The present invention relates to the field of LED lighting, relating in particular to an LED circuit.
LED lighting has seen rapid growth in recent years owing to its energy efficiency, long service life, compact size, and environmental friendly advantages. LED lighting is increasingly being used as a replacement for fluorescent lighting.
In a tube-type fluorescent lamp, the original electronic ballast is used as an LED lamp driver. In the process of restructuring a lamp, it is not necessary to configure a dedicated LED driver, which saves on manpower. This is especially beneficial in countries and regions where labor is expensive. These days, there are many LED lamps on the market that are shaped like fluorescent tubes. Some can be adapted only to specific types of electronic ballasts, some can be adapted to numerous types of electronic ballasts, and some are compatible with electronic ballasts or LED lamps powered by AC grid voltages.
Hundreds of patented technologies are available with respect to the various aforementioned applications. One early technology mainly focuses on how to convert the high-frequency output of an electronic ballast to the DC drive current required by an LED when there is absolutely no other protective measure. The operating characteristics of a fluorescent lamp are different from those of an LED lamp. Upon activation, an electronic ballast must be in a light load state before a stable working state can be established. When an LED is used as the load of the electronic ballast, a relatively large working current may appear in the electronic ballast at the moment of its activation. Consequently, the electronic ballast may mistakenly assume that the load is short-circuited and enter a protective state, such that the lamp does not light up.
When an electronic ballast is used to drive a fluorescent lamp, a protective circuit inside the electronic ballast protects the electronic ballast only from being burned when an arc occurs. When an electronic ballast is used to drive an LED lamp, an instantaneous surge current generated by the arc damages the LED lamp beads. Events in which LED beads are burned by arcs occur frequently.
One way of preventing arcs is to use a resettable fuse that protects against over-temperature. When a severe arc occurs and the temperature of the lamp head becomes high, the resettable fuse is disconnected and the arc is stopped. This passive form of anti-arc protection only works when the arc is severe. It has therefore been necessary to develop a new technology that prevent arcs in LED lamps. If an arc occurs between the pin and base of an LED lamp while the lamp is being operated, or if an arc occurs because the connectors inside the lamp tube are not connected well, the new technology can prevent damage to the LED lamp beads.
Provided is an LED lamp circuit, comprising an LED luminous component circuit, a rectifier circuit, and an output control circuit coupled between the LED luminous component circuit and the rectifier circuit. The LED luminous component circuit comprises at least one light-emitting diode. The rectifier circuit is configured to output a rectified voltage to the LED luminous component circuit. The output control circuit comprises a voltage regulator circuit and a control switch circuit. The voltage regulator circuit comprises a thermosensitive device and a voltage divider connected in series. The thermosensitive device can regulate the control voltage at both ends of the control switch circuit. To protect the LED lamp, the control switch circuit disconnects when the control voltage is less than the threshold voltage of the control switch circuit.
These and other features, aspects, and advantages of the present invention will become clearer once the following detailed description has been read with reference to the accompanying drawings, wherein like reference numerals refer to like parts throughout the drawings, where:
Unless otherwise defined, the technical and scientific terms used in the claims and specification are to be understood as they are usually by those skilled in the art to which the present invention pertains. “First”, “second”, and similar words used herein do not denote any order, quantity, or importance, but are merely intended to distinguish between different constituents. The terms “one”, “a”, and similar words are not meant to indicate a limit on quantity, but rather denote the presence of at least one. The approximate language used herein can be used for quantitative expressions, indicating that there is a certain amount of variation that can be allowed without changing the basic functions. Thus, numerical values that are corrected by language such as “approximately” or “about” are not limited to the exact value itself. Similarly, the terms “one”, “a”, and similar words are not meant to indicate a limit on quantity, but rather denote the presence of at least one. “Comprising”, “including”, and similar words indicate that the elements or articles preceding “comprising” or “consisting” encompass the elements or articles and all equivalent elements that follow “comprising” or “consisting”, without excluding any other elements or articles. “Connected”, “connection”, “coupled”, and similar words are not limited to a physical or mechanical connection, but may include direct or indirect electrical connections, thermal connections, thermally conductive connections, and thermally transmissive connections.
The present invention relates to an LED lamp circuit driven by an electronic ballast.
