Light emitting diode (LED) lighting systems are becoming more prevalent as replacements for legacy lighting systems. LED systems are an example of solid state lighting (SSL) and have advantages over traditional lighting solutions such as incandescent and fluorescent lighting because they use less energy, are more durable, operate longer, can be combined in multi-color arrays that can be controlled to deliver virtually any color light, and generally contain no lead or mercury. A solid-state lighting system may take the form of a luminaire, lighting unit, light fixture, light bulb, or a “lamp.”
An LED lighting system may include, for example, a packaged light emitting device including one or more light emitting diodes (LEDs), which may include inorganic LEDs, which may include semiconductor layers forming p-n junctions and/or organic LEDs (OLEDs), which may include organic light emission layers. Light perceived as white or near-white may be generated by a combination of red, green, and blue (“RGB”) LEDs. Output color of such a device may be altered by separately adjusting supply of current to the red, green, and blue LEDs. Another method for generating white or near-white light is by using a lumiphor such as a phosphor. Still another approach for producing white light is to stimulate phosphors or dyes of multiple colors with an LED source. Many other approaches can be taken.
An LED lamp may be made with a form factor that allows it to replace a standard incandescent bulb, or any of various types of fluorescent lamps. LED lamps often include some type of optical element or elements to allow for localized mixing of colors, collimate light, or provide a particular light pattern. Sometimes the optical element also serves as an envelope or enclosure for the electronics and or the LEDs in the lamp.
Since, ideally, an LED lamp designed as a replacement for a traditional incandescent or fluorescent light source needs to be self-contained; a power supply is included in the lamp structure along with the LEDs or LED packages and the optical components. A heatsink is also often needed to cool the LEDs and/or power supply in order to maintain appropriate operating temperature.
In some embodiments, a lamp comprises an at least partially optically transmissive enclosure. A base retains lamp electronics. At least one LED may be located in the enclosure and may be operable to emit light when energized through an electrical path from the base. A heat sink comprises a heat dissipating portion that is at least partially exposed to the ambient environment where the heat dissipating portion is configured to allow air flow radially across the heat sink.
The enclosure may be entirely optically transmissive. The enclosure may comprise a reflective surface and an optically transmissive exit surface through which light is emitted from the lamp. The reflective surface may generate a directional light pattern. The reflective surface may be parabolic. The heat dissipating portion may comprise a plurality of fins. The plurality of fins may define a plurality of inner edges and the inner edges may be spaced from one another to define an interior open space. An electrical conductor may connect the at least one LED to the base where the electrical conductor may extend through the interior open space. The inner edges of the plurality of fins may be flared to cover the interior open space. A tube may be located in the interior open space. The electrical conductor may extend through the tube. The heat sink may comprise a heat conducting portion that is thermally coupled to the at least one LED and to the heat dissipating portion. The heat dissipating portion and the heat conducting portion may be a single piece. The heat conducting portion may form a tower that extends into the enclosure. The heat conducting portion may define a planar member disposed at a first end of the enclosure. A LED board may support the at least one LED and may be mounted on the heat conducting portion. The LED board may be thermally conductive. A cover may be disposed over the LED board comprising an aperture through which the at least one LED emits light where the cover is electrically non-conductive. The base may comprise an Edison screw.
In some embodiments a lamp comprises an at least partially optically transmissive enclosure. A base comprises lamp electronics. A plurality of LEDs are located in the enclosure and are operable to emit light when energized through an electrical path from the base. A heat sink comprises a heat conducting portion that is thermally coupled to the plurality of LEDs and a heat dissipating portion that is at least partially exposed to the ambient environment. The heat dissipating portion configured such that the heat sink spaces the lamp electronics from the plurality of LEDs and air may circulate across the heat conducting portion.
The heat dissipating portion comprises a plurality of fins that define a plurality of inner edges and a plurality of spaces between adjacent ones of the plurality of fins where the inner edges may be spaced from one another to define an interior open space where the interior open space communicates with the plurality of spaces. The base may comprise an Edison screw.
Embodiments of the present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present invention. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element such as a layer, region or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” or “top” or “bottom” may be used herein to describe a relationship of one element, layer or region to another element, layer or region as illustrated in the figures. It will be understood that these terms are intended to encompass different orientations of the device in addition to the orientation depicted in the figures.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” “comprising,” “includes” and/or “including” when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Unless otherwise expressly stated, comparative, quantitative terms such as “less” and “greater”, are intended to encompass the concept of equality. As an example, “less” can mean not only “less” in the strictest mathematical sense, but also, “less than or equal to.”
