1. Field of the Invention
The present invention relates to a LED lamp apparatus, in particular, to a color temperature adjustable LED lamp apparatus, and a method for adjusting the color temperature of a LED module in the LED lamp apparatus.
2. Description of Related Art
The color temperature of conventional light sources such as sodium lamps, energy-saving bulbs, high-pressure mercury lamps or the like is in a range of 1500K to 7000K. With the advancement of technology and the raising in the awareness of energy saving and carbon reduction, light-emitting diodes (LED) having better light-emitting efficiency and lower electricity consumption have been gaining the popularity in lightings.
A conventional LED lamp device utilizes numerous LEDs capable of emitting a white light. The color temperature of the current white-light LED is in a range of 2700K to 7000K. However, when operating at the lower color temperature the white-light LED is widely perceived not ideal in light-emitting efficiency and mass production. Thus, the white-light LED is generally used as a high color temperature light source. Although the light emitted by the high color temperature light source is brighter, it is not as soft as the light emitted by the lower color temperature light source. Thus, when a special effect or atmosphere is needed, the lower color temperature light source is preferred. However, if the manufacturer intends to make a white-light LED of a lower range of color temperature, the fluorescent powders used may cause a deduction in light-emitting efficiency and reliability, therefore reducing the yield, increasing the production cost, and limiting the application range in the white-light LED.
A light emitting diode (LED) module is disclosed. The LED module includes a plurality of LED strings each including a plurality of LEDs in a serial connection with each other and disposed with respect to a central axis of a base board in a co-axial fashion, a plurality of drivers each connected to the corresponding LED string for providing adjustable driving currents to trigger each of the LED strings respectively and to adjust a color temperature of each of the LED strings, and a controller, connected to the plurality of drivers, for generating a plurality of output signals and outputting the output signals to the plurality of drivers respectively in response to a predetermined setting so as to adjust the color temperature.
Therefore through the aforementioned technical proposals of the present invention, the following efficacy is achieved: the driving currents used to trigger the plurality of LED strings connected in parallel are adjustable in response to the predetermined setting, thereby adjusting the color temperature of the LED lamp apparatus; furthermore, a sum of the driving currents distributed to the LED strings has a consistent current value, such that the overall power consumption of the LED lamp apparatus may remain consistent as the color temperature adjustment is in process.
In order to further understand the techniques, means and effects the present invention takes for achieving the prescribed objectives, the following detailed description and included drawings are hereby referred, such that, through which, the purposes, features and aspects of the present invention can be thoroughly and concretely appreciated; however, the included drawings are provided solely for reference and illustration, without any intention to be used for limiting the present invention.
The present invention primarily modifies the driving currents passing thru the LED strings and maintains the overall power consumption in a consistent value, so as to achieve the object of adjusting color temperature of the LED lamp apparatus for different purposes in applications. Moreover, the configurations of LEDs contained in the LED strings are specifically designed for illuminating uniformly.
Please refer to
The rectifying circuit 10 is used to receive an alternating current (AC) power signal from a power source, e.g. a public electrical power distribution system, and rectify the AC power signal to a rectification signal. The DC/DC converter circuit 12, connected between the rectifying circuit 10 and the controller 14, converts the rectification signal so as to generate a DC signal, and transmits the DC signal to the controller 14. The controller 14, connected to the drivers 16, receives the DC signal, generates a plurality of output signals, and transmits the output signals to the drivers 16 respectively in response to a predetermined setting. The plurality of drivers 16, connected between the controller 14 and the LED strings 18, each of which includes a plurality of LEDs 181 connected in series, provide driving currents to trigger the LED strings 18 respectively according to the output signals received. The predetermined setting stored in the controller 14 has a default value initially; however, the predetermined setting may be adjustable and such adjustment may ne enabled through the input/output interface 20. When the predetermined setting is adjusted, a different signal indicative of such adjustment may cause the controller 14 to output different output signals to the drivers 16, which in turn output different driving currents to the LED strings 18 in order to adjust the color temperatures of the LED module.
That the embodiment shown in
Moreover, since a current outputted from the controller 14 is of a constant value a summation of values of the driving currents may remain substantially the same despite the predetermined setting could be adjustable. The value of the driving current is determined according to the output signal generated from the controller 14. In the preferred embodiment shown in
When the predetermined setting has been adjusted to another color temperature, e.g., 3,500 k, the driving currents of 175 mA may be transferred to not only the LED strings 18 with the color temperature of 2,800 k, but also the LED strings 18 with the color temperature of 7,000 k.
