED and the forward voltage (Vfd) developed across each dedicated photodetector immediately before or after each operative drive current level is applied to the emission LEDs, the Vfe and Vfd measurements may be used to provide a good indication of how the junction temperature of the emission LEDs and the dedicated photodetector change with changes in drive current.
When taking forward voltage measurements, a relatively small drive current is supplied to each of the emission LEDs and each of the dedicated photodetector LEDs, one LED at a time, so that a forward voltage (Vfe or Vfd) developed across the anode and cathode of the individual LEDs can be measured (in steps 18 and 20). When taking these measurements, all other emission LEDs in the illumination device are preferably turned “off” to avoid inaccurate forward voltage measurements (since light from other emission LEDs would induce additional photocurrents in the LED being measured).
As used herein, a “relatively small drive current” may be broadly defined as a non-operative drive current, or a drive current level which is insufficient to produce significant illumination from the LED. Most LED device manufacturers, which use forward voltage measurements to compensate for temperature variations, supply a relatively large drive current to the LEDs (e.g., an operative drive current level sufficient to produce illumination from the LEDs) when taking forward voltage measurements. Unfortunately, forward voltages measured at operative drive current levels tend to vary significantly over the lifetime of an LED. As an LED ages, the parasitic resistance within the junction increases, which in turn, causes the forward voltage measured at operating current levels to increase over time, regardless of temperature. For this reason, a relatively small (i.e., non-operative) drive current is used herein when obtaining forward voltage measurements to limit the resistive portion of the forward voltage drop.
For some common types of emission LEDs with one square millimeter of junction area, the optimum drive current used herein to obtain forward voltage measurements from the emission LEDs may be roughly 0.1-10 mA, and more preferably may be about 0.3-3 mA. In one embodiment, the optimum drive current level may be about 1 mA for obtaining forward voltage measurements from the emission LEDs. However, smaller/larger LEDs may use proportionally less/more current to keep the current density roughly the same. In the embodiments that use a significantly smaller LED as the dedicated photodetector, the optimum drive current level for obtaining forward voltage measurements from a single photodetector may range between about 100 μA to about 300 μA. In one embodiment, the optimum drive current level used for obtaining forward voltage measurements from a plurality of dedicated photodetectors connected in parallel may be about 1 mA. The relatively small, non-operative drive currents used to obtain forward voltage measurements from the emission LEDs (e.g., about 0.3 mA to about 3 mA) and the relatively small, non-operative drive currents used to obtain forward voltage measurements from a dedicated photodetector (e.g., about 100 μA to about 300 μA) are substantially smaller than the operative drive current levels (e.g., about 20 mA to about 500 mA) used in steps 14 and 16 to measure wavelength, intensity and induced photocurrent.
After the measurements described in steps 14-20 are obtained at the first temperature, at least a subset of the wavelength, intensity and emitter forward voltage measurement values may be stored within the illumination device (in step 22), so that the stored calibration values can be later used to compensate the illumination device for changes in wavelength and intensity that may occur over variations in drive current, temperature and time. In one embodiment, the calibration values may be stored within a table of calibration values as shown, for example, in
Once the optical and electrical measurement values are obtained for each emission LED at the plurality of different drive currents, the illumination device is subjected to a second ambient temperature, which is substantially different from the first ambient temperature (in step 24). Once subjected to this second temperature, steps 12-22 are repeated (in step 26) to obtain an additional plurality of optical measurements (e.g., a plurality of wavelength and intensity measurements) from each of the emission LEDs (in step 14), and an additional plurality of electrical measurements (e.g., emitter forward voltage, detector forward voltage and induced photocurrent) from the emission LEDs and the dedicated photodetector (in steps 16, 18 and 20). The additional measurements may be obtained at the second ambient temperature in the same manner described above for the first ambient temperature.
In one embodiment, the second ambient temperature may be substantially less than the first ambient temperature. For example, the second ambient temperature may be approximately equal to room temperature (e.g., roughly 25° C.), and the first ambient temperature may be substantially greater than room temperature. In one example, the first ambient temperature may be closer to an elevated temperature (e.g., roughly 70° C.) or a maximum temperature (e.g., roughly 85° C.) at which the device is expected to operate. In an alternative embodiment, the second ambient temperature may be substantially greater than the first ambient temperature.
It is worth noting that the exact values, number and order in which the temperatures are applied to calibrate the individual LEDs is somewhat unimportant. However, it is generally desired to obtain the wavelength and intensity calibration values at a number of different temperatures, so that the relationships between these measurements and drive current can be accurately characterized across the operating temperature range of each LED. In one preferred embodiment, the illumination device may be subjected to two substantially different ambient temperatures, which are selected from across the operating temperature range of the illumination device. While it is possible to obtain the measurements described herein at three (or more) temperatures, doing so may add significant expense, complexity and/or time to the calibration process. For this reason, it is generally preferred that the emission LEDs and the dedicated photodetector(s) be calibrated at only two different temperatures (e.g., about 25° C. and about 70° C.).
In some embodiments, the illumination device may be subjected to the first and second ambient temperatures by artificially generating the temperatures during the calibration process. However, it is generally preferred that the first and second ambient temperatures are ones which occur naturally during production of the illumination device, as this simplifies the calibration process and significantly decreases the costs associated therewith. In one embodiment, the measurements obtained at the elevated temperature may be taken after burn-in of the LEDs when the illumination device is relatively hot (e.g., roughly 50° C. to 85° C.), and sometime thereafter (e.g., at the end of the manufacturing line), a room temperature calibration may be performed to obtain measurements when the illumination device is relatively cool (e.g., roughly 20° C. to 30° C.).
For each emission LED and each ambient temperature (T0, T1), the calibration table shown in
As noted above, some embodiments of the calibration method may store only a subset of the optical measurement values (e.g., wavelength, intensity, emitter forward voltage, and optionally, luminous flux and/or x, y chromaticity), which are obtained in steps 14 and 18 from the emission LEDs. For example,
For example, it can be seen from
It is noted that while the wavelength, intensity and emitter forward voltage measurement values are stored within the calibration table (in step 22) for characterizing the emission LEDs over drive current and temperature, the induced photocurrent and detector forward voltages measured in steps 16 and 20 are not stored within the calibration table. Instead, the photodetector is characterized in the calibration method of
In step 30, the calibration method characterizes a change in the photodetector responsivity for each emission LED over emitter wavelength (λ) and photodetector forward voltage (Vfd). Specifically, for each emission LED, the calibration method generates relationships between the photodetector responsivity values calculated in step 28 and the emitter wavelengths and photodetector forward voltages measured in steps 14 and 20, respectively. The calibration method may then apply a first-order polynomial to the relationships generated for each emission LED to characterize the change in the photodetector responsivity over emitter wavelength and photodetector forward voltage. In step 32, the calibration method may store results of such characterizations within the storage medium of the illumination device to characterize the photodetector responsivity over wavelength and temperature separately for each emission LED.