The terms “LED” and “LED device” as used herein may refer to any solid-state light emitter. The terms “solid state light emitter” or “solid state emitter” may include a light emitting diode, laser diode, organic light emitting diode, and/or other semiconductor device which includes one or more semiconductor layers, which may include silicon, silicon carbide, gallium nitride and/or other semiconductor materials, a substrate which may include sapphire, silicon, silicon carbide and/or other microelectronic substrates, and one or more contact layers which may include metal and/or other conductive materials. A solid-state lighting device produces light (ultraviolet, visible, or infrared) by exciting electrons across the band gap between a conduction band and a valence band of a semiconductor active (light-emitting) layer, with the electron transition generating light at a wavelength that depends on the band gap. Thus, the color (wavelength) of the light emitted by a solid-state emitter depends on the materials of the active layers thereof. In various embodiments, solid-state light emitters may have peak wavelengths in the visible range and/or be used in combination with lumiphoric materials having peak wavelengths in the visible range. Multiple solid state light emitters and/or multiple lumiphoric materials (i.e., in combination with at least one solid state light emitter) may be used in a single device, such as to produce light perceived as white or near white in character. In certain embodiments, the aggregated output of multiple solid-state light emitters and/or lumiphoric materials may generate warm white light output having a color temperature range of from about 2200K to about 6000K.
Solid state light emitters may be used individually or in combination with one or more lumiphoric materials (e.g., phosphors, scintillators, lumiphoric inks) and/or optical elements to generate light at a peak wavelength, or of at least one desired perceived color (including combinations of colors that may be perceived as white). Inclusion of lumiphoric (also called ‘luminescent’) materials in lighting devices as described herein may be accomplished by direct coating on solid state light emitter, adding such materials to encapsulants, adding such materials to lenses, by embedding or dispersing such materials within lumiphor support elements, and/or coating such materials on lumiphor support elements. Other materials, such as light scattering elements (e.g., particles) and/or index matching materials, may be associated with a lumiphor, a lumiphor binding medium, or a lumiphor support element that may be spatially segregated from a solid state emitter.
It should also be noted that the term “lamp” is meant to encompass not only a solid-state replacement for a traditional incandescent bulb as illustrated herein, but also replacements for fluorescent bulbs, replacements for complete fixtures, and any type of light fixture that may be custom designed as a solid state fixture for mounting on walls, in or on ceilings, on posts, and/or on vehicles.
Lamp 100, 1100 may be used with an Edison base 102. A lamp base, such as the Edison base 102, functions as the electrical connector to connect the lamp 100, 1100 to an electrical socket or other connector. Depending on the embodiment, other base configurations are possible to make the electrical connection such as other standard bases or non-standard bases. The base 102 comprises an electrically conductive Edison screw 103 for connecting to an Edison socket and a housing 105 connected to the Edison screw. The Edison screw 103 may be connected to the housing 105 by adhesive, mechanical connector, welding, separate fasteners or the like. The housing 105 may be made of an electrically and thermally insulating material such as plastic. Using a thermally insulating material thermally decouples the heat sink from the lamp electronics such that the lamp electronics are not adversely affected by heat generated by the LEDs. The housing 105 and the Edison screw 103 define an internal cavity 107 for receiving the electronics 110 of the lamp including the power supply and/or drivers or a portion of the electronics for the lamp. The lamp electronics 110 are electrically coupled to the Edison screw 103 such that the electrical connection may be made from the Edison screw 103 to the lamp electronics 110. The lamp electronics may comprise a printed circuit board 108 which includes the power supply, including large capacitor and EMI components that are across the input AC line along with the driver circuitry as described herein. The circuit board 108 may be mounted to the housing 105 and, in one embodiment, is mounted to the top wall 105a of housing 105. The space 107 may be entirely enclosed by the housing 105 and Edison screw 103 such that the lamp electronics 110 may be thermally insulated or decoupled from the LED assembly 130, 1130 such that heat generated by the LED assembly 130, 1130 is not conducted to the lamp electronics 110. In some embodiments the top 105a and the body 105b of the housing 105 may be made as a one-piece component. In other embodiments the top 105a and the body 105b may be separate components that are secured together after the electronics 110 are located in the housing 105. Where the housing body 105b and housing top 105a are of a one-piece construction the lamp electronics 110 may be inserted into the housing 105 through an opening 111 at the bottom of the housing 105. The opening 111 is closed by the Edison screw 103 when the Edison screw is secured to the housing 105.
