Field of the Invention
This invention relates to solid state lamps and bulbs and in particular to efficient and reliable light emitting diode (LED) based lamps having active elements to assist in dissipating heat from the lamps and bulbs during operation.
Description of the Related Art
Incandescent or filament-based lamps or bulbs are commonly used as light sources for both residential and commercial facilities. However, such lamps are highly inefficient light sources, with as much as 95% of the input energy lost, primarily in the form of heat or infrared energy. One common alternative to incandescent lamps, so-called compact fluorescent lamps (CFLs), are more effective at converting electricity into light but require the use of toxic materials which, along with its various compounds, can cause both chronic and acute poisoning and can lead to environmental pollution. One solution for improving the efficiency of lamps or bulbs is to use solid state devices such as light emitting diodes (LED or LEDs), rather than metal filaments, to produce light.
Light emitting diodes generally comprise one or more active layers of semiconductor material sandwiched between oppositely doped layers. When a bias is applied across the doped layers, holes and electrons are injected into the active layer where they recombine to generate light. Light is emitted from the active layer and from various surfaces of the LED.
In order to use an LED chip in a circuit or other like arrangement, it is known to enclose an LED chip in a package to provide environmental and/or mechanical protection, color selection, light focusing and the like. An LED package also includes electrical leads, contacts or traces for electrically connecting the LED package to an external circuit. In a typical LED package 10 illustrated in
A conventional LED package 20 illustrated in
LED chips, such as those found in the LED package 20 of
LED chips which have a conversion material in close proximity or as a direct coating have been used in a variety of different packages, but experience some limitations based on the structure of the devices. When the phosphor material is on or in close proximity to the LED epitaxial layers (and in some instances comprises a conformal coat over the LED), the phosphor can be subjected directly to heat generated by the chip which can cause the temperature of the phosphor material to increase. Further, in such cases the phosphor can be subjected to very high concentrations or flux of incident light from the LED. Since the conversion process is in general not 100% efficient, excess heat is produced in the phosphor layer in proportion to the incident light flux. In compact phosphor layers close to the LED chip, this can lead to substantial temperature increases in the phosphor layer as large quantities of heat are generated in small areas. This temperature increase can be exacerbated when phosphor particles are embedded in low thermal conductivity material such as silicone which does not provide an effective dissipation path for the heat generated within the phosphor particles. Such elevated operating temperatures can cause degradation of the phosphor and surrounding materials over time, as well as a reduction in phosphor conversion efficiency and a shift in conversion color.
Lamps have also been developed utilizing solid state light sources, such as LEDs, in combination with a conversion material that is separated from or remote to the LEDs. Such arrangements are disclosed in U.S. Pat. No. 6,350,041 to Tarsa et al., entitled “High Output Radial Dispersing Lamp Using a Solid State Light Source.” The lamps described in this patent can comprise a solid state light source that transmits light through a separator to a disperser having a phosphor. The disperser can disperse the light in a desired pattern and/or changes its color by converting at least some of the light to a different wavelength through a phosphor or other conversion material. In some embodiments the separator spaces the light source a sufficient distance from the disperser such that heat from the light source will not transfer to the disperser when the light source is carrying elevated currents necessary for room illumination. Additional remote phosphor techniques are described in U.S. Pat. No. 7,614,759 to Negley et al., entitled “Lighting Device.”
One potential disadvantage of lamps incorporating remote phosphors is that they can have undesirable visual or aesthetic characteristics. When the lamps are not generating light the lamp can have a surface color that is different from the typical white or clear appearance of the standard Edison bulb. In some instances the lamp can have a yellow or orange appearance, primarily resulting from the phosphor conversion material. This appearance can be considered undesirable for many applications where it can cause aesthetic issues with the surrounding architectural elements when the light is not illuminated. This can have a negative impact on the overall consumer acceptance of these types of lamps.
Further, compared to conformal or adjacent phosphor arrangements where heat generated in the phosphor layer during the conversion process may be conducted or dissipated via the nearby chip or substrate surfaces, remote phosphor arrangements can be subject to inadequate thermally conductive heat dissipation paths. Without an effective heat dissipation pathway, thermally isolated remote phosphors may suffer from elevated operating temperatures that in some instances can be even higher than the temperature in comparable conformal coated layers. This can offset some or all of the benefit achieved by placing the phosphor remotely with respect to the chip. Stated differently, remote phosphor placement relative to the LED chip can reduce or eliminate direct heating of the phosphor layer due to heat generated within the LED chip during operation, but the resulting phosphor temperature decrease may be offset in part or entirely due to heat generated in the phosphor layer itself during the light conversion process and lack of a suitable thermal path to dissipate this generated heat.
Another issue affecting the implementation and acceptance of lamps utilizing solid state light sources relates to the nature of the light emitted by the light source itself. In order to fabricate efficient lamps or bulbs based on LED light sources (and associated conversion layers), it is typically desirable to place the LED chips or packages in a co-planar arrangement. This facilitates manufacture and can reduce manufacturing costs by allowing the use of conventional production equipment and processes. However, co-planar arrangements of LED chips typically produce a forward directed light intensity profile (e.g., a Lambertian profile). Such beam profiles are generally not desired in applications where the solid-state lamp or bulb is intended to replace a conventional lamp such as a traditional incandescent bulb, which has a much more omnidirectional beam pattern. While it is possible to mount the LED light sources or packages in a three-dimensional arrangement, such arrangements are generally difficult and expensive to fabricate.
As mentioned, lamps having LED chips with a conversion material in close proximity or as a direct coating have, as well as remote conversion materials can suffer from increased temperature, particularly at high current operation. The LED chips can also generate heat and can suffer from the detrimental effects of heat build-up. Lamps can comprise heat sinks to draw heat away from the LED chips and/or conversion material, but even these lamps can suffer from inadequate heat dissipation. Good heat dissipation with well controlled LED chip junction temperature presents a unique challenge for solid state lighting solutions in comparison with traditional incandescent and fluorescent lighting. Current lamp technologies almost exclusively use pure natural convection to dissipate the lamp. It is often the case that the convective heat dissipation into the ambient air can be the biggest thermal dissipation bottleneck of the luminaire system. This can be especially true for smaller luminaires with a limited form factor where the size of the heat sink is limited, such as with A-bulb replacement. The high convective thermal resistance results at least partially from weak natural convection where heat is carried away only by the buoyancy flow of the ambient air. The buoyancy flow is typically very slow, especially for small sized objects.
The present invention provides solid state lamps and bulbs that can operate with a significant reduction in convective thermal resistance without significantly increasing the size of the lamp or bulb or their power consumption. The different embodiments can be arranged to enhance the convective heat transfer around elements of the lamp by including active elements to disturb or agitate the air around these elements. The lamps according to the present invention can have many different components, including but not limited to different combinations and arrangements of a light source, one or more wavelength conversion materials, regions or layers which are positioned separately or remotely with respect to the light source, and a separate diffusing layer.
One embodiment of a solid state light source according to the present invention comprises a light emitting diode (LED) and a heat sink with the LED in thermal contact with the heat sink. The lamp further comprises an active agitation mechanism arranged to reduce the convective thermal resistance of at least some lamp elements. In some embodiments, the agitation mechanism can comprise an integral fan.
Another embodiment of a solid state light source according to the present invention comprises a plurality of light emitting diodes (LEDs) and a heat sink arranged in relation to the LEDs so that the LEDs are in thermal contact with the heat sink. An integral fan is arranged to flow air over the surfaces of the heat sink to reduce the convective thermal resistance of the heat sink.
Still another embodiment of a solid state light source according to the present invention comprises a plurality of LEDs and a heat sink arranged in relation to the LEDs so that the LEDs are in thermal contact with the heat sink. A fan is included that is internal to the lamp and arranged flow air over the surfaces of the lamp to reduce the convective thermal resistance at the surfaces.
Another embodiment of a solid state light source according to the present invention comprises a plurality of LEDs and a heat sink having a heat sink core. The LEDs are arranged on and in thermal contact with the heat sink. A fan is arranged within said heat sink core, and a base is included having drive electronics. The base is mounted to the heat sink and at least partially within the heat sink core. A diffuser dome is mounted on the heat sink over the LEDs, with the fan drawing air into the heat sink core and flowing air into the diffuser cavity.
These and other aspects and advantages of the invention will become apparent from the following detailed description and the accompanying drawings which illustrate by way of example the features of the invention.
The present invention is directed to improved solid state lamp or bulb structures that are efficient, reliable and cost effective. In some embodiments, the lamps according to the present invention can provide an essentially omnidirectional emission pattern from solid state light sources, while still having features that allow the lamps and their light sources to operate at reasonable temperatures. Some lamps can have light sources that comprise directional emitting light sources, such as forward emitting light sources, with the lamps including features to disperse the directional light source to a more uniform emission suitable for lamps. To allow operation at acceptable temperatures, the lamp structures can comprise active elements to assist in thermal management of the lamp structures and to reduce the convective thermal resistance around certain of the lamp elements. Reducing thermal resistance can increase the natural heat convection away from the lamp.
Some embodiments comprise LED based lamps or LED based A-bulb replacements that include a heat sink to draw heat away from the LED chips or conversion material. Some embodiments can comprise heat sinks with fins, but it is understood that different embodiments can have heat sinks without fins. It is also understood that other lamps can be provided without heat sinks, with the active thermal management elements allowing for operation at reasonable temperature without the assistance of a heat sink. For example, the active element, such as a fan, could be within a housing, and the active element can direct flow of ambient through holes and/or channels in and/or within the housing where the holes and/or channels are made in a poor thermally conductive material, such as a plastic.
It is also understood that heat sinks can be included in different locations within the lamp, such as fully or partially within the lamp housing, optical cavity or in the threaded screw portion. The active elements can be arranged to move or agitate air internal or external to the lamp elements to assist in reducing thermal resistance. It is further understood that portions of the lamp such as the housing, threaded screw portion, and portions of the optical cavity, can comprise plastic or insulating materials, with the active elements assisting in thermal dissipation from these elements with or without the assistance of thermally conductive material such as a heat sink.
In some embodiments having a heat sink, the convective thermal resistance can measure greater than 8° C./W when measured as a bare heat sink, and this can increase to greater than 10° C./W when the heat sink is integrated into a lamp or bulb. This relatively high convective thermal resistance can result from the weak natural convection where heat is carried away by the buoyancy flow of the ambient air. The buoyancy flow of air is typically very slow, especially for small geometries like typical lamps or bulbs. The heat sink convective thermal resistance can be much larger than the LED junction to heat sink conductive thermal resistance, and as a result, can be the most significant bottleneck of the system thermal pathway.
The present invention can comprise many different mechanisms to reduce convective thermal resistance and to reduce this bottleneck, such as mechanisms to move or agitate the air around elements of the lamp. In some embodiments, an integral fan element can be included in the lamp or bulb to provide air agitation or forced convection over portions of the lamp. Other mechanisms can be used to move or agitate the air, including but not limited to a vibrating diaphragm or jet induced flow. In still other embodiments, these devices can be used to move other cooling matters or materials over elements of the lamp to reduce thermal resistance.
Even relatively small amounts of air blown over portions of the lamp or bulb can markedly reduce the system convective thermal resistance. This can result in lower junction temperature of the LEDs and that of phosphor materials, leading to better luminous efficiency of the system and better reliability. A better thermal system can also allow the LEDs to be driven at higher current, thereby reducing the LED cost per lumen output. While pure natural convection in air typically provides a convective heat transfer coefficient of approximately 5 W/m2-K, forced convection can increase the coefficient by one or even two orders of magnitude.
The fans used in the lamps according to the present invention should have a long lifetime, should consume a minimal amount of power, and should be as quiet as possible. In addition, the fans can be provided as part of a lamp that is modular in design. That is, if the fan or drive electronics fail before other components of the lamp, they can be easily removed and replaced.
The fans can be provided as part of the lamp in many different locations to provide airflow over different portions of the lamp. In some embodiments, the fan can be arranged to provide airflow over the heat sink to agitate the air around the heat sink. In those lamp embodiments where the heat sink has fins, the air from the fans can be arranged to agitate or break stagnant air that can build-up between the fins. This can be particularly important in embodiments having a small form factor with small space between adjacent fins. The implementation of a fan can provide the additional advantage of allowing for more heat sink fins with smaller spaces between adjacent fins.