The high-frequency rectifier circuit 13 is a full-wave bridge rectifier circuit, comprising four rectifier diodes D1, D2, D3, and D4. The high-frequency rectifier circuit 13 is configured to regulate the voltage of the LED luminous component circuit 17, convert the high-frequency alternating current output from the electronic ballast 11 into a direct current, and output the regulated voltage and current required by both ends V+ and V− to drive the LED luminous component circuit 17.
The output control circuit 14 comprises a voltage regulator circuit 15 connected in parallel with the high-frequency rectifier circuit 13, and a control switch circuit 16 coupled between the voltage regulator circuit 15 and the LED luminous component circuit 17. The voltage regulator circuit 15 comprises a thermosensitive device 18 and a voltage divider 19 connected in series. The thermosensitive device 18 can regulate the control voltage at both ends of the control switch circuit 16. To protect the LED lamp, the control switch circuit 16 disconnects when the control voltage is less than the threshold voltage of the control switch circuit 16. In some embodiments of the present invention, the thermosensitive device 18 may comprise at least one negative temperature coefficient thermistor or at least one positive temperature coefficient thermistor. The voltage divider 19 comprises a voltage dividing resistor, a voltage regulator tube, or other voltage-regulating device that can perform voltage division. In the first embodiment shown in
The control switch circuit 16 comprises a field-effect transistor switching tube, which is connected in parallel with the thermosensitive device 18 (negative temperature coefficient thermistors NTC). The field-effect transistor switching tube comprises a gate G, a source S, and a drain D. The source S of the field-effect transistor switching tube is connected to one end of the thermosensitive device 18, and the gate G of the field-effect transistor switching tube is connected to the other end of the thermosensitive device 18, or in other words, connected between the thermosensitive device 18 and the voltage divider 19. The drain D of the field-effect transistor switching tube Q is connected to the LED luminous component circuit 17. The number of negative temperature coefficient thermistors NTC connected in parallel depends on the number of LED lamp pins. Generally, the number of LED lamp pins is the same as the number of negative temperature coefficient thermistors NTC connected in parallel. In the embodiment shown in
The LED luminous component circuit 17 comprises a light-emitting diode component, which comprises a plurality of light-emitting diodes LED1 to LEDN connected in series. The LED luminous component circuit 17 further comprises a filter capacitor C connected in parallel with the light-emitting diode component. One end (the anode) of the filter capacitor C is connected to one end of the voltage divider 19, and the two are then connected to the V+ output end of the high-frequency rectifier circuit 3. The other end (the cathode) of the filter capacitor C is connected to the drain D of the field-effect transistor switching tube Q. The anode of the light-emitting diode component is connected to the anode of the filter capacitor C. The cathode of the light-emitting diode component is connected to the cathode of the filter capacitor C, and the two are then connected to the drain D of the field-effect transistor switching tube Q. The filter capacitor C can reduce the ripple current of the light-emitting diodes LED1 to LEDN, so as to provider a better light-emitting effect.
According to
VGS=VLED/(1+R/(RNTC1// . . . //RNTCN))
When the electronic ballast 11 starts normal operations, the resistance value of the thermosensitive device 18 is very large. According to the above formula, the control voltage VGS of the field-effect transistor switching tube Q is sufficient. The field-effect transistor switching tube Q will be turned on, and the light-emitting diodes LED1 to LEDN will light up and work normally. If an arc occurs in the LED lamp, the temperature of the LED lamp pins increases, the resistance values of the negative temperature coefficient thermistors NTC decrease, and the resistance value of the thermosensitive device 18, that is, Rparallel=RNTC1//RNTC2//RNTC3//RNTC4 also decreases. According to the above formula VGS=VLED/(1+R/(RNTC1// . . . //RNTCN)) of the control voltage of the field-effect transistor switching tube Q, the control voltage VGS decreases accordingly. When the control voltage VGS is less than the turn-on threshold voltage of the field-effect transistor switching tube, the field-effect transistor switching tube is turned off, and the entire circuit is disconnected. No current flows through the entire circuit, thereby eliminating the arc and protecting the LED lamp.