In some embodiments, a driver and/or power supply 110 are included in the base 102 as shown. Base 102 may include the power supply or driver and form all or a portion of the electrical path between the mains and the LEDs 127. The base 102 may also include only part of the power supply circuitry while some smaller components reside with the LED assembly 130, 1130. In one example embodiment, the inductors and capacitor that form part of the EMI filter are in the Edison base. Suitable power supplies and drivers are described in U.S. patent application Ser. No. 13/462,388 filed on May 2, 2012 and titled “Driver Circuits for Dimmable Solid State Lighting Apparatus” which is incorporated herein by reference in its entirety; U.S. patent application Ser. No. 12/775,842 filed on May 7, 2010 and titled “AC Driven Solid State Lighting Apparatus with LED String Including Switched Segments” which is incorporated herein by reference in its entirety; U.S. patent application Ser. No. 13/192,755 filed Jul. 28, 2011 titled “Solid State Lighting Apparatus and Methods of Using Integrated Driver Circuitry” which is incorporated herein by reference in its entirety; U.S. patent application Ser. No. 13/339,974 filed Dec. 29, 2011 titled “Solid-State Lighting Apparatus and Methods Using Parallel-Connected Segment Bypass Circuits” which is incorporated herein by reference in its entirety; U.S. patent application Ser. No. 13/235,103 filed Sep. 16, 2011 titled “Solid-State Lighting Apparatus and Methods Using Energy Storage” which is incorporated herein by reference in its entirety; U.S. patent application Ser. No. 13/360,145 filed Jan. 27, 2012 titled “Solid State Lighting Apparatus and Methods of Forming” which is incorporated herein by reference in its entirety; U.S. patent application Ser. No. 13/338,095 filed Dec. 27, 2011 titled “Solid-State Lighting Apparatus Including an Energy Storage Module for Applying Power to a Light Source Element During Low Power Intervals and Methods of Operating the Same” which is incorporated herein by reference in its entirety; U.S. patent application Ser. No. 13/338,076 filed Dec. 27, 2011 titled “Solid-State Lighting Apparatus Including Current Diversion Controlled by Lighting Device Bias States and Current Limiting Using a Passive Electrical Component” which is incorporated herein by reference in its entirety; and U.S. patent application Ser. No. 13/405,891 filed Feb. 27, 2012 titled “Solid-State Lighting Apparatus and Methods Using Energy Storage” which is incorporated herein by reference in its entirety.
The AC to DC conversion may be provided by a boost topology to minimize losses and therefore maximize conversion efficiency. The boost supply is connected to high voltage LEDs operating at greater than 200V. Examples of boost topologies are described in U.S. patent application Ser. No. 13/462,388, entitled “Driver Circuits for Dimmable Solid State Lighting Apparatus”, filed on May 2, 2012 which is incorporated by reference herein in its entirety; and U.S. patent application Ser. No. 13/662,618, entitled “Driving Circuits for Solid-State Lighting Apparatus with High Voltage LED Components and Related Methods”, filed on Oct. 29, 2012 which is incorporated by reference herein in its entirety. Other embodiments are possible using different driver configurations or a boost supply at lower voltages.
With the embodiments of
The LED assembly 130, 1130 is contained in an optically transmissive enclosure 112, 1112 through which light emitted by the LEDs 127 is transmitted to the exterior of the lamp. In the embodiment of
The LED assembly 130, 1130 may be implemented using a printed circuit board (“PCB”) or other similar component which may be referred by in some cases as an LED board 129, 1129. The lamp 100, 1100 comprises a solid-state lamp comprising a LED assembly 130, 1130 with LEDs 127. Multiple LEDs 127 can be used together, forming an LED array 128. The LEDs 127 can be mounted on or fixed within the lamp in various ways. The LEDs 127 in the LED array 128 include LEDs which may comprise an LED die disposed in an encapsulant such as silicone, and LEDs which may be encapsulated with a phosphor to provide local wavelength conversion, as will be described later when various options for creating white light are discussed. A wide variety of LEDs and combinations of LEDs may be used in the LED assembly 130, 1130 as described herein. The LEDs 127 of the LED array 128, 1128 are operable to emit light when energized through the electrical path.