In other embodiments, the fans can be integral to the lamp such that ambient air is drawn into internal spaces within the lamp, including internal to the heat sink or lamp bulb. In these embodiments, an air passage can be provided that allows air into the lamp, and also to allow air from within the bulb to pass out of the bulb. These fan arrangements provide a stream of air passing from outside the bulb, into the bulb and then out again. This can result in air flowing through the bulb agitating the air therein and thereby reducing thermal resistance over elements of the lamp. In some embodiments, the air can flow over the LEDs internal to the bulb, thereby reducing thermal resistance over the LEDs. This can also allow the LEDs to operate at a lower temperature. In different embodiments having a heat sink, air can also flow over the heat sink as it is drawn into the bulb, and/or as it flows out of the bulb. The air flow can also pass over other components, such as drive electronics.
The fans can be included in many different lamps, but are particularly applicable to solid state emitters with remote conversion materials (or phosphors) and remote diffusing elements or diffuser. In some embodiments, the diffuser not only serves to mask the phosphor from the view by the lamp user, but can also disperse or redistribute the light from the remote phosphor and/or the lamp's light source into a desired emission pattern. In some of these embodiments the diffuser dome can be arranged to disperse forward directed emission pattern into a more omnidirectional pattern useful for general lighting applications. The diffuser can be used in embodiments having two-dimensional as well as three-dimensional shaped remote conversion materials, such as globe or dome shaped. This combination of features provides the capability of transforming forward directed emission from an LED light source into a beam profile comparable with standard incandescent bulbs.
In some of these lamp embodiments, air inlets and outlets can be provided to allow air in and out of the space within the diffuser and/or the remote phosphor. The active elements can provide improved thermal arrangement by being positioned relative to an inlet(s) to the inner volume of a diffuser and/or phosphor to move or agitate air within the volumes. One or more outlets can be spaced from the inlets to allow an air path out of the diffuser and/or conversion material volumes. In different embodiments, inlet(s) and outlet(s) can be arranged such that the air path passes over different lamp elements, such as the LEDs, driver circuitry, prior to passing out of the outlet(s). In lamps having a diffuser dome and a conversion material dome, the air path can be through both before passing out. In other embodiments it can be over the driver circuitry and heat sink before going into the volume between the diffuser and the conversion material dome, after which it passes out through the outlet(s). In some lamps there could be different inlet outlets for each dome. The outlets can be positioned relative to the heat sink or the heat sink could be in any part of the air path when passing in and/or out.
The present invention is described herein with reference to conversion materials, wavelength conversion materials, remote phosphors, phosphors, phosphor layers and related terms. The use of these terms should not be construed as limiting. It is understood that the use of the term remote phosphors, phosphor or phosphor layers is meant to encompass and be equally applicable to all wavelength conversion materials.
Some embodiments of lamps can have a dome-shaped (or frusto-spherical shaped) three dimensional conversion material over and spaced apart from the light source, and a dome-shaped diffuser spaced apart from and over the conversion material, such that the lamp exhibits a double-dome structure. The spaces between the various structures can comprise light mixing chambers that can promote not only dispersion of, but also color uniformity of the lamp emission. The space between the light source and conversion material, as well as the space between the conversion material, can serve as light mixing chambers. Other embodiments can comprise additional conversion materials or diffusers that can form additional mixing chambers. The order of the dome conversion materials and dome shaped diffusers can be different such that some embodiments can have a diffuser inside a conversion material, with the spaces between forming light mixing chambers. These are only a few of the many different conversion materials and diffuser arrangements according to the present invention.
Some lamp embodiments according to the present invention can comprise a light source having a co-planar arrangement of one or more LED chips or packages, with the emitters being mounted on a flat or planar surface. In other embodiments, the LED chips can be non co-planar, such as being on a pedestal or other three-dimensional structure. Co-planar light sources can reduce the complexity of the emitter arrangement, making them both easier and cheaper to manufacture. Co-planar light sources, however, tend to emit primarily in the forward direction such as in a Lambertian emission pattern. In different embodiments it can be desirable to emit a light pattern mimicking that of conventional incandescent light bulbs that can provide a near uniform emission intensity and color uniformity at different emission angles. Different embodiments of the present invention can comprise features that can transform the emission pattern from the non-uniform to substantially uniform within a range of viewing angles.
In some embodiments, a conversion layer or region that can comprise a phosphor carrier that can comprise a thermally conductive material that is at least partially transparent to light from the light source, and at least one phosphor material each of which absorbs light from the light source and emits a different wavelength of light. The diffuser can comprise a scattering film/particles and associated carrier such as a glass enclosure, and can serve to scatter or re-direct at least some of the light emitted by the light source and/or phosphor carrier to provide a desired beam profile. In some embodiments the lamps according to the present invention can emit a beam profile compatible with standard incandescent bulbs.
The properties of the diffuser, such as geometry, scattering properties of the scattering layer, surface roughness or smoothness, and spatial distribution of the scattering layer properties may be used to control various lamp properties such as color uniformity and light intensity distribution as a function of viewing angle. By masking the phosphor carrier and other internal lamp features the diffuser that provides a desired overall lamp appearance when the lamp or bulb is not illuminated.
As mentioned, a heat sink or heat sink structure can be included which can be in thermal contact with the light source and with the phosphor carrier in order to dissipate heat generated within the light source and phosphor layer into the surrounding ambient. Electronic circuits may also be included to provide electrical power to the light source and other capabilities such as dimming, etc., and the circuits may include a means by which to apply power to the lamp, such as an Edison socket, etc.
Different embodiments of the lamps can have many different shapes and sizes, with some embodiments having dimensions to fit into standard size envelopes, such as the A19 size envelope 30 as shown in
In some embodiments the light sources can comprise solid state light sources, such as different types of LEDs, LED chips or LED packages. In some embodiments a single LED chip or package can be used, while in others multiple LED chips or packages can be used arranged in different types of arrays. By having the phosphor thermally isolated from LED chips and with good thermal dissipation, the LED chips can be driven by higher current levels without causing detrimental effects to the conversion efficiency of the phosphor and its long term reliability. This can allow for the flexibility to overdrive the LED chips to lower the number of LEDs needed to produce the desired luminous flux. This in turn can reduce the cost on complexity of the lamps. These LED packages can comprise LEDs encapsulated with a material that can withstand the elevated luminous flux or can comprise unencapsulated LEDs.
In some embodiments the light source can comprise one or more blue emitting LEDs and the phosphor layer in the phosphor carrier can comprise one or more materials that absorb a portion of the blue light and emit one or more different wavelengths of light such that the lamp emits a white light combination from the blue LED and the conversion material. The conversion material can absorb the blue LED light and emit different colors of light including but not limited to yellow and green. The light source can also comprise different LEDs and conversion materials emitting different colors of light so that the lamp emits light with the desired characteristics such as color temperature and color rendering.
Conventional lamps incorporating both red and blue LEDs chips can be subject to color instability with different operating temperatures and dimming. This can be due to the different behaviors of red and blue LEDs at different temperature and operating power (current/voltage), as well as different operating characteristics over time. This effect can be mitigated somewhat through the implementation of an active control system that can add cost and complexity to the overall lamp. Different embodiments according to the present invention can address this issue by having a light source with the same type of emitters in combination with a remote phosphor carrier that can comprise multiple layers of phosphors that remain relatively cool through the thermal dissipation arrangements disclosed herein. In some embodiments, the remote phosphor carrier can absorb light from the emitters and can re-emit different colors of light, while still experiencing the efficiency and reliability of reduced operating temperature for the phosphors.
The separation of the phosphor elements from the LEDs provides that added advantage of easier and more consistent color binning. This can be achieved in a number of ways. LEDs from various bins (e.g. blue LEDs from various bins) can be assembled together to achieve substantially wavelength uniform excitation sources that can be used in different lamps. These can then be combined with phosphor carriers having substantially the same conversion characteristics to provide lamps emitting light within the desired bin. In addition, numerous phosphor carriers can be manufactured and pre-binned according to their different conversion characteristics. Different phosphor carriers can be combined with light sources emitting different characteristics to provide a lamp emitting light within a target color bin.
Some lamps according to the present invention can also provide for improved emission efficiency by surrounding the light source by a reflective surface. This results in enhanced photon recycling by reflecting much of the light re-emitted from the conversion material back toward the light source. To further enhance efficiency and to provide the desired emission profile, the surfaces of the phosphor layer, carrier layer or diffuser can be smooth or scattering. In some embodiments, the internal surfaces of the carrier layer and diffuser can be optically smooth to promote total internal reflecting behavior that reduces the amount of light directed backward from the phosphor layer (either downconverted light or scattered light). This reduces the amount of backward emitted light that can be absorbed by the lamp's LED chips, associated substrate, or other non-ideal reflecting surfaces within the interior of the lamp.
The present invention is described herein with reference to certain embodiments, but it is understood that the invention can be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. In particular, the present invention is described below in regards to certain lamps having one or multiple LEDs or LED chips or LED packages in different configurations, but it is understood that the present invention can be used for many other lamps having many different configurations. The embodiments below are described with reference to LED of LEDs, but it is understood that this is meant to encompass LED chips and LED packages. The components can have different shapes and sizes beyond those shown and different numbers of LEDs can be included. It is also understood that the embodiments described below are utilize co-planar light sources, but it is understood that non co-planar light sources can also be used. It is also understood that the lamp's LED light source may be comprised of one or multiple LEDs, and in embodiments with more than one LED, the LEDs may have different emission wavelengths. Similarly, some LEDs may have adjacent or contacting phosphor layers or regions, while others may have either adjacent phosphor layers of different composition or no phosphor layer at all.
The present invention is described herein with reference to conversion materials, phosphor layers and phosphor carriers and diffusers being remote to one another. Remote in this context refers being spaced apart from and/or to not being on or in direct thermal contact.
It is also understood that when an element such as a layer, region or substrate is referred to as being “on” another element, it can be directly on the other element or intervening elements may also be present. Furthermore, relative terms such as “inner”, “outer”, “upper”, “above”, “lower”, “beneath”, and “below”, and similar terms, may be used herein to describe a relationship of one layer or another region. It is understood that these terms are intended to encompass different orientations of the device in addition to the orientation depicted in the figures.
Although the terms first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.
Embodiments of the invention are described herein with reference to cross-sectional view illustrations that are schematic illustrations of embodiments of the invention. As such, the actual thickness of the layers can be different, and variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances are expected. Embodiments of the invention should not be construed as limited to the particular shapes of the regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. A region illustrated or described as square or rectangular will typically have rounded or curved features due to normal manufacturing tolerances. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region of a device and are not intended to limit the scope of the invention.
The light source 58 can be mounted to the platform using many different known mounting methods and materials with light from the light source 58 emitting out the top opening of the cavity 54. In some embodiments light source 58 can be mounted directly to the platform 56, while in other embodiments the light source can be included on a submount or printed circuit board (PCB) that is then mounted to the platform 56. The platform 56 and the heat sink structure 52 can comprise electrically conductive paths for applying an electrical signal to the light source 58, with some of the conductive paths being conductive traces or wires. Portions of the platform 56 can also be made of a thermally conductive material and in some embodiments heat generated during operation aan spread to the platform and then to the heat sink structure.
The heat sink structure 52 can at least partially comprise a thermally conductive material, and many different thermally conductive materials can be used including different metals such as copper or aluminum, or metal alloys. Copper can have a thermal conductivity of up to 400 W/m-k or more. In some embodiments the heat sink can comprise high purity aluminum that can have a thermal conductivity at room temperature of approximately 210 W/m-k. In other embodiments the heat sink structure can comprise die cast aluminum having a thermal conductivity of approximately 200 W/m-k. The heat sink structure 52 can also comprise other heat dissipation features such as heat fins 60 that increase the surface area of the heat sink to facilitate more efficient dissipation into the ambient. In some embodiments, the heat fins 60 can be made of material with higher thermal conductivity than the remainder of the heat sink. In the embodiment shown the fins 60 are shown in a generally horizontal orientation, but it is understood that in other embodiments the fins can have a vertical or angled orientation. In still other embodiments, the heat sink can comprise active cooling elements, such as fans, to lower the convective thermal resistance within the lamp. In some embodiments, heat dissipation from the phosphor carrier is achieved through a combination of convection thermal dissipation and conduction through the heat sink structure 52. Different heat dissipation arrangements and structures are described in U.S. Provisional Patent Application Ser. No. 61/339,516, to Tong et al., filed on Mar. 3, 2010, entitled “LED Lamp Incorporating Remote Phosphor with Heat Dissipation Features,” also assigned to Cree, Inc. This application is incorporated herein by reference.