Furthermore, while the predetermined setting has been adjusted to another color temperature, e.g. 5,000 K, the driving currents of 150 mA may be transferred to the LED strings 18 with the color temperature of 2800 K, and meanwhile, the driving currents of 200 mA may be transferred to the LED strings 18 with color temperature of 7,000 k. In response to the alternation of the driving currents transferring to each LED string, the intended color temperature of the LED module 1 may be attained. The values of the driving currents allocated to the LED strings 18 with the color temperature of 2800 K may not be the same as that of the LED strings 18 with the color temperature of 7,000 k. It is worth to mention that the values of the driving currents of the above-mentioned embodiments are for illustrations, but not limited thereto.
The LED string 18 may be composed of a variety of LEDs 181 with different color temperatures, so that the range of the overall color temperature of the LED module 1 may be wider. It is worth mentioning that the overall power consumption of the LED module 1 according to the present invention remains substantially the same regardless of the modifications to the predetermined setting since the summation of the values of the driving currents remains unchanged. In other words, the overall power consumption of the LED module 1 remains unchanged even with different color temperatures.
In conjunction with
Please refer to
The LEDs 1830 of the first LED string 183 are disposed in a conaxial fashion at a peripheral that is a first radius R1 away from the central axis. The LEDs 1850 of the second LED string 1850 are disposed at a peripheral that is a second radius R2 from the central axis in the co-axial manner and the first radius R1 is shorter than the second radius R2. The LEDs 1870 of the third LED string 187 are disposed at a peripheral that is third radius R3 from the central axis in the co-axial manner wherein the second radius R2 equals to the third radius R3. The LEDs 1890 of the fourth LED string 189 are disposed in the co-axial manner at a peripheral that is a fourth radius R4 from the central axis and the LEDs 1910 of the fifth LED string 191 are disposed at a fifth radius R5 from the central axis co-axially, wherein the fourth radius R4 equals to the fifth radius R5 and is longer than the second radius R2 and the third radius R3. Finally, the LEDs 1930 of the sixth LED strings 193 are disposed at a peripheral that is a sixth radius R6 from the central axis co-axially, and the sixth radius R6 is longer than the fourth radius R4 and the fifth radius R5.
In the embodiment, the first LED string 183, the fourth LED string 189, and the fifth LED string 191 are composed of a plurality of LEDs 1830, 1890, 1910 with the color temperature of 2,800 K. The second LED string 185, the third LED string 187, and the sixth LED string 193 are composed of the plurality of LEDs 1850, 1870, 1930 with the color temperature of 7,000 K. The aforementioned configuration of the LED strings is applied to enhance the illumination uniformity of the LED module 1, so that better illumination uniformity with respect to the predetermined color temperature may be achieved.
Next is the further explanation of a method for adjusting a color temperature of a LED lamp apparatus, please refer to
In step S101, a controller of the LED lamp apparatus is configured to read a predetermined setting of a color temperature stored in the controller or receive a signal indicative of an adjusted predetermined setting of the color temperature. In step S103, the controller generates a plurality of outputs signals and outputs them to a plurality of drivers. In step S105, the drivers are able to output a plurality of driving currents corresponding to the received output signals to a plurality of LED strings connected in series. The driving current is used to trigger the LED string to emit light. The higher driving current may correspond to the brighter the LED string.
Furthermore, the method may further include a feedback process to ensure the color temperature is adjusted to the desired level as indicated by the adjusted predetermined setting. Please refer to
In the aspects of the aforementioned embodiments, the technical characteristics of the present invention is that the driving current generated from the driver is delivered to each loop of LED string, to trigger the LEDs in the LED string wherein the value of the driving current may vary with respect to different predetermined settings for the color temperature. Since the current received from the controller is substantially the same, the summation of the driving currents are substantially the same as well, so that the overall power consumption of the LED module may remain unchanged even with different color temperature requirements. The LEDs in the LED strings are disposed with respect to the central axis of the base board in a co-axial manner.
The aforementioned descriptions represent merely the preferred embodiment of the present invention, without any intention to limit the scope of the present invention thereto. Various equivalent changes, alterations, or modifications based on the claims of present invention are all consequently viewed as being embraced by the scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
20080203945 | Deurenberg et al. | Aug 2008 | A1 |
20080309255 | Myers et al. | Dec 2008 | A1 |
20110037388 | Lou et al. | Feb 2011 | A1 |
20110175528 | Rains et al. | Jul 2011 | A1 |
20110204778 | Sadwick et al. | Aug 2011 | A1 |
20110309754 | Ashdown et al. | Dec 2011 | A1 |
20120001569 | Christoph et al. | Jan 2012 | A1 |
20120049745 | Li et al. | Mar 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20110234109 A1 | Sep 2011 | US |