In some embodiments, the LED board 129, 1129 may comprise a PCB, metal core printed circuit board (MCPCB), flex circuit, lead frame or other similar structure. The LED board 129, 1129 may be made of a thermally conductive material. The entire area of the LED board 129, 1129 may be thermally conductive such that the entire LED assembly 130, 1130 transfers heat to the heat sink 149, 1149. In some embodiments, the LED board 129, 1129 of the LED assembly 130, 1130 may comprise a lead frame made of an electrically conductive material such as copper, copper alloy, aluminum, steel, gold, silver, alloys of such metals, thermally conductive plastic or the like. In other embodiments, the board 129, 1129 comprises a PCB such as a metal core PCB (MCPCB). The MCPCB comprises a thermally and electrically conductive core made of aluminum or other similar pliable metal material. The core is covered by a dielectric material such as polyimide. Metal core boards allow traces to be formed therein. The flex circuit may comprise a flexible layer of a dielectric material such as a plastic, polymeric, polyimide, polyester or other material to which a layer of copper or other electrically conductive material is applied such as by adhesive. Electrical traces are formed in the copper layer to form electrical pads for mounting the electrical components such as LEDs 127 and other lamp electronics on the flex circuit and for creating the electrical path between the components. The copper layer may be covered by a protective layer or layers. In other embodiments the LED board 129, 1129 may comprise a hybrid of such structures. Other structures for the LED board 129, 1129 may also be used. In one embodiment, the exposed surfaces of the LED assembly 130, 1130 may be coated with silver or other reflective material to reflect light inside of enclosure 112, 1112 during operation of the lamp. The LED board 129, 1129 may comprise a series of anodes and cathodes arranged in pairs for connection to the LEDs 127. An LED or LED package containing at least one LED 127 is secured to each anode and cathode pair where the LED/LED package spans the anode and cathode. The LEDs/LED packages may be attached to the LED board by soldering. While specific embodiments of LEDs are described herein, a greater or fewer number of anode/cathode pairs and LEDs may be used. Moreover, more than one LED board 129, 1129 may be used to make a single LED assembly 130. Electrical connectors or conductors such as traces connect the anode from one pair to the cathode of the adjacent pair to provide the electrical path between the anode/cathode pairs during operation of the LED assembly 130.
In one method, the LED board 129, 1129 is formed as a flat member as shown in lamp 100. In the directional lamp 100 of
In other embodiments the LED board may have a three-dimensional shape where a MCPCB or lead frame is formed as a flat member and is bent into the desired three dimensional shape as shown in
In the omnidirectional lamp of
The form factor of the lamp may follow the form factor of traditional incandescent bulbs. In one embodiment, the enclosure and base are dimensioned to be a replacement for an ANSI standard A series bulb such that the dimensions of the lamp 100 fall within the ANSI standards for an A series bulb. In one embodiment, the lamp 100 is configured to be a replacement for an ANSI standard A19 bulb such that the dimensions of the lamp 100 fall within the ANSI standards for an A19 bulb. The dimensions may be different for other ANSI standards including, but not limited to, A21 and A23 standards. In other embodiments the lamp 100 may be dimensioned to be a replacement for a standard PAR incandescent bulb, such as a PAR-38 bulb, or a BR-style lamp as shown in
In some embodiments, the LED lamp 100 may provide 650 lumens with 8.1 W. In such an embodiment ten CREE® XBG LEDs may be used. Because the heat management performance of the lamp is very efficient the ten LEDs may be operated at a higher wattage to increase the lumen output. Alternatively, a fewer number of LEDs may be used that are operated at a higher wattage to provide the 650 lumens. For example, in one embodiment five CREE® XBG LEDs may be used to produce 650 lumens.
LEDs and/or LED packages used with an embodiment of the invention and can include light emitting diode chips that emit hues of light that, when mixed, are perceived in combination as white light. Phosphors can be used as described to add yet other colors of light by wavelength conversion. For example, blue or violet LEDs can be used in the LED assembly of the lamp and the appropriate phosphor can be in any of the ways mentioned above. LED devices can be used with phosphorized coatings packaged locally with the LEDs or with a phosphor coating the LED die as previously described. For example, blue-shifted yellow (BSY) LED devices, which typically include a local phosphor, can be used with a red phosphor on or in the optically transmissive enclosure or inner envelope to create substantially white light, or combined with red emitting LED devices in the array to create substantially white light.