According to one embodiment, the calibration method may apply a first-order polynomial of:
Responsivity=m*λ+b+d*Vfd EQ. 1
to the relationships shown in
Responsivity=(m+km)*λ+b+d*Vfd EQ. 2
to the relationships shown in
The calibration table shown in
In one alternative embodiment of the invention, the calibration method shown in
In phosphor converted LEDs, the spectral content of the LED combines with the spectral content of the phosphor to produce white or near-white light. In general, the combined spectrum may include a first portion having a first peak emission wavelength (e.g., about 400-500), and a second portion having a second peak emission wavelength (e.g., about 500-650), which is substantially different from the first peak emission wavelength. In this example, the first portion of the spectrum is generated by the light emitted by the blue LED, and the second portion is generated by the light that passes through the phosphor (e.g., YAG).
As the phosphor converted LED ages, the efficiency of the phosphor decreases, which causes the chromaticity of the phosphor converted LED to appear “cooler” over time. In order to accurately characterize a phosphor converted LED, it may be desirable in some embodiments of the calibration method shown in
In general, the detection range of the first and second photodetectors may be selected based on the spectrum of the phosphor converted LED being measured. In the exemplary embodiment described above, in which a phosphor converted white emission LED is included within the emitter module and implemented as described above, the detection range of the first photodetector may range between about 400 nm and about 500 nm for measuring the photocurrents induced by light emitted by the blue LED portion, and the detection range of the second photodetector may range between about 500 nm and about 650 nm for measuring the photocurrents induced by light that passes through the phosphor portion of the phosphor converted white LED. The first and second photodetectors may include dedicated photodetectors and/or emission LEDs, which are configured at certain times for detecting incident light.
As noted above, the emitter module of the illumination device preferably includes at least one dedicated photodetector. In one embodiment, the emitter module may include two different colors of dedicated photodetectors, such as one or more dedicated green photodetectors and one or more dedicated red photodetectors. In another embodiment, the emitter module may include only one dedicated photodetector, such as a single red, orange or yellow photodetector. In such an embodiment, one of the emission LEDs (e.g., a green emission LED) may be configured, at times, as a photodetector for measuring a portion of the phosphor converted LED spectrum.
In the calibration method described above and shown in
In some embodiments, a second dedicated photodetector (or one of the emission LEDs) may be used to measure the photocurrent, which is induced by the light emitted by the LED portion of the phosphor converted white LED. This photodetector may be, for example, a dedicated green photodetector or one of the green emission LEDs. Sometime before or after each of the photocurrent measurements is obtained from the second photodetector, a forward voltage is measured across the second photodetector to provide an indication of the detector junction temperature at each of the calibrated drive current levels.
In addition to measuring separate photocurrent and detector forward voltages for the phosphor converted white LED, the calibration method may also obtain separate wavelength and intensity measurements (and optionally, separate luminous flux and/or x and y chromaticity measurements) for the LED portion and the phosphor portion of the phosphor converted white LED spectrum at each of the calibrated drive currents and temperatures. This would enable the calibration method to characterize the LED portion and the phosphor portion of the phosphor converted white LED, separately, as if the phosphor converted white LED were two different LEDs. It would also enable the calibration method to characterize the responsivity of the first and second photodetectors separately for the phosphor converted white LED (in steps 28-30).
Sometime after the wavelength and intensity measurement values are obtained for the LED and phosphor portions of the phosphor converted white LED (in step 14), and the photodetector responsivity coefficients are determined (in steps 28 and 30), the measurement values and coefficients may be stored within the calibration table. In some embodiments, the calibration table shown in
Exemplary methods for calibrating an illumination device comprising a plurality of emission LEDs and one or more photodetectors has now been described with reference to
The calibration method provided herein improves upon conventional calibration methods in a number of ways. First, the method described herein calibrates each emission LED (or chain of LEDs) individually, while turning off all other emission LEDs not currently under test. This not only improves the accuracy of the stored calibration values, but also enables the stored calibration values to account for process variations between individual LEDs, as well as differences in output characteristics that inherently occur between different colors of LEDs.
Accuracy is further improved herein by supplying a relatively small (i.e., non-operative) drive current to the emission LEDs and the photodetector(s) when obtaining forward voltage measurements, as opposed to the operative drive current levels typically used in conventional calibration methods. By using non-operative drive currents to obtain the forward voltage measurements, the present invention avoids inaccurate compensation by ensuring that the forward voltage measurements for a given temperature and fixed drive current do not change significantly over time (due to parasitic resistances in the junction when operative drive currents are used to obtain forward voltage measurements).
As another advantage, the calibration method described herein obtains a plurality of optical measurements from each emission LED and a plurality of electrical measurements from each emission LED and photodetector at a plurality of different drive current levels and a plurality of different temperatures. This further improves calibration accuracy by enabling non-linear relationships between wavelength and drive current and non-linear relationships between intensity and drive current to be precisely characterized for certain colors of LEDs. Furthermore, obtaining the calibration values at a number of different ambient temperatures improves compensation accuracy by enabling the compensation method (described below) to interpolate between the stored calibration values, so that accurate compensation values may be determined for current operating temperatures.
As yet another advantage, the calibration method described herein may use different colors of photodetectors to measure photocurrents, which are induced by different portions (e.g., an LED portion and a phosphor portion) of a phosphor converted LED spectrum. By storing these calibration values separately within the illumination device, the calibration values can be used to characterize the LED portion and the phosphor portion of the phosphor converted LED, separately, as if the phosphor converted LED were two different LEDs. It also enables the calibration method to characterize the responsivity of the two different photodetectors separately for the phosphor converted LED.
As described in more detail below, the calibration values stored within the calibration table can be used in the compensation method described herein to adjust the individual drive currents supplied to the emission LEDs, so as to obtain a desired luminous flux and a desired chromaticity over time, as the LEDs age. In some embodiments, the calibration and compensation methods described herein may be combined, or used along with, one or more of the calibration and compensation methods described in commonly assigned U.S. application Ser. Nos. 14/314,451; 14/314,482; 14/314,530; 14/314,556; and 14/314,580 to provide accurate control of the illumination device over changes in drive current and temperature, as well as time. While the most accurate results may be obtained by utilizing all such methods when operating an LED illumination device, one skilled in the art would understand how the calibration and compensation methods specifically described herein may be used to improve upon the compensation methods performed by prior art illumination devices.
