1. Technical Field
The disclosure generally relates to illuminators and, particularly, to an illuminator incorporating light emitting diodes (LEDs) as light source.
2. Description of Related Art
LED has an advantage that it is resistant to shock, and has an almost eternal lifetime under a specific condition. Thus LED illuminators incorporating LEDs as a light source intend to be a cost-effective yet high quality replacement for incandescent and fluorescent lamps, particularly in wild fields, such as street lamps, submarine lamps, billboard lamps, and traffic lights. However, in the wild fields, rainwater, moisture, etc., significantly influence a reliability and a lifespan of the LEDs of the LED illuminator.
For the foregoing reasons, therefore, there is a need in the art for an LED illuminator which overcomes the limitations described.
Referring to
Referring to
An annular protrusion 24 extends radially and inwardly from an inner circumferential surface of the connecting member 20. The protrusion 24 is located at the middle of the connecting member 20, which corresponds to a position of the fins 244. A height of the protrusion 24 in the axial direction substantially equals to the length of the fins 244. An upper step 242 is formed at a top side of the protrusion 24 for supporting the lamp cover 60 thereon, and a lower step 246 is formed at a bottom side of the protrusion 24. Both of the upper step 242 and the lower step 246 are flat, and annular. An internal thread 240 is formed at an inner circumferential surface of the protrusion 24 which is located between inner peripheries of the upper step 242 and the lower step 246. A first inner thread 220 is formed at a top portion of the inner circumferential surface of the connecting member 20 above the protrusion 24, and a second inner thread 260 is formed at a bottom portion of the inner circumferential surface of the connecting member 20 below the protrusion 24.
Referring to
The heat spreaders 40 are usually made of copper, which can absorb heat of the LEDs 54 timely. It is understood by a person skilled in the art that the heat spreaders 40 can be made of other materials having a high heat conductivity coefficient, such as aluminum. The heat spreaders 40 each are elongated and arranged vertically. A length of the heat spreader 40 is larger than that of the circuit board 52. A pair of engaging holes 42 are respectively defined adjacent to top and bottom ends of the heat spreader 40 corresponding to the through holes 540 of the circuit board 52. The heat spreader 40 has a semicircular cross section, and includes a flat mounting surface 44 for mounting the light source 50 thereon and an arc-shaped dissipating surface 46.
When the light source 50 is assembled, the circuit board 52 is arranged on the mounting surface 44 of the corresponding heat spreader 40 with the LEDs 54 facing an outside of the LED illuminator. The top end of the circuit board 52 is substantially at the same level as the top end of the heat spreader 40, whilst the bottom end of the heat spreader 40 is lower than the bottom end of the circuit board 52. Thus the bottom end of the heat spreader 40 is exposed for engaging with the mounting seat 30. The through holes 540 of the circuit board 52 are aligned with the engaging holes 42 of the heat spreader 40, respectively. Screws 56 respectively extend through the through holes 540 of the circuit board 52 to engage into the engaging holes 42 of the heat spreader 40 to assemble the circuit board 52 with the LEDs 54 fixed thereon onto the heat spreader 40 to from the light engine 400.
The mounting seat 30 is made of copper or aluminum, and is column-shaped. A diameter of the mounting seat 30 substantially equals to a diameter of the inner circumferential surface of the protrusion 24 of the connecting member 20. An external thread 32 is formed on an outer circumferential surface of the mounting seat 30 corresponding to the internal thread 240 of the protrusion 24 of the connecting member 20. An opening 36 is defined in a central portion of the mounting seat 30 and extends through the mounting seat 30 along an axial direction thereof. The opening 36 is configured for conductive wire extending therethrough to connect the LEDs 54 of the light sources 50 to an external power source.
Six grooves 34 extend through the mounting seat 30 along the axial direction. The six grooves 34 are located around the opening 36, and are evenly spaced from each other along a circumferential direction of the mounting seat 30. Each groove 34 has a cross section being semicircular, which is the same as that of the heat spreader 40. A size of the cross section of the groove 34 is a little smaller than that of the heat spreader 40. When the light sources 50 are assembled to the mounting seat 30, the bottom ends of the heat spreaders 40 are respectively interferentially inserted into the corresponding grooves 34 with the LEDs 54 of the light sources 50 facing the outside. Since the size of the grooves 34 are slightly smaller than that of the heat spreaders 40, an interference fit is formed between each of the light sources 50 and the mounting seat 30, which means that the light sources 50 are securely fixed on the mounting seat 30 to form the light engine 400.
The lamp cover 60 is made of transparent material. The lamp cover 60 is cylindrical-shaped, and hollow. A receiving space 66 is defined in the lamp cover 60 for receiving the light sources 50 therein. Light of the LEDs 54 of the light sources 50 can radiate through the lamp cover 60 to illuminate the outside. The lamp cover 60 forms an open end 62 at a bottom thereof and an opposite closed end 64 at a top thereof. A first outer thread 622 is formed on an outer circumferential surface of the lamp cover 60 at the open end 62 corresponding to the first inner thread 220 of the connecting member 20. A plurality of first ribs 624 are formed on the outer circumferential surface of the lamp cover 60 and located adjacent to and above the first outer thread 622 for facilitating assembly of the lamp cover 60 to the connecting member 20.