A lighting system using the combination of BSY and red LED devices referred to above to make substantially white light can be referred to as a BSY plus red or “BSY+R” system. In such a system, the LED devices used include LEDs operable to emit light of two different colors. In one example embodiment, the LED devices include a group of LEDs, wherein each LED, if and when illuminated, emits light having dominant wavelength from 440 to 480 nm. The LED devices include another group of LEDs, wherein each LED, if and when illuminated, emits light having a dominant wavelength from 605 to 630 nm. A phosphor can be used that, when excited, emits light having a dominant wavelength from 560 to 580 nm, so as to form a blue-shifted-yellow light with light from the former LED devices. In another example embodiment, one group of LEDs emits light having a dominant wavelength of from 435 to 490 nm and the other group emits light having a dominant wavelength of from 600 to 640 nm. The phosphor, when excited, emits light having a dominant wavelength of from 540 to 585 nm. A further detailed example of using groups of LEDs emitting light of different wavelengths to produce substantially while light can be found in issued U.S. Pat. No. 7,213,940, which is incorporated herein by reference.
Referring again to
While the LED assembly 130, 1130 is shown in direct contact with the heat sink 149, 1149 intervening elements may be provided between the heat sink 149, 1149 and the LED assembly 130, 1130 provided that heat from the LED assembly 130, 1130 may be efficiently transmitted to the heat sink 149, 1149. In some embodiments a thermal epoxy may be used to connect the LED assembly 130, 1130 to the heat sink 149, 1149. In other embodiments mechanical connectors such as fasteners, a friction fit, crimping, male/female connectors may be used in place of or in addition to the thermal epoxy.
Electrical connectors 114, such as wires, may be used to connect the lamp electronics 110 to the LED assembly 130, 1130. In some embodiments the conductors 114 extend through an internal open space 151, in the heat sink 149, 1149. The electrical conductors 114 may be soldered to the LED assembly 130, 1130 and the lamp electronics 110. In other embodiments mechanical electrical connectors such as plug and socket arrangements may be used. In other embodiments, pressure contacts may be used to make the electrical connections. While wires are shown as the electrical conductors 114 other electrical interconnects may be used.
The heat sink structure 149, 1149 comprises a heat dissipating portion 154, 1154 that is mechanically and thermally connected to heat conducting portion 152, 1152. In one embodiment the heat sink 149, 1149 is made as a one-piece member of a thermally conductive material such as aluminum. The heat sink 149, 1149 may also be made of multiple components secured together to form the heat sink. Moreover, the heat sink 149, 1149 may be made of any thermally conductive material or combinations of thermally conductive materials. In some embodiments the LED assembly 130, 1130 may be directly thermally coupled to the heat dissipating portion 154, 1154 without the use of a separate heat conducting portion. The heat sink 149, 1149 may be formed in a wide variety of shapes and sizes provided that sufficient heat is conducted away from the LED assembly 130, 1130 that the operation and/or life expectancy of the LEDs are not adversely affected.
The heat dissipating portion 154, 1154 is thermally coupled with the heat conducting portion 152, 1152 such that heat conducted away from the LED assembly 130, 1130 by the heat conducting portion 152, 1152 may be efficiently dissipated from the lamp 100, 1100 by the heat dissipating portion 154, 1154. In one embodiment the heat conducting portion 152, 1152 and heat dissipating portion 154, 1154 are formed as one-piece. The heat dissipating portion 154, 1154 extends to the exterior of the lamp 100, 1100 such that heat may be dissipated from the lamp to the ambient environment. The LED assembly 130, 1130 may be thermally coupled to the heat sink 149, 1149 in a variety of manners. For example the LED assembly may be mounted directly on the heat sink such that the surface to surface contact creates the thermal couple between these elements. In some embodiments intervening thermally conductive elements may be between the LED assembly and the heat sink. For example, a thermal epoxy may be used both to secure the LED assembly to the heat sink and to thermally couple these elements. In other embodiments, the heat sink 149, 1149 may only comprise the heat dissipating portion 154, 1154 and the heat conducting portion may be integrated with the LED assembly 130, 1130 such that the integrated heat sink portion and LED assembly engage the heat dissipating portion 154, 1154. The heat dissipating portion 154, 1154 may comprise a plurality of heat dissipating members that are exposed on the outside of the lamp to facilitate the heat transfer to the ambient environment. In one embodiment, the heat dissipating members comprise a plurality fins 158 that extend outwardly to increase the surface area of the heat dissipating portion 154, 1154. The heat dissipating portion 154, 1154 and fins 158 may have any suitable shape and configuration although in one embodiment the fins comprise thin generally planar members. One particularly suitable arrangement of the fins will be described. In one embodiment the heat dissipating portion 154, 1154 is formed generally as a cylinder where one end of the heat dissipating portion 154, 1154 is attached to the top of the base 102 and the opposite end of the heat dissipating portion 154, 1154 is connected to the enclosure and/or the LED assembly.