Reflective layers 53 can also be included on the heat sink structure 52, such as on the surface of the optical cavity 54. In those embodiments not having an optical cavity the reflective layers can be included around the light source. In some embodiments the surfaces can be coated with a material having a reflectivity of approximately 75% or more to the lamp visible wavelengths of light emitted by the light source 58 and/or wavelength conversion material (“the lamp light”), while in other embodiments the material can have a reflectivity of approximately 85% or more to the lamp light. In still other embodiments the material can have a reflectivity to the lamp light of approximately 95% or more.
The heat sink structure 52 can also comprise features for connecting to a source of electricity such as to different electrical receptacles. In some embodiments the heat sink structure can comprise a feature of the type to fit in conventional electrical receptacles. For example, it can include a feature for mounting to a standard Edison socket, which can comprise a screw-threaded portion which can be screwed into an Edison socket. In other embodiments, it can include a standard plug and the electrical receptacle can be a standard outlet, or can comprise a GU24 base unit, or it can be a clip and the electrical receptacle can be a receptacle which receives and retains the clip (e.g., as used in many fluorescent lights). These are only a few of the options for heat sink structures and receptacles, and other arrangements can also be used that safely deliver electricity from the receptacle to the lamp 50. The lamps according to the present invention can comprise a power supply or power conversion unit that can comprise a driver to allow the bulb to run from an AC line voltage/current and to provide light source dimming capabilities. In some embodiments, the power supply can comprise an offline constant-current LED driver using a non-isolated quasi-resonant flyback topology. The LED driver can fit within the lamp and in some embodiments can comprise a less than 25 cubic centimeter volume, while in other embodiments it can comprise an approximately 20 cubic centimeter volume. In some embodiments the power supply can be non-dimmable but is low cost. It is understood that the power supply used can have different topology or geometry and can be dimmable as well.
A phosphor carrier 62 is included over the top opening of the cavity 54 and a dome shaped diffuser 76 is included over the phosphor carrier 62. In the embodiment shown phosphor carrier covers the entire opening and the cavity opening is shown as circular and the phosphor carrier 62 is a circular disk. It is understood that the cavity opening and the phosphor carrier can be many different shapes and sizes. It is also understood that the phosphor carrier 62 can cover less than all of the cavity opening. As further described below, the diffuser 76 is arranged to disperse the light from the phosphor carrier and/or LED into the desired lamp emission pattern and can comprise many different shapes and sizes depending on the light it receives from and the desired lamp emission pattern.
Embodiments of phosphor carriers according to the present invention can be characterized as comprising a conversion material and thermally conductive light transmitting material, but it is understood that phosphor carriers can also be provided that are not thermally conductive. The light transmitting material can be transparent to the light emitted from the light source 54 and the conversion material should be of the type that absorbs the wavelength of light from the light source and re-emits a different wavelength of light. In the embodiment shown, the thermally conductive light transmitting material comprises a carrier layer 64 and the conversion material comprises a phosphor layer 66 on the phosphor carrier. As further described below, different embodiments can comprise many different arrangements of the thermally conductive light transmitting material and the conversion material.
When light from the light source 58 is absorbed by the phosphor in the phosphor layer 66 it is re-emitted in isotropic directions with approximately 50% of the light emitting forward and 50% emitting backward into the cavity 54. In prior LEDs having conformal phosphor layers, a significant portion of the light emitted backwards can be directed back into the LED and its likelihood of escaping is limited by the extraction efficiency of the LED structure. For some LEDs the extraction efficiency can be approximately 70%, so a percentage of the light directed from the conversion material back into the LED can be lost. In the lamps according to the present invention having the remote phosphor configuration with LEDs on the platform 56 at the bottom of the cavity 54 a higher percentage of the backward phosphor light strikes a surface of the cavity instead of the LED. Coating these services with a reflective layer 53 increases the percentage of light that reflects back into the phosphor layer 66 where it can emit from the lamp. These reflective layers 53 allow for the optical cavity to effectively recycle photons, and increase the emission efficiency of the lamp. It is understood that the reflective layer can comprise many different materials and structures including but not limited to reflective metals or multiple layer reflective structures such as distributed Bragg reflectors. Reflective layers can also be included around the LEDs in those embodiments not having an optical cavity.
The carrier layer 64 can be made of many different materials having a thermal conductivity of 0.5 W/m-k or more, such as quartz, silicon carbide (SiC) (thermal conductivity ˜120 W/m-k), glass (thermal conductivity of 1.0-1.4 W/m-k) or sapphire (thermal conductivity of ˜40 W/m-k). In other embodiments, the carrier layer 64 can have thermal conductivity greater than 1.0 W/m-k, while in other embodiments it can have thermal conductivity of greater than 5.0 W/m-k. In still other embodiments it can have a thermal conductivity of greater that 10 W/m-k. In some embodiments the carrier layer can have thermal conductivity ranging from 1.4 to 10 W/m-k. The phosphor carrier can also have different thicknesses depending on the material being used, with a suitable range of thicknesses being 0.1 mm to 10 mm or more. It is understood that other thicknesses can also be used depending on the characteristics of the material for the carrier layer. The material should be thick enough to provide sufficient lateral heat spreading for the particular operating conditions. Generally, the higher the thermal conductivity of the material, the thinner the material can be while still providing the necessary thermal dissipation. Different factors can impact which carrier layer material is used including but not limited to cost and transparency to the light source light. Some materials may also be more suitable for larger diameters, such as glass or quartz. These can provide reduced manufacturing costs by formation of the phosphor layer on the larger diameter carrier layers and then singulation into the smaller carrier layers.
Many different phosphors can be used in the phosphor layer 66 with the present invention being particularly adapted to lamps emitting white light. As described above, in some embodiments the light source 58 can be LED based and can emit light in the blue wavelength spectrum. The phosphor layer can absorb some of the blue light and re-emit yellow. This allows the lamp to emit a white light combination of blue and yellow light. In some embodiments, the blue LED light can be converted by a yellow conversion material using a commercially available YAG:Ce phosphor, although a full range of broad yellow spectral emission is possible using conversion particles made of phosphors based on the (Gd,Y)3(Al,Ga)5O12:Ce system, such as the Y3Al5O12:Ce (YAG). Other yellow phosphors that can be used for creating white light when used with a blue emitting LED based emitter include but not limited to:
Tb3,RExO12:Ce(TAG); RE=Y, Gd, La, Lu; or
Sr2-x-yBaxCaySiO4:Eu.
The phosphor layer can also be arranged with more than one phosphor either mixed in with the phosphor layer 66 or as a second phosphor layer on the carrier layer 64. In some embodiments, each of the two phosphors can absorb the LED light and can re-emit different colors of light. In these embodiments, the colors from the two phosphor layers can be combined for higher CRI white of different white hue (warm white). This can include light from yellow phosphors above that can be combined with light from red phosphors. Different red phosphors can be used including:
SrxCa1-xS:Eu, Y; Y=halide;
CaSiAlN3:Eu; or
Sr2-yCaySiO4:Eu
Other phosphors can be used to create color emission by converting substantially all light to a particular color. For example, the following phosphors can be used to generate green light:
SrGa2S4:Eu;
Sr2-yBaySiO4:Eu; or
SrSi2O2N2:Eu.
The following lists some additional suitable phosphors used as conversion particles phosphor layer 66, although others can be used. Each exhibits excitation in the blue and/or UV emission spectrum, provides a desirable peak emission, has efficient light conversion, and has acceptable Stokes shift:
Yellow/Green
(Sr,Ca,Ba)(Al,Ga)2S4:Eu2+
Ba2(Mg,Zn)Si2O7:Eu2+
Gd0.46Sr0.31Al1.23OxF1.38:Eu2+0.06
(Ba1-x-ySrxCay)SiO4:Eu
Ba2SiO4:Eu2+
Red
Lu2O3:Eu3+
(Sr2-xLax)(Ce1-xEuxO4
Sr2Ce1-xEuxO4
Sr2-xEuxCeO4
SrTiO3:Pr3+,Ga3+
CaAlSiN3:Eu2+
Sr2Si5N8:Eu2+
Different sized phosphor particles can be used including but not limited to particles in the range of 10 nanometers (nm) to 30 micrometers (μm), or larger. Smaller particle sizes typically scatter and mix colors better than larger sized particles to provide a more uniform light. Larger particles are typically more efficient at converting light compared to smaller particles, but emit a less uniform light. In some embodiments, the phosphor can be provided in the phosphor layer 66 in a binder, and the phosphor can also have different concentrations or loading of phosphor materials in the binder. A typical concentration being in a range of 30-70% by weight. In one embodiment, the phosphor concentration is approximately 65% by weight, and is preferably uniformly dispersed throughout the remote phosphor. The phosphor layer 66 can also have different regions with different conversion materials and different concentrations of conversion material.
Different materials can be used for the binder, with materials preferably being robust after curing and substantially transparent in the visible wavelength spectrum. Suitable materials include silicones, epoxies, glass, inorganic glass, dielectrics, BCB, polymides, polymers and hybrids thereof, with the preferred material being silicone because of its high transparency and reliability in high power LEDs. Suitable phenyl- and methyl-based silicones are commercially available from Dow® Chemical. The binder can be cured using many different curing methods depending on different factors such as the type of binder used. Different curing methods include but are not limited to heat, ultraviolet (UV), infrared (IR) or air curing.
Phosphor layer 66 can be applied using different processes including but not limited to spin coating, sputtering, printing, powder coating, electrophoretic deposition (EPD), electrostatic deposition, among others. As mentioned above, the phosphor layer 66 can be applied along with a binder material, but it is understood that a binder is not required. In still other embodiments, the phosphor layer 66 can be separately fabricated and then mounted to the carrier layer 64.
In one embodiment, a phosphor-binder mixture can be sprayed or dispersed over the carrier layer 64 with the binder then being cured to form the phosphor layer 66. In some of these embodiments the phosphor-binder mixture can be sprayed, poured or dispersed onto or over the a heated carrier layer 64 so that when the phosphor binder mixture contacts the carrier layer 64, heat from the carrier layer spreads into and cures the binder. These processes can also include a solvent in the phosphor-binder mixture that can liquefy and lower the viscosity of the mixture making it more compatible with spraying. Many different solvents can be used including but not limited to toluene, benzene, zylene, or OS-20 commercially available from Dow Corning®, and different concentration of the solvent can be used. When the solvent-phosphor-binder mixture is sprayed or dispersed on the heated carrier layer 64 the heat from the carrier layer 64 evaporates the solvent, with the temperature of the carrier layer impacting how quickly the solvent is evaporated. The heat from the carrier layer 64 can also cure the binder in the mixture leaving a fixed phosphor layer on the carrier layer. The carrier layer 64 can be heated to many different temperatures depending on the materials being used and the desired solvent evaporation and binder curing speed. A suitable range of temperature is 90 to 150° C., but it is understood that other temperatures can also be used. Various deposition methods and systems are described in U.S. Patent Application Publication No. 2010/0155763, to Donofrio et al., titled “Systems and Methods for Application of Optical Materials to Optical Elements,” and also assigned to Cree, Inc. and incorporated herein in its entirety.
The phosphor layer 66 can have many different thicknesses depending at least partially on the concentration of phosphor material and the desired amount of light to be converted by the phosphor layer 66. Phosphor layers according to the present invention can be applied with concentration levels (phosphor loading) above 30%. Other embodiments can have concentration levels above 50%, while in still others the concentration level can be above 60%. In some embodiments the phosphor layer can have thicknesses in the range of 10-100 microns, while in other embodiments it can have thicknesses in the range of 40-50 microns.