In some embodiments, the compensation methods shown in
Exemplary embodiments of an illumination device will be described below with reference to
In general, the compensation method shown in
As shown in
During a first portion of the periodic intervals, one emission LED is driven with a relatively small, non-operative drive current level (e.g., approximately 0.1-0.3 mA), while the remaining LEDs remain “off,” and the forward voltage (e.g., Vfe1) developed across that LED is measured. The forward voltages (e.g., Vfe1, Vfe 2, and Vfe 3) developed across each of the emission LEDs are measured, one LED at a time, as shown in
During a second portion of the periodic intervals, one emission LED is driven with an operative drive current level (II) to produce illumination, while the remaining LEDs remain “off,” and the photocurrent (e.g., Iph1) induced in the photodetector by the illumination from the driven LED is measured. The photocurrents (e.g., Iph1, Iph2, and Iph3) induced in the photodetector by the illumination produced by each of the emission LEDs are measured, one LED at a time, as shown in
In one exemplary embodiment, the presently described compensation method may be utilized within an illumination device comprising a plurality of photodetectors implemented with differently colored LEDs. In particular, each emitter module of the illumination device may include one or more red LEDs and one or more green LEDs as photodetectors. In such an embodiment, a forward voltage measurement (Vfd) may be obtained from each photodetector by applying a small drive current thereto (in step 50). In some cases, the photocurrents associated with each emission LED (e.g., Iph1, Iph2, and Iph3) and the forward voltage(s) associated with each photodetector (Vfd) may be independently averaged over a period of time, filtered to eliminate erroneous data, and stored for example in a register of the illumination device.
In addition to the photocurrents, emitter forward voltages and detector forward voltage(s), the periodic intervals shown in
In other embodiments, periodic intervals may be used to measure different portions of a particular LED's spectrum using two or more different colors of photodetectors. For example, the spectrum of a phosphor converted white LED may be divided into two portions, and each portion may be measured separately during two different periodic intervals using two different photodetectors. Specifically, a first periodic interval may be used to detect the photocurrent, which is induced on a first photodetector (e.g., a green photodetector) by a first spectral portion (e.g., about 400 nm to about 500 nm) of the phosphor converted white LED. A second periodic interval may then be used to detect the photocurrent, which is induced on a second photodetector (e.g., a red photodetector) by a second spectral portion (e.g., about 500 nm to about 650 nm) of the phosphor converted white LED.
Sometime after the emitter forward voltage(s) are measured (in step 44), the compensation method shown in
In
If the drive current (Idrv) presently supplied to the emission LED differs from one of the calibrated drive current levels, the compensation method of
The expected intensity (e.g., Rad_exp) may be determined in substantially the same manner. For example, the solid dots (●) shown in
To determine the expected intensity value (e.g., Rad_exp) for a given LED, the compensation method of
If the drive current (Idrv) presently supplied to the emission LED differs from one of the calibrated drive current levels, the compensation method of
Sometime after the expected wavelength (λ_exp) value is determined for each emission LED (in step 46), the compensation method shown in
As noted above, the photodetector responsivity may be expressed as a first-order polynomial in the form of:
Responsivity=m*λ+b+d*Vfd, or EQ. 1
Responsivity=(m+km)*λ+b+d*Vfd EQ. 2
where the coefficient ‘m’ corresponds to the slope of the lines shown in
In step 54, an intensity value (e.g., Rad_calc) is calculated for each emission LED by dividing the photocurrent, which was induced in the photodetector from the illumination produced by the emission LED at the present drive current and measured in step 48, by the photodetector responsivity calculated in step 52 for that LED. Next, a scale factor is calculated for each emission LED (in step 56) by dividing the expected intensity value (e.g., Rad_exp) determined for the emission LED in step 46 by the intensity value (e.g., Rad_calc) calculated for the emission LED in step 54. Once the scale factor is calculated, the compensation method applies each scale factor to a desired luminous flux value for each emission LED to obtain an adjusted luminous flux value for each emission LED (in step 58). In some embodiments, the desired luminous flux values may be relative lumen values (Y1, Y2, Y3 or Y4), which are calculated during one of the compensation methods disclosed in the prior applications to account for changes in the target luminance (Ym) and/or target chromaticity (xm, ym) settings stored within the illumination device. Finally, the drive currents currently applied to the emission LEDs are adjusted (in step 60) to achieve the adjusted luminous flux values if a difference exists between the expected and calculated intensity values for any of the emission LEDs.
The compensation method described above and illustrated in
The compensation method shown in
Furthermore, the compensation method described herein characterizes photodetector responsivity as a function of emitter wavelength and photodetector forward voltage separately for each emission LED. In preferred embodiments, a photodetector configured to operate at a relatively low current is used, so that aging of the photodetector is negligible over the lifetime of the illumination device. This allows the photodetector responsivity values calculated in step 52 to be used as a reference for the emission LEDs when the intensity values are calculated in step 54. The scale factors calculated in step 56 will account for any differences between the expected intensity (e.g., Rad_exp) and the calculated intensity (e.g., Rad_calc) at the drive current presently applied to an emission LED. If a difference exists, a scale factor >1 will be applied to the desired luminous flux value to increase the drive current applied to the emission LED, thereby increasing the lumen output.
The improved methods described herein for calibrating and controlling an illumination device may be used within substantially any LED illumination device having a plurality of emission LEDs and one or more photodetectors. As described in more detail below, the improved methods described herein may be implemented within an LED illumination device in the form of hardware, software or a combination of both.
Illumination devices, which benefit from the improved methods described herein, may have substantially any form factor including, but not limited to, parabolic lamps (e.g., PAR 20, 30 or 38), linear lamps, flood lights and mini-reflectors. In some cases, the illumination devices may be installed in a ceiling or wall of a building, and may be connected to an AC mains or some other AC power source. However, a skilled artisan would understand how the improved methods described herein may be used within other types of illumination devices powered by other power sources (e.g., batteries or solar energy).
Exemplary embodiments of an improved illumination device will now be described with reference to
One embodiment of an exemplary emitter module 70 that may be included within an LED illumination device is shown in
In some embodiments, the emission LEDs 72 may be arranged in a square array and placed as close as possible together in the center of the dome 78, so as to approximate a centrally located point source. In some embodiments, the emission LEDs 72 may each be configured for producing illumination at a different peak emission wavelength. For example, the emission LEDs 72 may include RGBW LEDs or RGBY LEDs. In some embodiments, the array of emission LEDs 72 may include a chain of four red LEDs, a chain of four green LEDs, a chain of four blue LEDs, and a chain of four white or yellow LEDs. Each chain of LEDs may be coupled in series and driven with the same drive current. In some embodiments, the individual LEDs in each chain may be scattered about the array, and arranged so that no color appears twice in any row, column or diagonal, to improve color mixing within the emitter module 70.
In addition to the emission LEDs 72, one or more dedicated photodetectors 74 may be mounted onto the substrate 76 and arranged within the dome 78 somewhere around the periphery of the array. The dedicated photodetector(s) 74 may be any device (such as a silicon photodiode or an LED) that produces current indicative of incident light. In one embodiment, at least one of the dedicated photodetectors 74 is an LED with a peak emission wavelength in the range of approximately 550 nm to 700 nm. A photodetector with such a peak emission wavelength will not produce photocurrent in response to infrared light, which reduces interference from ambient light sources. The at least one photodetector 74 is preferably implemented with a small red, orange or yellow LED. Such a photodetector may be configured to operate at a relatively low current, so that aging of the at least one photodetector is negligible over the lifetime of the illumination device. In some embodiments, the at least one photodetector 74 may be arranged to capture a maximum amount light, which is reflected from a surface of the dome 78 from the emission LEDs having the shortest wavelengths (e.g., the blue and green emission LEDs).