Because the lamp electronics 110 may be located entirely in the base 102 and the heat sink 149, 1149 may be positioned between the base 102 and the LEDs 127 in the enclosure 112, 1112, the LEDs 127 are spaced from the lamp electronics 110 by the heat sink 149, 1149 such that heat generated by the LEDs may be dissipated from the lamp without being conducted to the lamp electronics in an amount that adversely affects the lamp electronics. While some heat may be conducted to the base 102 from the heat sink, the size of the heat sink, the distance between the LEDs and the lamp electronics, and the construction of the base and heat sink lowers the heat conducted to the lamp electronics in the base to a level that does not adversely affect the lamp electronics. The lamp electronics 110 do not extend beyond the top of the base and into the heat sink such that the physical space between the lamp electronics and the LEDs protects the lamp electronics from the heat generated by the LEDs and allows the heat sink to occupy substantially the entire area between the base and the enclosure while maintaining the form factor of the lamp to within the envelope for standard bulbs such as A series bulbs, BR style bulbs and PAR style bulbs. The arrangement of the fins allows air flow through the entire height of the heat sink between the LEDs and the base across and through the open heat sink.
The fins 158 comprise planar members that are configured such that the planes of the fins are arranged substantially parallel to the longitudinal axis of the lamp A-A. The fins 158 are arranged in a radial pattern where the inner edges 158a of the fins are disposed adjacent the longitudinal axis of the lamp and the outer edges 158b of the fins are disposed along the outer envelope of the lamp. The bottom edges 158c of the fins may be supported on the top wall 105a of the base 105 where the top wall is made of a thermally insulating material such as plastic. In this manner the heat that is conducted to the heat sink 149, 1149 may be isolated from the lamp electronics 110 by the base. Because the lamp electronics 110 are spaced from and may be substantially thermally isolated from the heat generated by the LED assembly, the lamp electronics may not have to be potted in the base. The upper edges 158d of the fins may be thermally and mechanically connected to the heat conducting portion 152, 1152.
As shown in
The arrangement of the fins 158 creates open spaces that extend entirely through the heat sink 149, 1149. Also, the electrical conductors 114 extend through the internal open space 151 such that in some embodiments, the electrical conductors 114 may be visible. In some applications it may be aesthetically undesirable to have the conductors 114 visually exposed or to have the heat sink be completely see-through. To avoid this visual appearance the fins 158 and heat sink may be configured to cover the internal open space 151 while still allowing air to flow through the heat sink. In one embodiment, as shown in
In another embodiment, shown in
As described herein, the lamp comprises an LED portion containing the LEDs, an electronics portion with at least a portion of the drive electronics, and an open space there between in which the heat sink is located. The LED portion and the electronics portion can be held together by tube 160 which passes wires from electronics to the LEDs and/or the heat sink. The tube 160 can be plastic (to increase the thermal isolation between the LED portion and the electronics portion) or the tube 160 can be a thermally conductive material, such as aluminum, (to improve thermally coupling of the two portions). The two portions can also be coupled together via other members extending between them such as the fins or other members extending between the portions to connect them but still provide open space between them permitting air flow from one side to the other (laterally between the two halves). The members can be made of a thermally resistive material such as plastic and/or metal for improved thermal coupling between the portions. Depending on the embodiment, the amount of thermal coupling between the two portions can depend on which side has a more efficient heat sink to dissipate heat. If both sides use an effective heat sink then the thermal coupling between the two portions can be reduced. If one side has a better heat sinking arrangement and/or is less sensitive to heat, then better thermal coupling between the two portions may be desired. The open space between the portions promotes more efficient heat dissipation from both portions.
The enclosure 112, 1112 may be attached to the heat sink 149, 1149. In one embodiment, the LED assembly 130, 1130 and the heat conducting portion 152, 1152 are inserted into the enclosure 112, 1112 through the opening 112a, 1112a in neck 115, 1115. The neck 115, 1115 and heat dissipating portion 154, 1154 are dimensioned and configured such that the rim of the enclosure 112, 1112 sits on the upper surface of the heat dissipation portion 154, 1154 with the heat dissipation portion 154, 1154 disposed at least partially outside of the enclosure 112, 1112 between the enclosure 112, 1112 and the base 102. To secure these components together a bead of adhesive may be applied to the upper surface of the heat dissipating portion 154. The rim of the enclosure 112, 1112 may be brought into contact with the bead of adhesive to secure the enclosure 112, 1112 to the heat sink 149, 1149 and complete the assembly. Mechanical connectors may be used in place of or in addition to the adhesive to secure the enclosure to the heat sink. Once the heat sink/LED assembly and enclosure subcomponent is completed, the subcomponent may be attached to the base 102 as a unit. The heat sink may be attached to the base 102 using adhesive, a mechanical connection or combinations of connection mechanisms.