The methods described above can be used to apply multiple layers of the same of different phosphor materials and different phosphor materials can be applied in different areas of the carrier layer using known masking processes. The methods described above provide some thickness control for the phosphor layer 66, but for even greater thickness control the phosphor layer can be ground using known methods to reduce the thickness of the phosphor layer 66 or to even out the thickness over the entire layer. This grinding feature provides the added advantage of being able to produce lamps emitting within a single bin on the CIE chromaticity graph. Binning is generally known in the art and is intended to ensure that the LEDs or lamps provided to the end customer emit light within an acceptable color range. The LEDs or lamps can be tested and sorted by color or brightness into different bins, generally referred to in the art as binning. Each bin typically contains LEDs or lamps from one color and brightness group and is typically identified by a bin code. White emitting LEDs or lamps can be sorted by chromaticity (color) and luminous flux (brightness). The thickness control of the phosphor layer provides greater control in producing lamps that emit light within a target bin by controlling the amount of light source light converted by the phosphor layer. Multiple phosphor carriers 62 with the same thickness of phosphor layer 66 can be provided. By using a light source 58 with substantially the same emission characteristics, lamps can be manufactured having nearly the same emission characteristics that in some instances can fall within a single bin. In some embodiments, the lamp emissions fall within a standard deviation from a point on a CIE diagram, and in some embodiments the standard deviation comprises less than a 10-step McAdams ellipse. In some embodiments the emission of the lamps falls within a 4-step McAdams ellipse centered at CIExy(0.313,0.323).
The phosphor carrier 62 can be mounted and bonded over the opening in the cavity 54 using different known methods or materials such as thermally conductive bonding materials or a thermal grease. Conventional thermally conductive grease can contain ceramic materials such as beryllium oxide and aluminum nitride or metal particles such colloidal silver. In other embodiments the phosphor carrier can be mounted over the opening using thermal conductive devices such as clamping mechanisms, screws, or thermal adhesive hold phosphor carrier 62 tightly to the heat sink structure to maximize thermal conductivity. In one embodiment a thermal grease layer is used having a thickness of approximately 100 μm and thermal conductivity of k=0.2 W/m-k. This arrangement provides an efficient thermally conductive path for dissipating heat from the phosphor layer 66. As mentioned above, different lamp embodiments can be provided without cavity and the phosphor carrier can be mounted in many different ways beyond over an opening to the cavity.
During operation of the lamp 50 phosphor conversion heating is concentrated in the phosphor layer 66, such as in the center of the phosphor layer 66 where the majority of LED light strikes and passes through the phosphor carrier 62. The thermally conductive properties of the carrier layer 64 spreads this heat laterally toward the edges of the phosphor carrier 62 as shown by first heat flow 70. There the heat passes through the thermal grease layer and into the heat sink structure 52 as shown by second heat flow 72 where it can efficiently dissipate into the ambient.
As discussed above, in the lamp 50 the platform 56 and the heat sink structure 52 can be thermally connected or coupled. This coupled arrangement results in the phosphor carrier 62 and that light source 58 at least partially sharing a thermally conductive path for dissipating heat. Heat passing through the platform 56 from the light source 58 as shown by third heat flow 74 can also spread to the heat sink structure 52. Heat from the phosphor carrier 62 flowing into the heat sink structure 52 can also flow into the platform 56. As further described below, in other embodiments, the phosphor carrier 62 and the light source 54 can have separate thermally conductive paths for dissipating heat, with these separate paths being referred to as “decoupled”.
It is understood that the phosphor carriers can be arranged in many different ways beyond the embodiment shown in
As mentioned above, the diffuser is arranged to disperse light from the phosphor carrier and LED into the desired lamp emission pattern, and can have many different shapes and sizes. In some embodiments, the diffuser also can be arranged over the phosphor carrier to mask the phosphor carrier when the lamp is not emitting. The diffuser can have materials to give a substantially white appearance to give the bulb a white appearance when the lamp is not emitting.
There are at least four attributes or characteristics of the diffuser that can be used to control the output beam characteristics for the lamp 50. The first is diffuser geometry independent of the phosphor layer geometry. The second is the diffuser geometry relative to the phosphor layer geometry. The third is diffuser scattering properties including the nature of the scattering layer and smoothness/roughness of the diffuser surfaces. The fourth is the diffuser distribution across the surface such as intentional non-uniformity of the scattering. These attributes allow for control of, for example, the ratio of axially emitted light relative to “sideways” emitted light (˜90°), and also relative to “high angle” (>˜130°). These attributes can also apply differently depending on the geometry of and pattern of light emitted by the phosphor carrier and the light source.
For two-dimensional phosphor carriers and/or light sources such as those shown in
For three-dimensional phosphor carriers (described in more detail below) and three dimensional light sources, the light emitted can already have significant emission intensity at greater than 90° provided that the emission is not blocked by other lamp surfaces, such as the heat sink. As a result, the diffuser attributes listed above can be utilized to provide further adjustment or fine-tuning to the beam profile from the phosphor carrier and light source so that it more closely matches the desired output beam intensity, color uniformity, color point, etc. In some embodiments, the beam profile can be adjusted to substantially match the output from conventional incandescent bulbs.
As for the first attribute above regarding diffuser geometry independent of phosphor geometry, in those embodiments where light is emitted uniformly from the diffuser surface, the amount of light directed “forward” (axially or ˜0°) relative to sideways (˜90°), and relative to “high angle” (>˜130°), can depend greatly on the cross sectional area of the diffuser when viewed from that angle. Many different diffusers having different shapes and attributes can be used in different embodiments herein, including but not limited to these shown and described in U.S. Provisional Patent Application No. 61/339,515, to Tong et al., titled “LED Lamp With Remote Phosphor and Diffuser Configuration” and U.S. patent application Ser. No. 12/901,405, to Tong et al., titled “Non-uniform Diffuser to Scatter Light into Uniform Emission Pattern,” both of which also assigned to Cree, Inc. and incorporated herein in their entirety.
The lamps according to the present invention can comprise many different features beyond those described above. Referring again to
As discussed above, different lamp embodiments according to the present invention can be arranged with many different types of light sources.
In the lamps 50 and 210 described above, the light source and the phosphor carrier share a thermal path for dissipating heat, referred to as being thermally coupled. In some embodiments the heat dissipation of the phosphor carrier may be enhanced if the thermal paths for the phosphor carrier and the light source are not thermally connected, referred to as thermally decoupled.
Light from the light source 304 passes through the phosphor carrier 308 where a portion of it is converted to a different wavelength of light by the phosphor in the phosphor carrier 308. In one embodiment the light source 304 can comprise blue emitting LEDs and the phosphor carrier 308 can comprise a yellow phosphor as described above that absorbs a portion of the blue light and re-emits yellow light. The lamp 300 emits a white light combination of LED light and yellow phosphor light. Like above, the light source 304 can also comprise many different LEDs emitting different colors of light and the phosphor carrier can comprise other phosphors to generate light with the desired color temperature and rendering.
The lamp 300 also comprises a shaped diffuser dome 310 mounted over the cavity 302 that includes diffusing or scattering particles such as those listed above. The scattering particles can be provided in a curable binder that is formed in the general shape of dome. In the embodiment shown, the dome 310 is mounted to the heat sink structure 305 and has an enlarged portion at the end opposite the heat sink structure 305. Different binder materials can be used as discussed above such as silicones, epoxies, glass, inorganic glass, dielectrics, BCB, polymides, polymers and hybrids thereof. In some embodiments white scattering particles can be used with the dome having a white color that hides the color of the phosphor in the phosphor carrier 308 in the optical cavity. This gives the overall lamp 300 a white appearance that is generally more visually acceptable or appealing to consumers than the color of the phosphor. In one embodiment the diffuser can include white titanium dioxide particles that can give the diffuser dome 310 its overall white appearance.
The diffuser dome 310 can provide the added advantage of distributing the light emitting from the optical cavity in a more uniform pattern. As discussed above, light from the light source in the optical cavity can be emitted in a generally Lambertian pattern and the shape of the dome 310 along with the scattering properties of the scattering particles causes light to emit from the dome in a more omnidirectional emission pattern. An engineered dome can have scattering particles in different concentrations in different regions or can be shaped to a specific emission pattern. In some embodiments the dome can be engineered so that the emission pattern from the lamp complies with the Department of Energy (DOE) Energy Star defined omnidirectional distribution criteria. One requirement of this standard met by the lamp 300 is that the emission uniformity must be within 20% of mean value from 0 to 135° viewing and; >5% of total flux from the lamp must be emitted in the 135-180° emission zone, with the measurements taken at 0, 45, 90° azimuthal angles. As mentioned above, the different lamp embodiments described herein can also comprise A-type retrofit LED bulbs that meet the DOE Energy Star standards. The present invention provides lamps that are efficient, reliable and cost effective. In some embodiments, the entire lamp can comprise five components that can be quickly and easily assembled.
Like the embodiments above, the lamp 300 can comprise a mounting mechanism of the type to fit in conventional electrical receptacles. In the embodiment shown, the lamp 300 includes a screw-threaded portion 312 for mounting to a standard Edison socket. Like the embodiments above, the lamp 300 can include standard plug and the electrical receptacle can be a standard outlet, or can comprise a GU24 base unit, or it can be a clip and the electrical receptacle can be a receptacle which receives and retains the clip (e.g., as used in many fluorescent lights).
As mentioned above, the space between some of the features of the lamp 300 can be considered mixing chambers, with the space between the light source 306 and the phosphor carrier 308 comprising a first light mixing chamber. The space between the phosphor carrier 308 and the diffuser 310 can comprise a second light mixing chamber, with the mixing chamber promoting uniform color and intensity emission for said lamp. The same can apply to the embodiments below having different shaped phosphor carriers and diffusers. In other embodiments, additional diffusers and/or phosphor carriers can be included forming additional mixing chambers, and the diffusers and/or phosphor carriers can be arranged in different orders.
Different lamp embodiments according to the present invention can have many different shapes and sizes.
The lamp 340 also comprises an interface layer 354 between the light source 344 and the heat sink structure 345 from the light source 344. In some embodiments the interface layer can comprise a thermally insulating material and the light source 344 can have features that promote dissipation of heat from the emitters to the edge of the light source's substrate. This can promote heat dissipation to the outer edges of the heat sink structure 345 where it can dissipate through the heat fins. In other embodiments the interface layer 354 can be electrically insulating to electrically isolate the heat sink structure 345 from the light source 344. Electrical connection can then be made to the top surface of the light source.
In the embodiments above, the phosphor carriers are two dimensional (or flat/planar) with the LEDs in the light source being co-planer. It is understood, however, that in other lamp embodiments the phosphor carriers can take many different shapes including different three-dimensional shapes. The term three-dimensional is meant to mean any shape other than planar as shown in the above embodiments.
In this embodiment the phosphor layer 356 is shown on the outside surface of the carrier 355 although it is understood that the phosphor layer can be on the carrier's inside layer, mixed in with the carrier, or any combination of the three. In some embodiments, having the phosphor layer on the outside surface may minimize emission losses. When emitter light is absorbed by the phosphor layer 356 it is emitted omnidirectionally and some of the light can emit backwards and be absorbed by the lamp elements such as the LEDs. The phosphor layer 356 can also have an index of refraction that is different from the hemispheric carrier 355 such that light emitting forward from the phosphor layer can be reflected back from the inside surface of the carrier 355. This light can also be lost due to absorption by the lamp elements. With the phosphor layer 356 on the outside surface of the carrier 355, light emitted forward does not need to pass through the carrier 355 and will not be lost to reflection. Light that is emitted back will encounter the top of the carrier where at least some of it will reflect back. This arrangement results in a reduction of light from the phosphor layer 356 that emits back into the carrier where it can be absorbed.
The phosphor layer 356 can be deposited using many of the same methods described above. In some instances the three-dimensional shape of the carrier 355 may require additional steps or other processes to provide the necessary coverage. In the embodiments where a solvent-phosphor-binder mixture is sprayed and the carrier can be heated as described above and multiple spray nozzles may be needed to provide the desired coverage over the carrier, such as approximate uniform coverage. In other embodiments, fewer spray nozzles can be used while spinning the carrier to provide the desired coverage. Like above, the heat from the carrier 355 can evaporate the solvent and helps cure the binder.
In still other embodiments, the phosphor layer can be formed through an emersion process whereby the phosphor layer can be formed on the inside or outside surface of the carrier 355, but is particularly applicable to forming on the inside surface. The carrier 355 can be at least partially filled with, or otherwise brought into contact with, a phosphor mixture that adheres to the surface of the carrier. The mixture can then be drained from the carrier leaving behind a layer of the phosphor mixture on the surface, which can then be cured. In one embodiment, the mixture can comprise polyethylen oxide (PEO) and a phosphor. The carrier can be filled and then drained, leaving behind a layer of the PEO-phosphor mixture, which can then be heat cured. The PEO evaporates or is driven off by the heat leaving behind a phosphor layer. In some embodiments, a binder can be applied to further fix the phosphor layer, while in other embodiments the phosphor can remain without a binder.