In some embodiments, four dedicated photodetectors 74 may be included within the dome 78 and arranged around the periphery of the array. In some embodiments, the four dedicated photodetectors 74 may be placed close to, and in the middle of, each edge of the array and may be connected in parallel to a receiver of the illumination device. By connecting the four dedicated photodetectors 74 in parallel with the receiver, the photocurrents induced on each photodetector may be summed to minimize the spatial variation between the similarly colored LEDs, which may be scattered about the array.
The emitter module shown in
One problem with emitter modules, such as the one shown in
The presently described calibration method address this problem by precisely characterizing how the wavelength and intensity of the emission LEDs changes over drive current and temperature, and precisely characterizing how the responsivity of the photodetector changes over emitter wavelength and detector forward voltage for each emission LED. During operation of the illumination device, the compensation method described herein calculates the responsivity, which is to be expected from the photodetector for the drive currently presently applied to the emission LED and the current junction temperature of the photodetector. Although the photodetector responsivity necessarily changes with emitter wavelength and detector junction temperature, it will not change significantly over time if a relatively small photodetector is used and driven with a relatively low current. This allows the compensation method described herein to use the photodetector responsivity as a reference when determining the difference between the intensity expected from the emission LED and the current intensity output by the emission LED. If a difference exists, a scale factor is generated to increase the lumen output from the emission LED to counteract LED aging affects.
In the illustrated embodiment, illumination device 80 comprises a plurality of emission LEDs 96 and one or more dedicated photodetectors 98. In this example, the emission LEDs 96 comprise four chains of any number of LEDs. In typical embodiments, each chain may have 2 to 4 LEDs of the same color, which are coupled in series and configured to receive the same drive current. In one example, the emission LEDs 96 may include a chain of red LEDs, a chain of green LEDs, a chain of blue LEDs, and a chain of white or yellow LEDs. However, the present invention is not limited to any particular number of LED chains, any particular number of LEDs within the chains, or any particular color or combination of LED colors.
Although the one or more dedicated photodetectors 98 are also illustrated in
In addition to including one or more emitter modules, illumination device 80 includes various hardware and software components, which are configured for powering the illumination device and controlling the light output from the emitter module(s). In one embodiment, the illumination device is connected to AC mains 82, and includes AC/DC converter 84 for converting AC mains power (e.g., 120V or 240V) to a DC voltage (VDC). As shown in
In the illustrated embodiment, PLL 88 locks to the AC mains frequency (e.g., 50 or 60 HZ) and produces a high speed clock (CLK) signal and a synchronization signal (SYNC). The CLK signal provides the timing for control circuit 92 and LED driver and receiver circuit 94. In one example, the CLK signal frequency is in the tens of megahertz range (e.g., 23 MHz), and is precisely synchronized to the AC Mains frequency and phase. The SNYC signal is used by the control circuit 92 to create the timing used to obtain the various optical and electrical measurements described above. In one example, the SNYC signal frequency is equal to the AC Mains frequency (e.g., 50 or 60 HZ) and also has a precise phase alignment with the AC Mains.
In some embodiments, a wireless interface 90 may be included and used to calibrate the illumination device 80 during manufacturing. As noted above, for example, an external calibration tool (not shown in
Wireless interface 90 is not limited to receiving only calibration data, and may be used for communicating information and commands for many other purposes. For example, wireless interface 90 could be used during normal operation to communicate commands, which may be used to control the illumination device 80, or to obtain information about the illumination device 80. For instance, commands may be communicated to the illumination device 80 via the wireless interface 90 to turn the illumination device on/off, to control the dimming level and/or color set point of the illumination device, to initiate the calibration procedure, or to store calibration results in memory. In other examples, wireless interface 90 may be used to obtain status information or fault condition codes associated with illumination device 80.
In some embodiments, wireless interface 90 could operate according to ZigBee, WiFi, Bluetooth, or any other proprietary or standard wireless data communication protocol. In other embodiments, wireless interface 90 could communicate using radio frequency (RF), infrared (IR) light or visible light. In alternative embodiments, a wired interface could be used, in place of the wireless interface 90 shown, to communicate information, data and/or commands over the AC mains or a dedicated conductor or set of conductors.
Using the timing signals received from PLL 88, the control circuit 92 calculates and produces values indicating the desired drive current to be used for each LED chain 96. This information may be communicated from the control circuit 92 to the LED driver and receiver circuit 94 over a serial bus conforming to a standard, such as SPI or I2C, for example. In addition, the control circuit 92 may provide a latching signal that instructs the LED driver and receiver circuit 94 to simultaneously change the drive currents supplied to each of the LEDs 96 to prevent brightness and color artifacts.
During calibration, the control circuit 92 may be configured for generating a plurality of photodetector responsivity coefficients (e.g., in, kin, b, and d) for each of the emission LEDs, which may then be stored within the storage medium 93. In some embodiments, the control circuit 92 may determine the photodetector responsivity coefficients by executing program instructions stored within the storage medium 93. During operation of the illumination device, the control circuit 92 may be further configured for determining the respective drive currents needed to achieve a desired luminous flux and/or a desired chromaticity for the illumination device in accordance with the compensation method shown in
In general, the LED driver and receiver circuit 94 may include a number (N) of driver blocks equal to the number of emission LED chains 96 included within the illumination device. In the exemplary embodiment discussed herein, LED driver and receiver circuit 94 comprises four driver blocks 100, each configured to produce illumination from a different one of the emission LED chains 96. The LED driver and receiver circuit 94 also comprises the circuitry needed to measure ambient temperature (optional), the detector and/or emitter forward voltages, and the detector photocurrents, and to adjust the LED drive currents accordingly. Each driver block receives data indicating a desired drive current from the control circuit 92, along with a latching signal indicating when the driver block should change the drive current.
As shown in
In addition to including a plurality of driver blocks 100, the LED driver and receiver circuit 94 may include one or more receiver blocks 110 for measuring the forward voltages (Vfd) and photocurrents (Iph) induced across the one or more dedicated photodetectors 98. Although only one receiver block 110 is shown in
In the illustrated embodiment, receiver block 110 comprises a voltage source 112, which is coupled for supplying a DC voltage (Vdr) to the anode of the dedicated photodetector 98 coupled to the receiver block, while the cathode of the photodetector 98 is connected to current source 114. When photodetector 98 is configured for obtaining a forward voltage (Vfd) measurement, the controller 124 supplies a “Detector_On” signal to the current source 114, which forces a fixed drive current (Idrv) equal to the value provided by the “Detector Current” signal through photodetector 98.