Standards may require that in the event the enclosure 112, 1112 is broken or shattered a person cannot contact live electrical components that may be exposed on the interior of the lamp. In some embodiments a safety coating may be applied to the enclosure to prevent the enclosure from shattering. The shatterproof coating functions to hold the shattered enclosure pieces together such that access to the internal electrical components is prevented even if the rigid (e.g. glass or plastic) enclosure is broken. In some embodiments it may be desirable to eliminate the shatterproof coating to eliminate processing steps, associated costs or the like. To eliminate the need for the shatterproof coating, or for use in addition to a shatter proof coating, a safety cover may be provided to cover the LED assembly such that live electrical components in the enclosure are covered even if the enclosure shatters. The cover 180, 1180 comprises an electrically insulating member 182 that is shaped and dimensioned to cover the LED board 129, 1129 such that electrical traces, contacts and other live electrical elements are covered by the member 182. The cover may be made of plastic or other dielectric material. Where the LED board 129 is planar, the cover 180 may also be planar; however, where the LED board 1129 has a three-dimensional shape, the cover 1180 has a mating shape. The cover 180, 1180 may be attached to the LED board 129, 1129 or the cover 180, 1180 may be attached to the heat sink and/or enclosure. Referring to
In an alternate embodiment the electrical isolation and physical protection provided by cover 180 may be provided by a glass dome as shown in
With respect to the features described above with various example embodiments of a lamp, the features can be combined in various ways. The embodiments shown herein are examples only, shown and described to be illustrative of various design options for a lamp with an LED array.
Although specific embodiments have been shown and described herein, those of ordinary skill in the art appreciate that any arrangement, which is calculated to achieve the same purpose, may be substituted for the specific embodiments shown and that the invention has other applications in other environments. This application is intended to cover any adaptations or variations of the present invention. The following claims are in no way intended to limit the scope of the invention to the specific embodiments described herein.
Number | Name | Date | Kind |
---|---|---|---|
3581162 | Wheatley | May 1971 | A |
5463280 | Johnson | Oct 1995 | A |
5561346 | Byrne | Oct 1996 | A |
5585783 | Hall | Dec 1996 | A |
5655830 | Ruskouski | Aug 1997 | A |
5688042 | Madadi et al. | Nov 1997 | A |
5806965 | Deese | Sep 1998 | A |
5947588 | Huang | Sep 1999 | A |
5949347 | Wu | Sep 1999 | A |
6220722 | Begemann | Apr 2001 | B1 |
6227679 | Zhang et al. | May 2001 | B1 |
6234648 | Borner et al. | May 2001 | B1 |
6250774 | Begemann et al. | Jun 2001 | B1 |
6276822 | Bedrosian et al. | Aug 2001 | B1 |
6465961 | Cao | Oct 2002 | B1 |
6523978 | Huang | Feb 2003 | B1 |
6550953 | Ichikawa et al. | Apr 2003 | B1 |
6634770 | Cao | Oct 2003 | B2 |
6659632 | Chen | Dec 2003 | B2 |
6709132 | Ishibashi | Mar 2004 | B2 |
6803607 | Chan et al. | Oct 2004 | B1 |
6848819 | Arndt et al. | Feb 2005 | B1 |
6864513 | Lin et al. | Mar 2005 | B2 |
6948829 | Verdes et al. | Sep 2005 | B2 |
6982518 | Chou et al. | Jan 2006 | B2 |
7048412 | Martin et al. | May 2006 | B2 |