Like the processes used to coat the planar carrier layer, these processes can be utilized in three-dimensional carriers to apply multiple phosphor layers that can have the same or different phosphor materials. The phosphor layers can also be applied both on the inside and outside of the carrier, and can have different types having different thickness in different regions of the carrier. In still other embodiments different processes can be used such as coating the carrier with a sheet of phosphor material that can be thermally formed to the carrier.
In lamps utilizing the carrier 355, an emitter can be arranged at the base of the carrier so that light from the emitters emits up and passes through the carrier 355. In some embodiments the emitters can emit light in a generally Lambertian pattern, and the carrier can help disperse the light in a more uniform pattern.
Embodiments having a three-dimensional structure holding the LED, such as a pedestal, can provide an even more dispersed light pattern from the three-dimensional phosphor carrier. In these embodiments, the LEDs can be within the phosphor carrier at different angles so that they provide a light emitting pattern that is less Lambertian than a planar LED light source. This can then be further dispersed by the three-dimensional phosphor carrier, with the disperser fine-tuning the lamp's emission pattern.
The shape of the three dimensional shape of the phosphor carrier 382 provides natural separation between it and the light source 376. Accordingly, the light source 376 is not mounted in a recess in the heat sink that forms the optical cavity. Instead, the light source 376 is mounted on the top surface of the heat sink structure 372, with the optical cavity 374 formed by the space between the phosphor carrier 382 and the top of the heat sink structure 372. This arrangement can allow for a less Lambertian emission from the optical cavity 374 because there are no optical cavity side surfaces to block and redirect sideways emission.
In embodiments of the lamp 370 utilizing blue emitting LEDs for the light source 376 and yellow phosphor, the phosphor carrier 382 can appear yellow, and the diffuser dome 378 masks this color while dispersing the lamp light into the desired emission pattern. In lamp 370, the conductive paths for the platform and heat sink structure are coupled, but it is understood that in other embodiments they can be de-coupled.
As mentioned above, the shape and geometry of the three dimensional phosphor carriers can assist in transforming the emission pattern of the emitters to another more desirable emission pattern. In one embodiment, it can assist in changing a Lambertian emission pattern into a more uniform emission pattern at different angles. The disperser can then further transform the light from the phosphor carrier to the final desired emission pattern, while at the same time masking the yellow appearance of the phosphor when the light is off. Other factors can also contribute to the ability of the emitter, phosphor carrier and disperser combination to produce the desired emission pattern.
It is understood that in other embodiments different portions of the lamp can be removed such as the entire optical cavity. These features making the collar structure 414 removable could allow for easier coating optical cavity with a reflective layer and could also allow for removal and replacement of the optical cavity in case of failure.
The lamps according to the present invention can have a light source comprising many different numbers of LEDs with some embodiments having less than 30 and in other embodiments having less than 20. Still other embodiments can have less than 10 LEDs, with the cost and complexity of the lamp light source generally being lower with fewer LED chips. The area covered by the multiple chips light source in some embodiments can be less that 30 mm2 and in other embodiments less than 20 mm2. In still other embodiments it can be less that 10 mm2. Some embodiments of lamps according to the present invention also provide a steady state lumen output of greater than 400 lumens and in other embodiments greater than 600 lumens. In still other embodiments the lamps can provide steady state lumen output of greater than 800 lumens. Some lamp embodiments can provide this lumen output with the lamp's heat management features allowing the lamp to remain relatively cool to the touch. In one embodiment that lamp remains less that 60° C. to the touch, and in other embodiments it remains less that 50° C. to the touch. In still other embodiments the lamp remains less than 40° C. to the touch.
Some embodiments of lamps according to the present invention can also operate at an efficiency of greater than lumens per watt, and in other embodiments at an efficiency of greater than 50 lumens per watt. In still other embodiments that lamps can operate at greater than 55 lumens per watt. Some embodiments of lamps according to the present invention can produce light with a color rendering index (CRI) greater than 70, and in other embodiments with a CRI greater than 80. In still other embodiments the lamps can operate at a CRI greater than 90. One embodiment of a lamp according to the present invention can have phosphors that provide lamp emission with a CRI greater than 80 and a lumen equivalent of radiation (LER) greater than 320 lumens/optical Watt @ 3000 K correlated color temperature (CCT).
Lamps according to the present invention can also emit light in a distribution that is within 40% of a mean value in the 0 to 135° viewing angles, and in other embodiment the distribution can be within 30% of a mean value at the same viewing angles. Still other embodiments can have a distribution of 20% of a mean value at the same viewing angles in compliance with Energy Star specifications. The embodiments can also emit light that is greater than 5% of total flux in the 135 to 180° viewing angles.
It is understood that lamps or bulbs according to the present invention can be arranged in many different ways beyond the embodiments described above. The embodiments above are discussed with reference to a remote phosphor but it is understood that alternative embodiments can comprise at least some LEDs with conformal phosphor layer. This can be particularly applicable to lamps having light sources emitting different colors of light from different types of emitters. These embodiments can otherwise have some or all of the features described above. These different arrangement can include those shown and described in U.S. Provisional Patent Application No. 61/339,515, to Tong et al., titled “LED Lamp With Remote Phosphor and Diffuser Configuration” and U.S. patent application Ser. No. 12/901,405, to Tong et al., titled “Non-uniform Diffuser to Scatter Light into Uniform Emission Pattern,” incorporated above.
As discussed above, the lamps according to the present invention can comprise active elements to help reduce convective thermal resistance. Many different active elements can be used, and some embodiments can comprise one or more fans that can be provided in many different locations in different embodiments according to the present invention. The fans can be arranged to agitate the air around certain elements of the lamps to decrease convective thermal resistance. They can be used in lamps having heat sinks arranged in different ways or those without heat sinks.
The heat sink 702 is similar to the heat sinks described in the embodiments above and can be in thermal contact with all or some of the lamps heat generating elements to dissipate heat generated during operation. Similar to the heat sinks above the heat sink 702 can at least partially comprise a thermally conductive material, and many different thermally conductive materials can be used including different metals such as copper or aluminum, or metal alloys. The heat sink 702 can also comprise heat fins 708 that increase the surface area of the heat sink 702 to facilitate more efficient dissipation into the ambient. In the embodiment shown the fins 708 are shown in a generally horizontal/longitudinal orientation, but it is understood that in other embodiments the fins can have a vertical/orthogonal or angled orientation.
The lamp 700 further comprises a base/socket 710 that comprises a feature that allows the lamp to be screwed into or connected to a power source, such as an Edison socket. As above, other embodiments can include a standard plug and the electrical receptacle can be a standard outlet, can comprise a GU24 base unit, or it can be a clip and the electrical receptacle can be a receptacle which receives and retains the clip (e.g., as used in many fluorescent lights). Similar to the embodiments above, the base/socket can also comprise a power supply or power conversion unit that can include a driver to allow the bulb to run from an AC line voltage/current, and in some embodiments to provide light source dimming capabilities.
The lamp 700 also comprises a bulb or diffuser dome 712 that can have the characteristics of the diffuser domes described above. It should include diffuser scattering properties, and different embodiments of the diffuser dome 712 can comprise a carrier made of different materials such as glass or plastics, and one or more scattering films, layers or regions. As discussed above, the scattering properties of the diffuser dome can be provided as one or more of the scattering particles listed above. In some embodiments, the diffuser dome 712 can be arranged to scatter the light emitted from the LEDs 704 on the pedestal 706 into a more uniform emission pattern. That is, the scattering properties of the diffuser dome 712 can change the light pattern from the LEDs 704 to a more uniform emission patter. It is understood that the lamp can also comprise a phosphor carrier arranged in a planar or three-dimensional manner as described above.
A fan 714 is included in the lamp 700, and in the embodiment shown the fan 714 is located at the base of the heat sink 702, between the base 710 and the heat sink 702. The fan 714 is arranged to draw in ambient air and to flow air over the surface of the heat sink 702. Power is supplied to the fan 714 (and the LEDs 704) from the drive circuitry in the base 710.
The fan 714 can be many different shapes and sizes and in some embodiments can be less than 100 mm in diameter. In other embodiments it can be less that 75 mm in diameter, and in still other embodiments it can be less than 50 mm in diameter. In one embodiment, the fan 714 can be approximately 40 mm in diameter. The fan can also be arranged to move different rates of air, with some embodiments moving less than 3 cubic feat per minute (CFM) and others moving less than 2 CFM. In one embodiment the rate of air flow is approximately 1 CFM. The power consumed by the fan should be as low as possible, with the some embodiments consuming less that 0.5 W and others consuming less than 0.3 W. In still other embodiments the fan can consume less than 0.1 W. The noise produced by the fan should also be minimized with some embodiments producing less than 30 decibels (dB) of noise and others producing less than 20 dB. In still other embodiments, the fan can produce less than 15 dB. The reliability of the fan should be maximized, with some embodiments having a lifetime of greater than 50,000 hours and others having a lifetime of greater than 100,000 hours. The cost should also be minimized, with the some embodiments costing less than one dollar each.
In some embodiments rotation of the rotor 716 can have an approximate linear dependence on fan drive voltage. In one embodiment, a drive voltage of 3.5V produces rotor rotation of 820 rpm, with the power consumption of the fan estimated at approximately 0.1 W. At a drive voltage of 12V the rotor rotates at 3600 rpm, and produces noise in the range of 20 s dB. It is estimated that the noise produced at 3.5V operation is much lower and can be in 10 s dB range. Fans with ceramic ball bearings can increase operating lifetime to greater than 100 k hours under normal operating conditions. At reduced rotation speed (e.g. 3.5V) the lifetime of the fans can also be longer.
Beyond the reduction in convective thermal resistance, another advantage of the integrated fan module design is illustrated in
With the help of the forced flow from the fan element, the heat sink fins 708 of the heat sink 702 can be made much denser, further increasing convective heat transfer by increasing surface area. Denser heat sink fins can be difficult to achieve with pure natural convention, because a dense fin structure to a greater degree blocks the natural convective flow and decreases convective heat transfer. The fan element with minimum amount of power consumption can markedly reduce the system convective thermal resistance for these denser fin arrangements. This allows lower junction temperature of the LEDs and that of phosphor materials, leading to better luminous efficiency of the system and better reliability. A better thermal system allows the LEDs to be driven at higher current, thereby reducing cost per lumen output.
As mentioned above, the fans can be arranged in many different locations in the lamps to provide air flow over in different areas or over different features of the lamp.
The lamp 740 further comprises a phosphor carrier 748 and diffuser dome 750 that can be made of the same materials described above and can have the different arrangements as described above. Diffuser dome and conversion carrier can also be arranged as described in U.S. patent application Ser. No. 12/901,404, to Tong et al., filed on Oct. 8, 2010, and is entitled “Non-Uniform Diffuser to Scatter Light Into Uniform Emission Pattern.” This application is incorporated herein by reference. It is also understood can be arranged with only diffuser or only phosphor carrier.
The lamp 740 further comprises an internal fan 752 that is arranged within the core 754 of the heat sink 742 at the top of the base/socket 746, and below the LEDs 744. The fan can be similar to the fan 714 described above in reference to
The fan 752 can also be electrically connected to the base/socket 746 for its operating power. The fan 752 can also be arranged to conduct an electrical signal from the base/socket 746 to the LEDs 744. As first described below, the fan 752 draws air from outside the lamp, into the heat sink core 754 and into the diffuser cavity 756. The air is introduced through the heat sink core 754 and diffuser cavity 756 and exits the diffuser cavity providing a lamp air flow that carries away lamp heat generated during operation and allows the lamp operate at reduced temperatures.
Referring again to
This arrangement provides for the embedding of the fan in the heat sink cavity/core 754 such that it is not directly visible from the outside and the fan noise is further reduced. This arrangement also provides for an internal air flow to the lamp. As shown in
When the air is drawn into the heat sink core 754 or flows out of the diffuser cavity 756, at least a portion of the air can flow over the heat sink fins 753. This forced air flow can agitate the air within the fins, breaking the boundary air layer and allowing cooler air to displace the stagnant warmer air boundary layer in the interspacing between fins. This continuous flow of air through the lamp 740 provide and effective arrangement for reducing the convective thermal resistance at different locations within the lamp 740. This in turn enhances the overall convective heat dissipation of the lamp 740.