When obtaining detector forward voltage (Vfd) measurements, current source 114 is configured for drawing a relatively small amount of drive current (Idrv) through photodetector 98. The voltage drop (Vfd) produced across photodetector 98 by that current is measured by difference amplifier 118, which produces a signal equal to the forward voltage (Vfd) drop across photodetector 98. As noted above, the drive current (Idrv) forced through photodetector 98 by the current source 114 is generally a relatively small, non-operative drive current. In the embodiment in which four dedicated photodetectors 98 are coupled in parallel, the non-operative drive current may be roughly 1 mA. However, smaller/larger drive currents may be used in embodiments that include fewer/greater numbers of photodetectors, or embodiments that do not connect the photodetectors in parallel.
In addition to measuring forward voltage, receiver block 110 also includes circuitry for measuring the photocurrents (Iph) induced on photodetector 98 by light emitted by the emission LEDs. As shown in
As noted above, some embodiments of the invention may scatter the individual LEDs within each chain of LEDs 96 about the array of LEDs, so that no two LEDs of the same color exist in any row, column or diagonal. By connecting a plurality of dedicated photodetectors 98 in parallel with the receiver block 110, the photocurrents (Iph) induced on each photodetector 98 by the LEDs of a given color may be summed to minimize the spatial variation between the similarly colored LEDs, which are scattered about the array.
As shown in
In some embodiments, the LED driver and receiver circuit 94 may include an optional temperature sensor 126 for taking ambient temperature (Ta) measurements. In such embodiments, multiplexor 120 may also be coupled for multiplexing the ambient temperature (Ta) with the forward voltage and photocurrent measurements sent to the ADC 122. In some embodiments, the temperature sensor 126 may be a thermistor, and may be included on the driver circuit chip for measuring the ambient temperature surrounding the LEDs, or a temperature from the heat sink of the emitter module. In other embodiments, the temperature sensor 126 may be an LED, which is used as both a temperature sensor and an optical sensor to measure ambient light conditions or output characteristics of the LED emission chains 96.
One implementation of an improved illumination device 80 has now been described in reference to
It will be appreciated to those skilled in the art having the benefit of this disclosure that this invention is believed to provide an improved illumination device and improved methods for calibrating and compensating individual LEDs in the illumination device, so as to maintain a desired luminous flux and a desired chromaticity over time. Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. It is intended, therefore, that the following claims be interpreted to embrace all such modifications and changes and, accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
Number | Name | Date | Kind |
---|---|---|---|
4029976 | Fish et al. | Jun 1977 | A |
4402090 | Gfeller et al. | Aug 1983 | A |
4713841 | Porter et al. | Dec 1987 | A |
4745402 | Auerbach | May 1988 | A |
4809359 | Dockery | Feb 1989 | A |
5018057 | Biggs et al. | May 1991 | A |
5103466 | Bazes | Apr 1992 | A |
5181015 | Marshall et al. | Jan 1993 | A |
5193201 | Tymes | Mar 1993 | A |
5218356 | Knapp | Jun 1993 | A |
5299046 | Spaeth et al. | Mar 1994 | A |
5317441 | Sidman | May 1994 | A |
5541759 | Neff et al. | Jul 1996 | A |
5619262 | Uno | Apr 1997 | A |
5657145 | Smith | Aug 1997 | A |
5797085 | Beuk et al. | Aug 1998 | A |
5905445 | Gurney et al. | May 1999 | A |
6016038 | Mueller et al. | Jan 2000 | A |
6067595 | Lindenstruth | May 2000 | A |
6069929 | Yabe et al. | May 2000 | A |
6084231 | Popat | Jul 2000 | A |
6094014 | Bucks et al. | Jul 2000 | A |
6094340 | Min | Jul 2000 | A |
6108114 | Gilliland et al. | Aug 2000 | A |
6127783 | Pashley et al. | Oct 2000 | A |
6147458 | Bucks et al. | Nov 2000 | A |
6150774 | Mueller et al. | Nov 2000 | A |
6234645 | Borner et al. | May 2001 | B1 |
6234648 | Borner et al. | May 2001 | B1 |
6250774 | Begemann et al. | Jun 2001 | B1 |
6333605 | Grouev et al. | Dec 2001 | B1 |
6344641 | Blalock et al. | Feb 2002 | B1 |
6356774 | Bernstein et al. | Mar 2002 | B1 |
6359712 | Kamitani | Mar 2002 | B1 |
6384545 | Lau | May 2002 | B1 |
6396815 | Greaves et al. | May 2002 | B1 |
6414661 | Shen et al. | Jul 2002 | B1 |
6441558 | Muthu et al. | Aug 2002 | B1 |
6448550 | Nishimura | Sep 2002 | B1 |
6495964 | Muthu et al. | Dec 2002 | B1 |
6498440 | Stam et al. | Dec 2002 | B2 |
6513949 | Marshall et al. | Feb 2003 | B1 |
6577512 | Tripathi et al. | Jun 2003 | B2 |
6617795 | Bruning | Sep 2003 | B2 |
6636003 | Rahm et al. | Oct 2003 | B2 |
6639574 | Scheibe | Oct 2003 | B2 |
6664744 | Dietz | Dec 2003 | B2 |
6692136 | Marshall et al. | Feb 2004 | B2 |
6741351 | Marshall et al. | May 2004 | B2 |
6753661 | Muthu et al. | Jun 2004 | B2 |
6788011 | Mueller et al. | Sep 2004 | B2 |
6806659 | Mueller et al. | Oct 2004 | B1 |
6831569 | Wang et al. | Dec 2004 | B2 |
6831626 | Nakamura et al. | Dec 2004 | B2 |
6853150 | Clauberg et al. | Feb 2005 | B2 |