7080924 | Tseng et al. | Jul 2006 | B2 |
7086756 | Maxik | Aug 2006 | B2 |
7086767 | Sidwell et al. | Aug 2006 | B2 |
7144135 | Martin et al. | Dec 2006 | B2 |
7165866 | Li | Jan 2007 | B2 |
7172314 | Currie et al. | Feb 2007 | B2 |
7213940 | Van De Ven et al. | May 2007 | B1 |
7281818 | You et al. | Oct 2007 | B2 |
7354174 | Yan | Apr 2008 | B1 |
7396142 | Laizure, Jr. et al. | Jul 2008 | B2 |
7575346 | Horng | Aug 2009 | B1 |
7600882 | Morejon et al. | Oct 2009 | B1 |
7631987 | Wei | Dec 2009 | B2 |
7726836 | Chen | Jun 2010 | B2 |
7824065 | Maxik | Nov 2010 | B2 |
7874710 | Tsai | Jan 2011 | B2 |
7932532 | Pickard | Apr 2011 | B2 |
7938558 | Wilcox et al. | May 2011 | B2 |
7965023 | Liang | Jun 2011 | B1 |
8021025 | Lee | Sep 2011 | B2 |
8083383 | Chen | Dec 2011 | B2 |
8092042 | Wilcox | Jan 2012 | B2 |
8164236 | Huang | Apr 2012 | B2 |
8227960 | Huang | Jul 2012 | B2 |
8253316 | Sun et al. | Aug 2012 | B2 |
8272762 | Maxik et al. | Sep 2012 | B2 |
8274241 | Guest | Sep 2012 | B2 |
8277082 | Dassanayake et al. | Oct 2012 | B2 |
8282249 | Liang et al. | Oct 2012 | B2 |
8282250 | Dassanayake et al. | Oct 2012 | B1 |
8292468 | Narendran et al. | Oct 2012 | B2 |
8317358 | Chou | Nov 2012 | B2 |
8322896 | Falicoff et al. | Dec 2012 | B2 |
8371722 | Carroll | Feb 2013 | B2 |
8400051 | Hakata et al. | Mar 2013 | B2 |
8415865 | Liang et al. | Apr 2013 | B2 |
8421320 | Chuang | Apr 2013 | B2 |
8421321 | Chuang | Apr 2013 | B2 |
8421322 | Carroll et al. | Apr 2013 | B2 |
8427037 | Liang et al. | Apr 2013 | B2 |
8449154 | Uemoto et al. | May 2013 | B2 |
8502468 | Li et al. | Aug 2013 | B2 |
8547003 | Wu | Oct 2013 | B2 |
8556465 | Lee et al. | Oct 2013 | B2 |
8575826 | Huang | Nov 2013 | B1 |
8591063 | Yoneda | Nov 2013 | B2 |
8641237 | Chuang | Feb 2014 | B2 |
8653723 | Cao et al. | Feb 2014 | B2 |
8696168 | Li et al. | Apr 2014 | B2 |
8740415 | Wheelock | Jun 2014 | B2 |
8750671 | Kelly et al. | Jun 2014 | B1 |
8752984 | Lenk et al. | Jun 2014 | B2 |
8760042 | Sakai et al. | Jun 2014 | B2 |
8967836 | Min | Mar 2015 | B2 |
8967837 | Tsuei | Mar 2015 | B2 |
20040201990 | Meyer | Oct 2004 | A1 |
20070253202 | Wu | Nov 2007 | A1 |
20090184618 | Hakata et al. | Jul 2009 | A1 |
20100073944 | Chen | Mar 2010 | A1 |
20110068687 | Takahasi et al. | Mar 2011 | A1 |
20110273102 | Van De Ven et al. | Nov 2011 | A1 |
20120040585 | Huang | Feb 2012 | A1 |
20120057356 | Hizer et al. | Mar 2012 | A1 |
20120188767 | Igaki et al. | Jul 2012 | A1 |
20120300429 | Jin | Nov 2012 | A1 |
20130010479 | Chen et al. | Jan 2013 | A1 |
20130026923 | Athalye et al. | Jan 2013 | A1 |
20130026925 | Ven et al. | Jan 2013 | A1 |
20130069535 | Athalye | Mar 2013 | A1 |
20130069547 | Van De Ven et al. | Mar 2013 | A1 |
20130127353 | Athalye et al. | May 2013 | A1 |
20130162149 | Van De Ven et al. | Jun 2013 | A1 |
20130162153 | Van De Ven et al. | Jun 2013 | A1 |
20130169159 | Lys | Jul 2013 | A1 |
20130293135 | Hu et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
1058221 | Dec 2000 | EP |
0890059 | Jun 2004 | EP |
2345954 | Jul 2000 | GB |
H09265807 | Oct 1997 | JP |
2000173304 | Jun 2000 | JP |
2001118403 | Apr 2001 | JP |
2007059930 | Mar 2007 | JP |
2008288183 | Nov 2008 | JP |
2009117346 | May 2009 | JP |
3153766 | Sep 2009 | JP |
2009277586 | Nov 2009 | JP |
0124583 | Apr 2001 | WO |
0160119 | Aug 2001 | WO |
2012011279 | Jan 2012 | WO |
2012031533 | Mar 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20150211723 A1 | Jul 2015 | US |