Simulations of the embodiment shown reflect that air flow of approximately 1 CFM (cubic foot per minute) could reduce the typical heat sink natural convective thermal resistance by almost 50%. At this air flow rate the noise from the fan is typically very low. For example, commercially available fans of the necessary size and providing the necessary air flow can have a noise level of approximately 22 dB, power consumption of 0.5 W, MTTF lifetime of 30,000 to 50,000 hours (depending on bearing material) and a cost of as low as $0.50 each.
With the convective thermal resistance reduction, the LED junction temperature can be significantly reduced. For example, if the heat sink without integrated fan has convective thermal resistance of 7° C./W (to LED input power) and 3.5° C./W with integrated fan, and LED lamp draws approximately 12 W of in input power, the LED junction temperature could be lowered by almost 40° C. with integrated fan. This leads to enhanced reliability and/or lower system cost with less LEDs being driven at higher current.
It is understood that the fan can be in included in many different lamps arranged in many different ways.
As discussed above, in different embodiments there can be many different inlet and outlet arrangements that provide different air paths within the lamp or over different features of the lamp. The present invention should not be limited to the air paths shown in the above embodiments.
Although the present invention has been described in detail with reference to certain preferred configurations thereof, other versions are possible. Therefore, the spirit and scope of the invention should not be limited to the versions described above.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/339,516, filed on Mar. 3, 2010, U.S. Provisional Patent Application Ser. No. 61/339,515, filed on Mar. 3, 2010, U.S. Provisional Patent Application Ser. No. 61/386,437, filed on Sep. 24, 2010, U.S. Provisional Application Ser. No. 61/424,665, filed on Dec. 19, 2010, and U.S. Provisional Application Ser. No. 61/424,670, filed on Dec. 19, 2010. This application is also a continuation-in-part from, and claims the benefit of, U.S. patent application Ser. No. 12/848,825, filed on Aug. 2, 2010, U.S. patent application Ser. No. 12/889,719, filed on Sep. 24, 2010, and U.S. patent application Ser. No. 12/975,820, filed on Dec. 22, 2010.
Number | Name | Date | Kind |
---|---|---|---|
2394992 | Frank | Feb 1946 | A |
3143592 | William | Aug 1964 | A |
3581162 | Wheatley | May 1971 | A |
4204246 | Arii et al. | May 1980 | A |
4219871 | Larrimore | Aug 1980 | A |
5463280 | Johnson | Oct 1995 | A |
5535230 | Abe | Jul 1996 | A |
5561346 | Byrne | Oct 1996 | A |
5581683 | Bertignoll et al. | Dec 1996 | A |
5585783 | Hall | Dec 1996 | A |
5655830 | Ruskouski | Aug 1997 | A |
5688042 | Madadi et al. | Nov 1997 | A |
5806965 | Deese | Sep 1998 | A |
5838101 | Pappalardo | Nov 1998 | A |
5890794 | Abtahi et al. | Apr 1999 | A |
5934798 | Roller et al. | Aug 1999 | A |
5947588 | Huang | Sep 1999 | A |
5949347 | Wu | Sep 1999 | A |
6218785 | Incerti | Apr 2001 | B1 |
6220722 | Begemann | Apr 2001 | B1 |
6220731 | Ryan | Apr 2001 | B1 |
6227679 | Zhang et al. | May 2001 | B1 |
6234648 | Borner et al. | May 2001 | B1 |
6250774 | Begemann et al. | Jun 2001 | B1 |
6270722 | Yang et al. | Aug 2001 | B1 |
6276822 | Bedrosian et al. | Aug 2001 | B1 |
6350041 | Tarsa | Feb 2002 | B1 |
6404131 | Kawano et al. | Jun 2002 | B1 |
6465961 | Cao | Oct 2002 | B1 |
6517221 | Xie | Feb 2003 | B1 |
6523978 | Huang | Feb 2003 | B1 |
6550953 | Ichikawa et al. | Apr 2003 | B1 |
6634770 | Cao | Oct 2003 | B2 |
6659632 | Chen | Dec 2003 | B2 |
6709132 | Ishibashi | Mar 2004 | B2 |
6746885 | Cao | Jun 2004 | B2 |
6758582 | Hsiao | Jul 2004 | B1 |
6764202 | Herring et al. | Jul 2004 | B1 |
6803607 | Chan et al. | Oct 2004 | B1 |
6848819 | Arndt et al. | Feb 2005 | B1 |
6860620 | Kuan et al. | Mar 2005 | B2 |
6864513 | Lin et al. | Mar 2005 | B2 |
6910794 | Rice | Jun 2005 | B2 |
6948829 | Verdes et al. | Sep 2005 | B2 |
6982518 | Chou et al. | Jan 2006 | B2 |
6997580 | Wong | Feb 2006 | B2 |
7048412 | Martin et al. | May 2006 | B2 |
7080924 | Tseng et al. | Jul 2006 | B2 |
7086756 | Maxik | Aug 2006 | B2 |
7086767 | Sidwell et al. | Aug 2006 | B2 |
7094362 | Setlur et al. | Aug 2006 | B2 |
7140753 | Wang et al. | Nov 2006 | B2 |
7144135 | Martin et al. | Dec 2006 | B2 |
7160012 | Hilscher et al. | Jan 2007 | B2 |
7160120 | Zhang et al. | Jan 2007 | B2 |
7165866 | Li | Jan 2007 | B2 |
7172314 | Currie et al. | Feb 2007 | B2 |
7213940 | Van de Ven | May 2007 | B1 |
D546980 | Lo | Jul 2007 | S |
7250715 | Mueller | Jul 2007 | B2 |
7270446 | Chang et al. | Sep 2007 | B2 |
D553267 | Yuen | Oct 2007 | S |
7350936 | Ducharme et al. | Apr 2008 | B2 |
7354174 | Yan | Apr 2008 | B1 |
7377674 | Klinkman et al. | May 2008 | B2 |
7396142 | Laizure, Jr. et al. | Jul 2008 | B2 |
7405857 | Ma et al. | Jul 2008 | B2 |
7413325 | Chen | Aug 2008 | B2 |
D581556 | To et al. | Nov 2008 | S |
7547124 | Chang et al. | Jun 2009 | B2 |
7549782 | Ng et al. | Jun 2009 | B2 |
7553047 | Shin et al. | Jun 2009 | B2 |
7600882 | Morejon et al. | Oct 2009 | B1 |
7607802 | Kang et al. | Oct 2009 | B2 |
7614759 | Negley | Nov 2009 | B2 |
7618157 | Galvez | Nov 2009 | B1 |
7663315 | Hulse | Feb 2010 | B1 |
7686478 | Hulse | Mar 2010 | B1 |
7710016 | Miki | May 2010 | B2 |
7726836 | Chen | Jun 2010 | B2 |
7740365 | Huttner et al. | Jun 2010 | B2 |
7753568 | Hu et al. | Jul 2010 | B2 |
7810954 | Kolodin | Oct 2010 | B2 |
7824065 | Maxik | Nov 2010 | B2 |
D629928 | Chen et al. | Dec 2010 | S |
7884538 | Mitsuishi et al. | Feb 2011 | B2 |
7909481 | Zhang | Mar 2011 | B1 |
7976335 | Weber et al. | Jul 2011 | B2 |
7989236 | Yamaguchi et al. | Aug 2011 | B2 |
8021025 | Lee | Sep 2011 | B2 |
8235571 | Park | Aug 2012 | B2 |
8253316 | Sun et al. | Aug 2012 | B2 |
8272762 | Maxik et al. | Sep 2012 | B2 |
8274241 | Guest et al. | Sep 2012 | B2 |
8277082 | Dassanayake et al. | Oct 2012 | B2 |
8282250 | Dassanayake et al. | Oct 2012 | B1 |
8292468 | Narendran et al. | Oct 2012 | B2 |
8309969 | Suehiro et al. | Nov 2012 | B2 |
8314537 | Gielen et al. | Nov 2012 | B2 |
8322896 | Falicoff et al. | Dec 2012 | B2 |
8348470 | Liu et al. | Jan 2013 | B2 |
8371722 | Carroll | Feb 2013 | B2 |
8400051 | Hakata et al. | Mar 2013 | B2 |
8410512 | Andrews | Apr 2013 | B2 |
8415865 | Liang et al. | Apr 2013 | B2 |
8421320 | Chuang | Apr 2013 | B2 |
8421321 | Chuang | Apr 2013 | B2 |
8421322 | Carroll et al. | Apr 2013 | B2 |
8449154 | Uemoto et al. | May 2013 | B2 |
8502468 | Li et al. | Aug 2013 | B2 |
8568009 | Chiang et al. | Oct 2013 | B2 |
8641237 | Chuang | Feb 2014 | B2 |
8653723 | Cao et al. | Feb 2014 | B2 |
8696168 | Li et al. | Apr 2014 | B2 |
8740415 | Wheelock | Jun 2014 | B2 |
8750671 | Kelly et al. | Jun 2014 | B1 |
8752984 | Lenk et al. | Jun 2014 | B2 |
8760042 | Sakai et al. | Jun 2014 | B2 |
8922106 | Helbing et al. | Dec 2014 | B2 |
9316386 | Breidenassel | Apr 2016 | B2 |
20020047516 | Iwasa et al. | Apr 2002 | A1 |
20020114169 | Harada | Aug 2002 | A1 |
20030021113 | Begemann | Jan 2003 | A1 |
20030038291 | Cao | Feb 2003 | A1 |
20030081419 | Jacob | May 2003 | A1 |
20030185005 | Sommers et al. | Oct 2003 | A1 |
20040021629 | Sasuga et al. | Feb 2004 | A1 |
20040159846 | Doxsee | Aug 2004 | A1 |
20040201990 | Meyer | Oct 2004 | A1 |
20040223315 | Suehiro et al. | Nov 2004 | A1 |
20050068776 | Ge | Mar 2005 | A1 |
20050168990 | Nagata et al. | Aug 2005 | A1 |
20050174780 | Park | Aug 2005 | A1 |
20050184638 | Mueller | Aug 2005 | A1 |
20050219060 | Curran et al. | Oct 2005 | A1 |
20050225988 | Chaves et al. | Oct 2005 | A1 |
20050242711 | Bloomfield | Nov 2005 | A1 |
20050276053 | Nortrup et al. | Dec 2005 | A1 |
20060097245 | Aanegola et al. | May 2006 | A1 |
20060097385 | Negley | May 2006 | A1 |
20060115482 | Sauer et al. | Jun 2006 | A1 |
20060138435 | Tarsa et al. | Jun 2006 | A1 |
20060152140 | Brandes | Jul 2006 | A1 |
20060152820 | Lien et al. | Jul 2006 | A1 |
20060180774 | Endo | Aug 2006 | A1 |
20060227558 | Osawa et al. | Oct 2006 | A1 |
20060250792 | Izardel | Nov 2006 | A1 |
20070047232 | Kim et al. | Mar 2007 | A1 |
20070090737 | Hu et al. | Apr 2007 | A1 |
20070091633 | Harrity et al. | Apr 2007 | A1 |
20070139938 | Petroski | Jun 2007 | A1 |
20070139949 | Tanda et al. | Jun 2007 | A1 |
20070158668 | Tarsa et al. | Jul 2007 | A1 |
20070182299 | Ouderkirk | Aug 2007 | A1 |
20070206375 | Lys | Sep 2007 | A1 |
20070215890 | Harbers et al. | Sep 2007 | A1 |
20070223219 | Medendorp | Sep 2007 | A1 |
20070263405 | Ng et al. | Nov 2007 | A1 |
20070267976 | Bohler et al. | Nov 2007 | A1 |
20070274080 | Negley et al. | Nov 2007 | A1 |
20070285924 | Morris et al. | Dec 2007 | A1 |
20070297183 | Coushaine | Dec 2007 | A1 |
20080037257 | Bolta | Feb 2008 | A1 |
20080055908 | Wu et al. | Mar 2008 | A1 |
20080062694 | Lai et al. | Mar 2008 | A1 |