6879263 | Pederson et al. | Apr 2005 | B2 |
6965205 | Piepgras et al. | Nov 2005 | B2 |
6969954 | Lys | Nov 2005 | B2 |
6975079 | Lys et al. | Dec 2005 | B2 |
7006768 | Franklin | Feb 2006 | B1 |
7014336 | Ducharme et al. | Mar 2006 | B1 |
7038399 | Lys et al. | May 2006 | B2 |
7046160 | Pederson et al. | May 2006 | B2 |
7072587 | Dietz et al. | Jul 2006 | B2 |
7088031 | Brantner et al. | Aug 2006 | B2 |
7119500 | Young | Oct 2006 | B2 |
7135824 | Lys et al. | Nov 2006 | B2 |
7161311 | Mueller et al. | Jan 2007 | B2 |
7166966 | Naugler, Jr. et al. | Jan 2007 | B2 |
7194209 | Robbins et al. | Mar 2007 | B1 |
7233115 | Lys | Jun 2007 | B2 |
7233831 | Blackwell | Jun 2007 | B2 |
7252408 | Mazzochette et al. | Aug 2007 | B2 |
7255458 | Ashdown | Aug 2007 | B2 |
7256554 | Lys | Aug 2007 | B2 |
7262559 | Tripathi et al. | Aug 2007 | B2 |
7294816 | Ng et al. | Nov 2007 | B2 |
7315139 | Selvan et al. | Jan 2008 | B1 |
7319298 | Jungwirth et al. | Jan 2008 | B2 |
7329998 | Jungwirth | Feb 2008 | B2 |
7330002 | Joung | Feb 2008 | B2 |
7330662 | Zimmerman | Feb 2008 | B2 |
7352972 | Franklin | Apr 2008 | B2 |
7358706 | Lys | Apr 2008 | B2 |
7359640 | Onde et al. | Apr 2008 | B2 |
7362320 | Payne et al. | Apr 2008 | B2 |
7372859 | Hall et al. | May 2008 | B2 |
7400310 | LeMay | Jul 2008 | B2 |
7445340 | Conner et al. | Nov 2008 | B2 |
7511695 | Furukawa et al. | Mar 2009 | B2 |
7525611 | Zagar et al. | Apr 2009 | B2 |
7554514 | Nozawa | Jun 2009 | B2 |
7573210 | Ashdown et al. | Aug 2009 | B2 |
7583901 | Nakagawa et al. | Sep 2009 | B2 |
7606451 | Morita | Oct 2009 | B2 |
7607798 | Panotopoulos | Oct 2009 | B2 |
7619193 | Deurenberg | Nov 2009 | B2 |
7649527 | Cho et al. | Jan 2010 | B2 |
7659672 | Yang | Feb 2010 | B2 |
7683864 | Lee et al. | Mar 2010 | B2 |
7701151 | Petrucci et al. | Apr 2010 | B2 |
7737936 | Daly | Jun 2010 | B2 |
7828479 | Aslan et al. | Nov 2010 | B1 |
8013538 | Zampini et al. | Sep 2011 | B2 |
8018135 | Van De Ven et al. | Sep 2011 | B2 |
8040299 | Kretz et al. | Oct 2011 | B2 |
8044899 | Ng et al. | Oct 2011 | B2 |
8044918 | Choi | Oct 2011 | B2 |
8057072 | Takenaka et al. | Nov 2011 | B2 |
8075182 | Dai et al. | Dec 2011 | B2 |
8076869 | Shatford et al. | Dec 2011 | B2 |
8159150 | Ashdown et al. | Apr 2012 | B2 |
8174197 | Ghanem et al. | May 2012 | B2 |
8174205 | Myers et al. | May 2012 | B2 |
8283876 | Ji | Oct 2012 | B2 |
8299722 | Melanson | Oct 2012 | B2 |
8362707 | Draper et al. | Jan 2013 | B2 |
8471496 | Knapp | Jun 2013 | B2 |
8521035 | Knapp et al. | Aug 2013 | B2 |
8556438 | McKenzie et al. | Oct 2013 | B2 |
8569974 | Chobot | Oct 2013 | B2 |
8595748 | Haggerty et al. | Nov 2013 | B1 |
8633655 | Kao et al. | Jan 2014 | B2 |
8653758 | Radermacher et al. | Feb 2014 | B2 |
8680787 | Veskovic | Mar 2014 | B2 |
8704666 | Baker, Jr. | Apr 2014 | B2 |
8721115 | Ing et al. | May 2014 | B2 |
8749172 | Knapp | Jun 2014 | B2 |
8773032 | May et al. | Jul 2014 | B2 |
8791647 | Kesterson et al. | Jul 2014 | B2 |
8816600 | Elder | Aug 2014 | B2 |
8911160 | Seo et al. | Dec 2014 | B2 |
20010020123 | Diab et al. | Sep 2001 | A1 |
20010030668 | Erten et al. | Oct 2001 | A1 |
20020014643 | Kubo et al. | Feb 2002 | A1 |
20020033981 | Keller et al. | Mar 2002 | A1 |
20020047624 | Stam et al. | Apr 2002 | A1 |
20020049933 | Nyu | Apr 2002 | A1 |
20020134908 | Johnson | Sep 2002 | A1 |
20020138850 | Basil et al. | Sep 2002 | A1 |
20020171608 | Kanai et al. | Nov 2002 | A1 |
20030103413 | Jacobi, Jr. et al. | Jun 2003 | A1 |
20030122749 | Booth, Jr. et al. | Jul 2003 | A1 |
20030133491 | Shih | Jul 2003 | A1 |
20030179721 | Shurmantine et al. | Sep 2003 | A1 |
20040044709 | Cabrera et al. | Mar 2004 | A1 |
20040052076 | Mueller et al. | Mar 2004 | A1 |
20040052299 | Jay et al. | Mar 2004 | A1 |
20040101312 | Cabrera | May 2004 | A1 |
20040136682 | Watanabe | Jul 2004 | A1 |
20040201793 | Anandan et al. | Oct 2004 | A1 |
20040220922 | Lovison et al. | Nov 2004 | A1 |
20040257311 | Kanai et al. | Dec 2004 | A1 |
20050004727 | Remboski et al. | Jan 2005 | A1 |
20050030203 | Sharp et al. | Feb 2005 | A1 |
20050030267 | Tanghe et al. | Feb 2005 | A1 |
20050053378 | Stanchfield et al. | Mar 2005 | A1 |
20050077838 | Blumel | Apr 2005 | A1 |
20050110777 | Geaghan et al. | May 2005 | A1 |
20050169643 | Franklin | Aug 2005 | A1 |
20050200292 | Naugler, Jr. et al. | Sep 2005 | A1 |
20050207157 | Tani | Sep 2005 | A1 |
20050242742 | Cheang et al. | Nov 2005 | A1 |
20050265731 | Keum et al. | Dec 2005 | A1 |
20060145887 | McMahon | Jul 2006 | A1 |
20060164291 | Gunnarsson | Jul 2006 | A1 |
20060198463 | Godin | Sep 2006 | A1 |
20060220990 | Coushaine et al. | Oct 2006 | A1 |
20060227085 | Boldt, Jr. et al. | Oct 2006 | A1 |
20070040512 | Jungwirth et al. | Feb 2007 | A1 |
20070109239 | den Boer et al. | May 2007 | A1 |
20070132592 | Stewart et al. | Jun 2007 | A1 |
20070139957 | Haim et al. | Jun 2007 | A1 |
20070248180 | Bowman et al. | Oct 2007 | A1 |
20070254694 | Nakagwa et al. | Nov 2007 | A1 |
20070279346 | den Boer et al. | Dec 2007 | A1 |
20080061717 | Bogner et al. | Mar 2008 | A1 |
20080107029 | Hall et al. | May 2008 | A1 |
20080120559 | Yee | May 2008 | A1 |
20080136334 | Robinson et al. | Jun 2008 | A1 |
20080136770 | Peker et al. | Jun 2008 | A1 |
20080136771 | Chen et al. | Jun 2008 | A1 |