In contrast to the first embodiment, in the second embodiment shown in
The control switch circuit 26 comprises a field-effect transistor switching tube, which is connected in series with the thermosensitive device 28 (which comprises the four positive temperature coefficient thermistors PTC that are connected in series). The field-effect transistor switching tube comprises a gate G, a source S, and a drain D. The gate G of the field-effect transistor switching tube is connected to one end of the voltage divider 29, or in other words, connected between the voltage divider 29 and the thermosensitive device 28. The source S of the field-effect transistor switching tube is connected to the other end of the voltage divider 29. The drain D of the field-effect transistor switching tube is connected to the LED luminous component circuit 7. The number of positive temperature coefficient thermistors PTC connected in series depends on the number of LED lamp pins. Generally, the number of LED lamp pins is the same as the number of positive temperature coefficient thermistors PTC connected in series. In the embodiment shown in
According to
VGS=VLED/(1+(RPTC1+ . . . +RPTC4)/R)
When the electronic ballast 21 starts normal operations, the resistance value of the thermosensitive device 28 (which comprises the positive temperature coefficient thermistors PTC connected in series) is very small. According to the above formula, the control voltage VGS of the field-effect transistor switching tube Q is sufficient. The field-effect transistor switching tube Q will be turned on, and the light-emitting diodes LED1 to LEDN will light up and work normally. If an arc occurs in the LED lamp, the temperature of the LED lamp pins increases, the resistance values of the positive temperature coefficient thermistors PTC increase, and the resistance value of the thermosensitive device 28, that is, Rseries=RPTC1+RPTC2+RPTC3+RPTC4 also increases. According to the above formula VGS=VLED/(1+(RPTC1+ . . . +RPTC4)/R) of the control voltage of the field-effect transistor switching tube Q, the control voltage VGS decreases accordingly. When the control voltage VGS is less than the turn-on threshold voltage of the field-effect transistor switching tube Q, the field-effect transistor switching tube Q is turned off, and the entire circuit is disconnected. No current flows through the entire circuit, thereby eliminating the arc and protecting the LED lamp.
The description uses specific embodiments to describe the present invention, including the best mode, and can help any person skilled in the art perform experimental operations. These operations include using any device and system and using any specific method. The patentable scope of the present invention is defined by the claims, and may include other examples that occur in the art. Other examples are considered to be within the scope of the claims of the invention if they are not structurally different from the literal language of the claims or they have equivalent structures as described in the claims.
Number | Date | Country | Kind |
---|---|---|---|
201710378151.4 | May 2017 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/033621 | 5/21/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/217609 | 11/29/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3187576 | Beeston, Jr. | Jun 1965 | A |
3623367 | Benedict | Nov 1971 | A |
3777234 | Luger | Dec 1973 | A |
4301407 | Koslar | Nov 1981 | A |
5354965 | Lee | Oct 1994 | A |
6111739 | Wu et al. | Aug 2000 | A |
8330381 | Langovsky | Dec 2012 | B2 |
8896235 | Shum | Nov 2014 | B1 |
9243757 | Barnetson et al. | Jan 2016 | B2 |
20070040696 | Mubaslat | Feb 2007 | A1 |
20080130288 | Catalano | Jun 2008 | A1 |
20090100924 | Zimmermann | Apr 2009 | A1 |
20100039794 | Ghanem et al. | Feb 2010 | A1 |
20110298374 | Lenk | Dec 2011 | A1 |
20110304201 | Sun | Dec 2011 | A1 |
20120038289 | Jee et al. | Feb 2012 | A1 |
20130141004 | Wu | Jun 2013 | A1 |
20150208470 | Tsai | Jul 2015 | A1 |
20150382420 | Sakai | Dec 2015 | A1 |
20160172898 | Willemin | Jun 2016 | A1 |
20160226393 | Haas | Aug 2016 | A1 |
20170184840 | Yin | Jun 2017 | A1 |
20180183315 | Lin | Jun 2018 | A1 |
20180301073 | Fei | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
2643538 | Sep 2004 | CN |
203840609 | Sep 2014 | CN |
104545479 | Apr 2015 | CN |
2015215214 | Dec 2015 | JP |
15066566 | May 2015 | WO |
Entry |
---|
Chinese Office Action dated Aug. 19, 2019 which was issued in connection with CN201710378151.4 which was filed on May 25, 2017. |
International Search Report and Written Opinion dated Nov. 15, 2018 which was issued in connection with PCT/US18/33621 which was filed on May 21, 2018. |
Number | Date | Country | |
---|---|---|---|
20200137854 A1 | Apr 2020 | US |