20080080165 | Kim et al. | Apr 2008 | A1 |
20080093615 | Lin et al. | Apr 2008 | A1 |
20080106893 | Johnson et al. | May 2008 | A1 |
20080117620 | Hama et al. | May 2008 | A1 |
20080128735 | Yoo et al. | Jun 2008 | A1 |
20080149166 | Beeson et al. | Jun 2008 | A1 |
20080173884 | Chitnis et al. | Jul 2008 | A1 |
20080179611 | Chitnis et al. | Jul 2008 | A1 |
20080232119 | Ribarich | Sep 2008 | A1 |
20080285279 | Ng et al. | Nov 2008 | A1 |
20080308825 | Chakraborty et al. | Dec 2008 | A1 |
20090001399 | Diana et al. | Jan 2009 | A1 |
20090015137 | Su et al. | Jan 2009 | A1 |
20090040760 | Chen et al. | Feb 2009 | A1 |
20090046473 | Tsai et al. | Feb 2009 | A1 |
20090058256 | Mitsuishi et al. | Mar 2009 | A1 |
20090059559 | Pabst | Mar 2009 | A1 |
20090067180 | Tahmosybayat | Mar 2009 | A1 |
20090086492 | Meyer | Apr 2009 | A1 |
20090086508 | Bierhuizen | Apr 2009 | A1 |
20090095960 | Murayama | Apr 2009 | A1 |
20090101930 | Li | Apr 2009 | A1 |
20090103293 | Harbers et al. | Apr 2009 | A1 |
20090103296 | Harbers et al. | Apr 2009 | A1 |
20090116217 | Teng et al. | May 2009 | A1 |
20090140633 | Tanimoto | Jun 2009 | A1 |
20090141474 | Kolodin | Jun 2009 | A1 |
20090175041 | Yuen et al. | Jul 2009 | A1 |
20090184618 | Hakata et al. | Jul 2009 | A1 |
20090190353 | Barker | Jul 2009 | A1 |
20090195186 | Guest et al. | Aug 2009 | A1 |
20090201679 | Konaka | Aug 2009 | A1 |
20090208307 | Haase | Aug 2009 | A1 |
20090217970 | Zimmerman et al. | Sep 2009 | A1 |
20090262516 | Li | Oct 2009 | A1 |
20090273727 | Kubota et al. | Nov 2009 | A1 |
20090273924 | Chiang | Nov 2009 | A1 |
20090283779 | Negley et al. | Nov 2009 | A1 |
20090286337 | Lee | Nov 2009 | A1 |
20090296387 | Reisenauer et al. | Dec 2009 | A1 |
20090310368 | Incerti | Dec 2009 | A1 |
20090316073 | Chen et al. | Dec 2009 | A1 |
20090316383 | Son | Dec 2009 | A1 |
20090322197 | Helbing | Dec 2009 | A1 |
20090322208 | Shaikevitch | Dec 2009 | A1 |
20090322800 | Atkins | Dec 2009 | A1 |
20090323333 | Chang | Dec 2009 | A1 |
20100014839 | Benoy et al. | Jan 2010 | A1 |
20100020547 | Olsson | Jan 2010 | A1 |
20100025700 | Jung et al. | Feb 2010 | A1 |
20100026185 | Betsuda et al. | Feb 2010 | A1 |
20100027258 | Maxik et al. | Feb 2010 | A1 |
20100038660 | Shuja | Feb 2010 | A1 |
20100046231 | Medinis | Feb 2010 | A1 |
20100060144 | Justel et al. | Mar 2010 | A1 |
20100079061 | Tsai | Apr 2010 | A1 |
20100091487 | Shin | Apr 2010 | A1 |
20100096967 | Marinus et al. | Apr 2010 | A1 |
20100102707 | Fukuda et al. | Apr 2010 | A1 |
20100134047 | Hasnain | Jun 2010 | A1 |
20100140655 | Shi | Jun 2010 | A1 |
20100149783 | Takenaka et al. | Jun 2010 | A1 |
20100149814 | Zhai et al. | Jun 2010 | A1 |
20100155763 | Donofrio | Jun 2010 | A1 |
20100170075 | Kanade et al. | Jul 2010 | A1 |
20100177522 | Lee | Jul 2010 | A1 |
20100201284 | Kraus | Aug 2010 | A1 |
20100207502 | Cao et al. | Aug 2010 | A1 |
20100219735 | Sakai et al. | Sep 2010 | A1 |
20100232134 | Tran | Sep 2010 | A1 |
20100244729 | Chen et al. | Sep 2010 | A1 |
20100246165 | Diaz et al. | Sep 2010 | A1 |
20100259918 | Rains, Jr. | Oct 2010 | A1 |
20100264799 | Liu et al. | Oct 2010 | A1 |
20100264826 | Yatsuda | Oct 2010 | A1 |
20100314985 | Premysler | Dec 2010 | A1 |
20100327745 | Dassanayake | Dec 2010 | A1 |
20100327755 | Meijer | Dec 2010 | A1 |
20100328925 | Hoelen | Dec 2010 | A1 |
20110037368 | Huang | Feb 2011 | A1 |
20110044022 | Ko et al. | Feb 2011 | A1 |
20110058379 | Diamantidis | Mar 2011 | A1 |
20110068356 | Chiang et al. | Mar 2011 | A1 |
20110074271 | Takeshi et al. | Mar 2011 | A1 |
20110074296 | Shen et al. | Mar 2011 | A1 |
20110080096 | Dudik et al. | Apr 2011 | A1 |
20110080740 | Allen | Apr 2011 | A1 |
20110089804 | Mahalingam et al. | Apr 2011 | A1 |
20110089830 | Pickard et al. | Apr 2011 | A1 |
20110095686 | Falicoff et al. | Apr 2011 | A1 |
20110133222 | Allen et al. | Jun 2011 | A1 |
20110149563 | Hsia | Jun 2011 | A1 |
20110149578 | Niiyama | Jun 2011 | A1 |
20110175528 | Rains et al. | Jul 2011 | A1 |
20110176316 | Phipps et al. | Jul 2011 | A1 |
20110205733 | Lenderink et al. | Aug 2011 | A1 |
20110215696 | Tong et al. | Sep 2011 | A1 |
20110216523 | Tong et al. | Sep 2011 | A1 |
20110242816 | Chowdhury et al. | Oct 2011 | A1 |
20110267835 | Boonekamp et al. | Nov 2011 | A1 |
20110273072 | Oki | Nov 2011 | A1 |
20110278609 | Jeong | Nov 2011 | A1 |
20110291560 | Wang et al. | Dec 2011 | A1 |
20110298371 | Brandes et al. | Dec 2011 | A1 |
20120040585 | Huang | Feb 2012 | A1 |
20120155059 | Hoelen et al. | Jun 2012 | A1 |
20120161626 | Van de Ven et al. | Jun 2012 | A1 |
20120241778 | Franck | Sep 2012 | A1 |
20120320591 | Liao et al. | Dec 2012 | A1 |
20130049018 | Ramer et al. | Feb 2013 | A1 |
20130063945 | Wu et al. | Mar 2013 | A1 |
20130119280 | Fuchi et al. | May 2013 | A1 |
20130249374 | Lee et al. | Sep 2013 | A1 |
20130293098 | Li et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
1425117 | Jun 2003 | CN |
1465106 | Dec 2003 | CN |
1608326 | Apr 2005 | CN |
1726410 | Jan 2006 | CN |
1802533 | Jul 2006 | CN |
1922286 | Feb 2007 | CN |
101012916 | Aug 2007 | CN |
101128695 | Feb 2008 | CN |
101262032 | Sep 2008 | CN |
101262032 | Sep 2008 | CN |
10126232 | Oct 2008 | CN |
101262032 | Oct 2008 | CN |
1013388887 | Jan 2009 | CN |
101368719 | Feb 2009 | CN |
101440938 | May 2009 | CN |
101501388 | Aug 2009 | CN |
101641623 | Mar 2010 | CN |
102077011 | May 2011 | CN |
10251955 | May 2004 | DE |
102004051382 | Apr 2006 | DE |
102006061164 | Jun 2008 | DE |
10 2007 037862 | Oct 2008 | DE |
202008013667 | Dec 2008 | DE |
102011004718 | Aug 2012 | DE |
0876085 | Nov 1998 | EP |
0876085 | Nov 1998 | EP |
0890059 | Jan 1999 | EP |
1058221 | Dec 2000 | EP |
1881259 | Jan 2008 | EP |
2146135 | Jan 2010 | EP |
2154420 | Feb 2010 | EP |
2469154 | Jun 2012 | EP |
2941346 | Jul 2010 | FR |
2345954 | Jul 2000 | GB |
2 366 610 | Mar 2002 | GB |
2366610 | Mar 2002 | GB |
2366610 | Mar 2002 | GB |
H03081903 | Apr 1991 | JP |
H06283006 | Oct 1994 | JP |
H09265807 | Oct 1997 | JP |
H1177149 | Jul 1999 | JP |
H11177149 | Jul 1999 | JP |
11-213730 | Aug 1999 | JP |
H11260125 | Sep 1999 | JP |
2000022222 | Jan 2000 | JP |
2000173304 | Jun 2000 | JP |
2001118403 | Apr 2001 | JP |
2002525814 | Aug 2002 | JP |
2003515899 | May 2003 | JP |
200507686 | Aug 2003 | JP |
2004146225 | May 2004 | JP |
2004241318 | Aug 2004 | JP |
2005-093097 | Apr 2005 | JP |
2005108700 | Apr 2005 | JP |
20051008700 | Apr 2005 | JP |
2005244226 | Sep 2005 | JP |
2005-286267 | Oct 2005 | JP |
2005277127 | Oct 2005 | JP |
2005021635 | Nov 2005 | JP |
2006019676 | Jan 2006 | JP |
2006108661 | Apr 2006 | JP |
2006148147 | Jun 2006 | JP |
2006156187 | Jun 2006 | JP |
20066159187 | Jun 2006 | JP |
20064085 | Sep 2006 | JP |
2006525648 | Nov 2006 | JP |
2006331683 | Dec 2006 | JP |
2007049019 | Feb 2007 | JP |
A2007049019 | Feb 2007 | JP |
200759930 | Mar 2007 | JP |
2007059911 | Mar 2007 | JP |
2007081090 | Mar 2007 | JP |
2007173397 | Jul 2007 | JP |
2007184330 | Jul 2007 | JP |
138653 | Dec 2007 | JP |
2008505448 | Feb 2008 | JP |
2008508742 | Mar 2008 | JP |
2008091140 | Apr 2008 | JP |
2008108835 | May 2008 | JP |
200815707 | Jul 2008 | JP |
2008523639 | Jul 2008 | JP |
2008187195 | Aug 2008 | JP |
2008262765 | Oct 2008 | JP |
200828183 | Nov 2008 | JP |
2008288409 | Nov 2008 | JP |
2008300117 | Dec 2008 | JP |
2008300203 | Dec 2008 | JP |
2008300460 | Dec 2008 | JP |
2008300570 | Dec 2008 | JP |
2009-016058 | Jan 2009 | JP |
200916689 | Jan 2009 | JP |
2009016058 | Jan 2009 | JP |
2009016153 | Jan 2009 | JP |
2009021264 | Jan 2009 | JP |
2009059896 | Mar 2009 | JP |
2009117346 | May 2009 | JP |
200928435 | Jul 2009 | JP |
U 3153766 | Aug 2009 | JP |
2009238960 | Oct 2009 | JP |
2009266780 | Nov 2009 | JP |
2009277586 | Nov 2009 | JP |
2009295299 | Dec 2009 | JP |
WO 2009148543 | Dec 2009 | JP |
2010016223 | Jan 2010 | JP |
2010040494 | Feb 2010 | JP |
2010050473 | Mar 2010 | JP |
2010129300 | Jun 2010 | JP |
2010237826 | Nov 2010 | JP |
100944181 | Feb 2010 | KR |
1020100037353 | Apr 2010 | KR |
100980588 | Sep 2010 | KR |
3020110008445 | Mar 2011 | KR |
200505054 | Feb 2005 | TW |
200527664 | Aug 2005 | TW |
200618339 | Jun 2006 | TW |
200619744 | Jun 2006 | TW |
M309750 | Apr 2007 | TW |
200739151 | Oct 2007 | TW |
200806922 | Jan 2008 | TW |
200930937 | Jan 2009 | TW |
200938768 | Jan 2009 | TW |
200907239 | Feb 2009 | TW |
200943592 | Oct 2009 | TW |
D134005 | Mar 2010 | TW |
100300960 | Mar 2011 | TW |
D141681 | Jul 2011 | TW |
WO 0017569 | Mar 2000 | WO |
WO 0124583 | Apr 2001 | WO |
WO 0140702 | Jun 2001 | WO |
WO 0160119 | Aug 2001 | WO |
10251955 | May 2004 | WO |
WO 2004100213 | May 2004 | WO |
WO 2004068599 | Aug 2004 | WO |
WO 2004100213 | Nov 2004 | WO |
WO 2004100213 | Nov 2004 | WO |
WO 2005107420 | Nov 2005 | WO |
WO 2006012043 | Feb 2006 | WO |
WO 2006065558 | Jun 2006 | WO |
WO 2007130358 | Nov 2007 | WO |
WO 2007146566 | Dec 2007 | WO |
WO 2008018002 | Feb 2008 | WO |