20080150864 | Bergquist | Jun 2008 | A1 |
20080186898 | Petite | Aug 2008 | A1 |
20080222367 | Co | Sep 2008 | A1 |
20080235418 | Werthen et al. | Sep 2008 | A1 |
20080253766 | Yu et al. | Oct 2008 | A1 |
20080265799 | Sibert | Oct 2008 | A1 |
20080297070 | Kuenzler et al. | Dec 2008 | A1 |
20080304833 | Zheng | Dec 2008 | A1 |
20080309255 | Myers et al. | Dec 2008 | A1 |
20080317475 | Pederson et al. | Dec 2008 | A1 |
20090026978 | Robinson | Jan 2009 | A1 |
20090040154 | Scheibe | Feb 2009 | A1 |
20090049295 | Erickson et al. | Feb 2009 | A1 |
20090051496 | Pahlavan et al. | Feb 2009 | A1 |
20090121238 | Peck | May 2009 | A1 |
20090171571 | Son et al. | Jul 2009 | A1 |
20090196282 | Fellman et al. | Aug 2009 | A1 |
20090245101 | Kwon et al. | Oct 2009 | A1 |
20090278789 | Declercq et al. | Nov 2009 | A1 |
20090284511 | Takasugi et al. | Nov 2009 | A1 |
20090303972 | Flammer, III et al. | Dec 2009 | A1 |
20100005533 | Shamir | Jan 2010 | A1 |
20100054748 | Sato | Mar 2010 | A1 |
20100061734 | Knapp | Mar 2010 | A1 |
20100096447 | Kwon et al. | Apr 2010 | A1 |
20100134021 | Ayres | Jun 2010 | A1 |
20100134024 | Brandes | Jun 2010 | A1 |
20100141159 | Shiu et al. | Jun 2010 | A1 |
20100182294 | Roshan et al. | Jul 2010 | A1 |
20100188443 | Lewis et al. | Jul 2010 | A1 |
20100188972 | Knapp | Jul 2010 | A1 |
20100194299 | Ye et al. | Aug 2010 | A1 |
20100213856 | Mizusako | Aug 2010 | A1 |
20100272437 | Yoon et al. | Oct 2010 | A1 |
20100301777 | Kraemer | Dec 2010 | A1 |
20100327764 | Knapp | Dec 2010 | A1 |
20110031894 | Van De Ven | Feb 2011 | A1 |
20110044343 | Sethuram et al. | Feb 2011 | A1 |
20110052214 | Shimada et al. | Mar 2011 | A1 |
20110062874 | Knapp | Mar 2011 | A1 |
20110063214 | Knapp | Mar 2011 | A1 |
20110063268 | Knapp | Mar 2011 | A1 |
20110068699 | Knapp | Mar 2011 | A1 |
20110069094 | Knapp | Mar 2011 | A1 |
20110069960 | Knapp et al. | Mar 2011 | A1 |
20110133654 | McKenzie et al. | Jun 2011 | A1 |
20110148315 | Van Der Veen et al. | Jun 2011 | A1 |
20110150028 | Nguyen Hoang et al. | Jun 2011 | A1 |
20110248640 | Welten | Oct 2011 | A1 |
20110253915 | Knapp | Oct 2011 | A1 |
20110299854 | Jonsson et al. | Dec 2011 | A1 |
20110309754 | Ashdown et al. | Dec 2011 | A1 |
20120056545 | Radermacher et al. | Mar 2012 | A1 |
20120153839 | Farley et al. | Jun 2012 | A1 |
20120229032 | Van De Ven et al. | Sep 2012 | A1 |
20120299481 | Stevens | Nov 2012 | A1 |
20120306370 | Van De Ven et al. | Dec 2012 | A1 |
20130016978 | Son et al. | Jan 2013 | A1 |
20130088522 | Gettemy et al. | Apr 2013 | A1 |
20130201690 | Vissenberg et al. | Aug 2013 | A1 |
20130257314 | Alvord et al. | Oct 2013 | A1 |
20130293147 | Rogers et al. | Nov 2013 | A1 |
20140028377 | Rosik et al. | Jan 2014 | A1 |
20150022110 | Sisto | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
1291282 | Apr 2001 | CN |
1396616 | Feb 2003 | CN |
1573881 | Feb 2005 | CN |
1650673 | Aug 2005 | CN |
1849707 | Oct 2006 | CN |
101083866 | Dec 2007 | CN |
101150904 | Mar 2008 | CN |
101331798 | Dec 2008 | CN |
101458067 | Jun 2009 | CN |
0196347 | Oct 1986 | EP |
0456462 | Nov 1991 | EP |
2273851 | Jan 2011 | EP |
2273851 | Jan 2011 | EP |
2307577 | May 1997 | GB |
06-302384 | Oct 1994 | JP |
08-201472 | Aug 1996 | JP |
11-025822 | Jan 1999 | JP |
2001-514432 | Sep 2001 | JP |
2004-325643 | Nov 2004 | JP |
2005-539247 | Dec 2005 | JP |
2006-260927 | Sep 2006 | JP |
2007-266974 | Oct 2007 | JP |
2007-267037 | Oct 2007 | JP |
2008-507150 | Mar 2008 | JP |
2008-300152 | Dec 2008 | JP |
2009-134877 | Jun 2009 | JP |
0037904 | Jun 2000 | WO |
03075617 | Sep 2003 | WO |
2005024898 | Mar 2005 | WO |
2007069149 | Jun 2007 | WO |
2008065607 | Jun 2008 | WO |
2008129453 | Oct 2008 | WO |
2010124315 | Nov 2010 | WO |
2012005771 | Jan 2012 | WO |
2012042429 | Apr 2012 | WO |
2013142437 | Sep 2013 | WO |
Entry |
---|
Office Action mailed Mar. 11, 2014 for JP Application 2012-523605. |
Office Action mailed Sep. 24, 2014 for JP Application 2012-523605. |
Office Action mailed Mar. 25, 2015 for U.S. Appl. No. 14/305,472. |
Notice of Allowance mailed Mar. 30, 2015 for U.S. Appl. No. 14/097,355. |
Office Action mailed Apr. 8, 2015 for U.S. Appl. No. 14/305,456. |
Office Action mailed May 27, 2015 for U.S. Appl. No. 12/806,117. |
Partial International Search Report mailed Mar. 27, 2015 for PCT/US2014/068556. |
Notice of Allowance mailed May 22, 2015 for U.S. Appl. No. 14/510,212. |
Office Action for U.S. Appl. No. 13/970,990 mailed Aug. 20, 2015. |
Partial International Search Report for PCT/US2015/037660 mailed Aug. 21, 2015. |
Final Office Action for U.S. Appl. No. 13/773,322 mailed Sep. 2, 2015. |
Notice of Allowance for U.S. Appl. No. 13/970,944 mailed Sep. 11, 2015. |
Notice of Allowance for U.S. Appl. No. 14/604,886 mailed Sep. 25, 2015. |
Notice of Allowance for U.S. Appl. No. 14/604,881 mailed Oct. 9, 2015. |
International Search Report and the Written Opinion for PCT/US2015/045252 mailed Jan. 26, 2016. |
Bouchet et al., “Visible-light communication system enabling 73 Mb/s data streaming,” IEEE Globecom Workshop on Optical Wireless Communications, 2010, pp. 1042-1046. |
International Search Report & Written Opinion for PCT/US2015/037660 mailed Oct. 28, 2015. |
Office Action for U.S. Appl. No. 14/573,207 mailed Nov. 4, 2015. |