The lamp cap 10 is substantially hollow for receiving a driving module (not shown) therein which can provide drive power, control circuit and power management for the LEDs 54 of the light sources 50. A cross section of the lamp cap 10 along the axial direction of the LED illuminator is generally U-shaped. A first aperture 18 is defined at a top end of the lamp cap 10 adjacent to the connecting member 20, and a second aperture 16 is defined at a bottom end of the lamp cap 10 away from the connecting member 20. The second aperture 16 has a diameter smaller than that of the first aperture 18. A second outer thread 12 is formed on an outer circumferential surface of the lamp cap 10 at the top end of the connecting member 20 corresponding to the second inner thread 260 of the connecting member 20. A plurality of second ribs 14 are formed on the outer circumferential surface of the lamp cap 10 adjacent to and below the second outer thread 12 for facilitating assembly of the lamp cover 60 to the connecting member 20.
The sealing member 100 is made of plastic, and is provided for sealing the second aperture 16 of the connecting member 20. The sealing member 100 is substantially column-shaped. An annular slot 102 is defined in an outer surface of the sealing member 100. A diameter of the sealing member 100 at a position corresponding to the annular slot 102 slightly larger than the diameter of the second aperture 16 of the lamp cap 10. A channel 104 is defined in the sealing member 100, and extends through the sealing member 100 along an axial direction of the sealing member 100. The channel 104 is narrow, with a diameter not larger than the conductive wire which extends through the sealing member 100, the lamp cap 10, the connecting member 20 and the mounting seat 30 to connect the light sources 50 to the external power source. Thus, the sealing member 100 can effectively prevent foreign articles, such as dust or rainwater from entering the LED illuminator by moving along the conductive wire through the channel 104.
Referring to
The sealing member 100 is inserted into the lamp cap 10 with a portion of the bottom end of the lamp cap 10 around the second aperture 16 engaging into the annular slot 102 of the sealing member 100. The conductive wire extends through the channel 104 to the outside for connecting the external power source to supply electric current to the LEDs 54. Since the sealing member 100 at the annular slot 102 is slightly larger and not smaller than the second aperture 16 of the lamp cap 10, the bottom end of the lamp cap 100 is tightly sealed by the sealing member 100. In addition, since the channel 104 of the sealing member 100 is not larger than the conductive wire, the channel 104 is sealed by the conductive wire of the LED illuminator. Thus the LEDs 54 of the present LED illuminator are kept from environmental harm and mechanical damage, such as rainwater, which can significantly improve a reliability and a lifespan of the present LED illuminator.
During operation of the present LED illuminator, when the current is supplied to the LEDs 54 to cause the LEDs 54 to give off light, heat is also produced. Since the heat spreader 40, the mounting seat 30 and the connecting member 20 are made of high conductive material, the heat of the LEDs 54 can be timely conducted to the connecting member 20 for dissipation. The fins 244 on the connecting member 20 increase a heat exchanging area of the connecting member 20, thereby enhancing a heat dissipation efficiency of the connecting member 20. The LEDs 54 thus can be maintained working at a lower temperature. Accordingly, the reliability and lifespan of the present LED illuminator are further enhanced.
The mounting seat 70 of this embodiment forms an external thread 72 on an outer circumferential surface thereof for threadedly engaging with the connecting member 20 to assemble the light engine 700 to the connecting member 20. An opening 76 extends through a central portion of the mounting seat 70 along an axial direction for the conductive wire extending therethrough. A pair of grooves 74 are defined in the mounting seat 70 for receiving bottom ends of the heat spreaders 80. Each groove 74 has a shape matching that of the heat spreader 80, being rectangular and elongated. The two grooves 74 are located at opposite sides of the opening 76, and are parallel to each other. It is to be understood that the shape of the groove 74 should be the same as the heat spreader 80, and must be changed when the shape of the heat spreader 80 changes.
It is to be understood, however, that even though numerous characteristics and advantages of the disclosure have been set forth in the foregoing description, together with details of the structure and function of the disclosure, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
2009 1 0301681 | Apr 2009 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
7226189 | Lee et al. | Jun 2007 | B2 |
7401945 | Zhang | Jul 2008 | B2 |
7588351 | Meyer | Sep 2009 | B2 |
7670029 | Luo et al. | Mar 2010 | B1 |
7744251 | Liu et al. | Jun 2010 | B2 |
7800119 | He et al. | Sep 2010 | B2 |
7862195 | Stack et al. | Jan 2011 | B2 |
7862204 | Lodhie | Jan 2011 | B2 |
20060109662 | Reiff et al. | May 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20100265710 A1 | Oct 2010 | US |