Notice of Allowance for U.S. Appl. No. 14/510,243 mailed Nov. 6, 2015. |
Notice of Allowance for U.S. Appl. No. 12/806,117 mailed Nov. 18, 2015. |
Partial International Search Report for PCT/US2015/045252 mailed Nov. 18, 2015. |
“LED Fundamentals, How to Read a Datasheet (Part 2 of 2) Characteristic Curves, Dimensions and Packaging,” Aug. 19, 2011, OSRAM Opto Semiconductors, 17 pages. |
International Search Report & Written Opinion for PCT/US2014/068556 mailed Jun. 22, 2015. |
Final Office Action for U.S. Appl. No. 12/803,805 mailed Jun. 23, 2015. |
Office Action for U.S. Appl. No. 13/970,964 mailed Jun. 29, 2015. |
Office Action for U.S. Appl. No. 14/510,243 mailed Jul. 28, 2015. |
Office Action for U.S. Appl. No. 14/510,283 mailed Jul. 29, 2015. |
Office Action for U.S. Appl. No. 14/510,266 mailed Jul. 31, 2015. |
Final Office Action mailed Jan. 28, 2015 for U.S. Appl. No. 12/806,117. |
Office Action mailed Mar. 6, 2015 for U.S. Appl. No. 13/773,322. |
Office Action mailed Feb. 2, 2015 for CN Application 201080035731.X. |
Office Action mailed Jul. 1, 2014 for JP Application 2012-520587. |
Office Action mailed Feb. 17, 2015 for JP Application 2012-520587. |
Hall et al., “Jet Engine Control Using Ethernet with a BRAIN (Postprint),” AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibition, Jul. 2008, pp. 1-18. |
Kebemou, “A Partitioning-Centric Approach for the Modeling and the Methodical Design of Automotive Embedded System Architectures,” Dissertation of Technical University of Berlin, 2008, 176 pages. |
O'Brien et al., “Visible Light Communications and Other Developments in Optical Wireless,” Wireless World Research Forum, 2006, 26 pages. |
Zalewski et al., “Safety Issues in Avionics and Automotive Databuses,” IFAC World Congress, Jul. 2005, 6 pages. |
“Visible Light Communication: Tutorial,” Project IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs), Mar. 2008. |
Johnson, “Visible Light Communications,” CTC Tech Brief, Nov. 2009, 2 pages. |
Chonko, “Use Forward Voltage Drop to Measure Junction Temperature,” Dec. 2005, (c) 2013 Penton Media, Inc., 5 pages. |
International Search Report & Written Opinion, PCT/US2010/000219, mailed Oct. 12, 2010. |
International Search Report & Written Opinion, PCT/US2010/002171, mailed Nov. 24, 2010. |
International Search Report & Written Opinion, PCT/US2010/004953, mailed Mar. 22, 2010. |
International Search Report & Written Opinion, PCT/US2010/001919, mailed Feb. 24, 2011. |
Office Action mailed May 12, 2011 for U.S. Appl. No. 12/360,467. |
Final Office Action mailed Nov. 28, 2011 for U.S. Appl. No. 12/360,467. |
Notice of Allowance mailed Jan. 20, 2012 for U.S. Appl. No. 12/360,467. |
Office Action Mailed Feb. 1, 2012 for U.S. Appl. No. 12/584,143. |
Final Office Action Mailed Sep. 12, 2012 for U.S. Appl. No. 12/584,143. |
Office Action Mailed Aug. 2, 2012 for U.S. Appl. No. 12/806,114. |
Office Action Mailed Oct. 2, 2012 for U.S. Appl. No. 12/806,117. |
Office Action Mailed Jul. 11, 2012 for U.S. Appl. No. 12/806,121. |
Final Office Action Mailed Oct. 11, 2012 for U.S. Appl. No. 12/806,121. |
Office Action mailed Dec. 17, 2012 for U.S. Appl. No. 12/806,118. |
Office Action mailed Oct. 9, 2012 for U.S. Appl. No. 12/806,126. |
Office Action mailed Jul. 10, 2012 for U.S. Appl. No. 12/806,113. |
Notice of Allowance mailed Oct. 15, 2012 for U.S. Appl. No. 12/806,113. |
International Search Report & Written Opinion mailed Sep. 19, 2012 for PCT/US2012/045392. |
Partial International Search Report mailed Nov. 16, 2012 for PCT/US2012/052774. |
International Search Report & Written Opinion for PCT/US2012/052774 mailed Feb. 4, 2013. |
Notice of Allowance mailed Feb. 4, 2013 for U.S. Appl. No. 12/806,113. |
Notice of Allowance mailed Feb. 25, 2013 for U.S. Appl. No. 12/806,121. |
Notice of Allowance mailed May 3, 2013 for U.S. Appl. No. 12/806,126. |
International Search Report & Written Opinion, PCT/US2013/027157, May 16, 2013. |
Office Action mailed Jun. 10, 2013 for U.S. Appl. No. 12/924,628. |
Final Office Action mailed Jun. 14, 2013 for U.S. Appl. No. 12/806,117. |
Office Action mailed Jun. 27, 2013 for U.S. Appl. No. 13/178,686. |
Final Office Action mailed Jul. 9, 2013 for U.S. Appl. No. 12/806,118. |
Office Action mailed Oct. 24, 2013 for U.S. Appl. No. 12/806,117. |
Notice of Allowance mailed Oct. 31, 2013 for U.S. Appl. No. 12/924,628. |
Office Action mailed Nov. 12, 2013 for U.S. Appl. No. 13/231,077. |
Office Action mailed Dec. 4, 2013 for U.S. Appl. No. 12/803,805. |
Office Action mailed Nov. 4, 2013 for CN Application No. 201080032373.7. |
Notice of Allowance mailed Jan. 28, 2014 for U.S. Appl. No. 13/178,686. |
Notice of Allowance mailed Feb. 21, 2014 for U.S. Appl. No. 12/806,118. |
Office Action mailed Apr. 22, 2014 for U.S. Appl. No. 12/806,114. |
Final Office Action mailed Jun. 18, 2014 for U.S. Appl. No. 13/231,077. |
Office Action mailed Jun. 23, 2014 for U.S. Appl. No. 12/806,117. |
Notice of Allowance mailed Aug. 21, 2014 for U.S. Appl. No. 12/584,143. |
Office Action mailed Sep. 10, 2014 for U.S. Appl. No. 12/803,805. |
“Color Management of a Red, Green, and Blue LED Combinational Light Source,” Avago Technologies, Mar. 2010, pp. 1-8. |
Number | Date | Country | |
---|---|---|---|
20160066383 A1 | Mar 2016 | US |