WO 2008018002 | Feb 2008 | WO |
WO 2008134056 | Apr 2008 | WO |
WO 2008052318 | May 2008 | WO |
WO 2008117211 | Oct 2008 | WO |
WO 2008146229 | Dec 2008 | WO |
WO 2008146229 | Dec 2008 | WO |
WO 2009024952 | Feb 2009 | WO |
WO 2009028861 | Mar 2009 | WO |
WO 2009052099 | Apr 2009 | WO |
WO 2009091562 | Jul 2009 | WO |
WO 2009093163 | Jul 2009 | WO |
WO 2009091562 | Jul 2009 | WO |
WO 2009093163 | Jul 2009 | WO |
WO 2009093163 | Jul 2009 | WO |
WO 2009107052 | Sep 2009 | WO |
WO 2009107052 | Sep 2009 | WO |
WO 2009119038 | Oct 2009 | WO |
WO 2009128004 | Oct 2009 | WO |
WO 2009119038 | Oct 2009 | WO |
WO 2009125314 | Oct 2009 | WO |
WO 2009131627 | Oct 2009 | WO |
WO 2009143047 | Nov 2009 | WO |
WO 2009158422 | Dec 2009 | WO |
WO 2009158422 | Dec 2009 | WO |
WO 2009158422 | Dec 2009 | WO |
WO 2010012999 | Feb 2010 | WO |
WO 2010012999 | Feb 2010 | WO |
WO 2010013893 | Feb 2010 | WO |
WO 2010013898 | Feb 2010 | WO |
WO 2010052640 | May 2010 | WO |
WO 2010119618 | Oct 2010 | WO |
WO 2010128419 | Nov 2010 | WO |
WO 2011100193 | Aug 2011 | WO |
WO 2011109091 | Sep 2011 | WO |
WO2011109098 | Sep 2011 | WO |
WO 2012011279 | Jan 2012 | WO |
WO 2012031533 | Mar 2012 | WO |
Entry |
---|
International Search Report and Written Opinion for counterpart PCT Application No. PCT/US2011/000391 mailed Oct. 6, 2011. |
International Search Report and Written Opinion for counterpart PCT Application No. PCT/US2011/000402 mailed Sep. 30, 2011. |
International Search Report and Written Opinion for PCT Patent Application No. PCT/US2011/000405 mailed Nov. 2, 2011. |
International Search Report and Written Opinion for PCT/US2011/000407 mailed Nov. 16, 2011. |
Office Action of the IPO for Taiwan Patent Application No. TW 100300962 issued Nov. 21, 2011. |
Office Action of the IPO for Taiwan Patent Application No. TW 100300961 issued Nov. 16, 2011. |
Office Action of the IPO for Taiwan Patent Application No. TW 100300960 issued Nov. 15, 2011. |
Office Action of the IPO for Taiwan Patent Application No. TW 100302770 issued Jan. 13, 2012. |
International Search Report and Written Opinion for PCT/US2011/000400 mailed May 2, 2011. |
CREE XLAMP® XP-G LED, Product Info and Data Sheet, 14 Pages. |
CREE XLAMP® XP-E LED, Product Info and Data Sheet, 20 Pages. |
Philips EnduraLED MR16 lamps, product information, 4 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2011/000397 mailed May 24, 2011. |
International Search Report and Written Opinion for PCT Application No. PCT/US2010/003146 mailed Jun. 7, 2011. |
Decision for Final Rejection for Japanese Patent Application No. 2001-542133 mailed Jun. 28, 2011. |
International Search Report and Written Opinion for PCT/US2011/000403 mailed Aug. 23, 2011. |
International Search Report and Written Opinion for PCT/US2011/000404 mailed Aug. 25, 2011. |
International Search Report and Written Opinion for PCT/US2011/000398 mailed Aug. 30, 2011. |
International Search Report and Written Opinion for PCT/US2011/000406 mailed Sep. 15, 2011. |
International Search Report and Written Opinion from PCT Application No. PCT/US2012/044705 dated Oct. 9, 2012. |
Notice to Submit a Response from Korean Patent Application No. 30-2011-0008446, dated Oct. 22, 2012. |
Notice to Submit a Response from Korean Design Patent Application No. 30-2011-0024961, dated Sep. 10, 2012. |
U.S. Appl. No. 11/656,759, filed Jan. 22, 2007, Chitnis. |
U.S. Appl. No. 11/899,790, filed Sep. 7, 2007, Chitnis. |
U.S. Appl. No. 11/473,089, filed Jun. 21, 2006, Tarsa. |
U.S. Appl. No. 61/435,759, filed Jan. 24, 2011, Le. |
U.S. Appl. No. 61/339,516, filed Mar. 3, 2010, Tong. |
International Search Report and Written Opinion, PCT/US2009/063804, Mailed on Feb. 26, 2010. |
U.S. Appl. No. 12/566,195, Van De Ven. |
U.S. Appl. No. 12/704,730, Van De Ven. |
C.Crane GEOBULB®—II LED Light Bulb, Item #2SW, Description, p. 1-2. |
C.Crane GEOBULB®—II LED Light Bulb, Item #2SW, Specs, p. 1-2. |
CREE LR4, 4″ Recessed Architectural Downlight, Product Info p. 1-2. |
CREE LR6, 6″ Recessed Downlight Module, Product Info, p. 1-2. |
U.S. Appl. No. 12/901,405, filed Oct. 8, 2010, Tong. |
U.S. Appl. No. 61/339,515, filed Mar. 3, 2010, Tong. |
U.S. Appl. No. 12/848,825, filed Aug. 2, 2010, Tong. |
Notice to Submit a Response from Korean Patent Application No. 30-2011-0008448, dated Apr. 16, 2012. |
Notice to Submit a Response from Korean Patent Application No. 30-2011-0008445, dated Apr. 16, 2012. |
Notice to Submit a Response from Korean Patent Application No. 30-2011-0008446, dated Apr. 16, 2012. |
Office Action for Taiwanese Patent Application No. 100300961, dated May 7, 2012. |
Office Action from Taiwanese Patent Application No. 100300960, dated May 7, 2012. |
International Search Report and Written Opinion for PCT Application No. PCT/US2011/000399 mailed Jul. 12, 2011. |
Decision to Refuse a European Patent Application for EP 09 152 962.8 dated Jul. 6, 2011. |
International Search Report and Written Opinion from PCT Application No. PCT/US2011/000389, dated May 6, 2013. |
International Search Report and Written Opinion from PCT Application No. PCT/US2011/000390, dated May 6, 2013. |
International Preliminary Report on Patentability from PCT/US2011/00389, dated May 8, 2013. |
International Preliminary Report on Patentability from PCT/US2011/000390, dated May 8, 2013. |
Reasons for Rejection from Japanese Patent Appl. No. 2011-198454, dated Mar. 7, 2013. |
Search Report and Written Opinion from PCT Application No. PCT/US2012/072108, dated Feb. 27, 2013. |
Office Action from Japanese Patent appl. No. 2012-556063, dated Jan. 28, 2014. |
Comments on the Written Opinion and Amendment of the Application from European Patent appl. No. 12740244.4, dated Feb. 20, 2014. |
International Search Report and Written Opinion from PCT/US2013/057712 dated Feb. 4, 2014. |
Office Action from U.S. Appl. No. 11/149,999, dated Jan. 15, 2014 |
Office Action from U.S. Appl. No. 13/034.501, dated Jan. 23, 2014. |
Office Action from U.S. Appl. No. 13/028,946, dated Jul. 16, 2012. |
Response to OA from Patent Appl. No. 13/028,946, filed Oct. 8, 2012. |
Office Action from U.S. Appl. No. 13/029,025, dated Jul. 16, 2013. |
Office Action from U.S. Appl. No. 13/430,478, dated Jun. 18, 2013. |
Office Action from U.S. Appl. No. 12/901,405, dated Jul. 1, 2013. |
Office Action from U.S. Appl. No. 13/018,291, dated Oct. 10, 2012. |
Response to OA from U.S. Appl. No. 13/018,291, filed Jan. 7, 2013. |
Office Action from U.S. Appl. No. 13/022,490, dated Nov. 7, 2012. |
Response to OA from U.S. Appl. No. 13/022,490, filed Feb. 1, 2013. |
Office Action from U.S. Appl. No. 13/034,501, dated Dec. 3, 2012. |
Response to OA from U.S. Appl. No. 13/034,501, filed Apr. 3, 2013. |
Office Action from U.S. Appl. No. 13/028,946, dated Dec. 47, 2012. |
Response to OA from U.S. Appl. No. 13/028,946, filed Jan. 29, 2013. |
Office Action from U.S. Appl. No. 13/029,005, dated Jan. 24, 2013. |
Office Action from U.S. Appl. No. 12/901,405, dated Jan. 9, 2013. |
Response to OA from U.S. Appl. No. 12/901,405, filed Apr. 29, 2013. |
Office Action from U.S. Appl. No. 13/018,291, dated Mar. 20, 2013. |
Response to OA from U.S. Appl. No. 13/018,291, filed May 20, 2013. |
Office Action from U.S. Appl. No. 13/022,490, dated Apr. 2, 2013. |
Office Action from U.S. Appl. No. 13/018,291, dated May 31, 2013. |
Office Action from U.S. Appl. No. 12/636,958, dated Jul. 19, 2012. |
Response to OA from U.S. Appl. No. 12/636,958, filed Nov. 19, 2012. |
Office Action from U.S. Appl. No. 13/054,501, dated May 31, 2013. |
Office Action from U.S. Appl. No. 13/028,946, filed Apr. 11, 2013. |
Office Action from U.S. Appl. No. 13/028,913, dated Apr. 29, 2013. |
Office Action from U.S. Appl. No. 13/029,005, dated Jan. 4, 2013. |
Response to OA from U.S. Appl. No. 13/029,005, filed Apr. 17, 2013. |
Office Action from U.S. Appl. No. 12/848,825, dated Nov. 5, 2012. |
Response to OA from U.S. Appl. No. 12/848,825, filed Feb. 5, 2013. |
Office Action from U.S. Appl. No. 13/029,005, dated Jun. 11, 2013. |
Notice of Reasons for Rejection from Japanese Patent Appl. No. 2012-543086, dated Aug. 27, 2013. |
Office Action from U.S. Appl. No. 13/022,490, dated Oct. 17, 2013. |
Office Action from U.S. Appl. No. 11/149,999, dated May 13, 2013. |
Response to OA from U.S. Appl. No. 11/149,999, filed Sep. 13, 2013. |
Office Action from U.S. Appl. No. 13/358,901, dated Oct. 9, 2013. |
Office Action from U.S. Appl. No. 13/028,863, dated Jul. 30, 2013. |
Notice of Reasons for Rejection from Japanese Patent Appl. No. 2012-543086, dated Dec. 24, 2013. |
Office Action from Japanese Patent Appl. No. 2012-556062, dated Dec. 20, 2013. |
International Preliminary Report on Patentability and Written Opinion from PCT/US2012/044705 dated Jan. 7, 2014. |
Decision of Dismissal of Amendment, Decision of Rejection from Japanese Patent Appl. No. 2011-231319. dated Oct. 15, 2013. |
Office Action from Japanese Patent Appl. No. 2012-556053, dated Oct. 11, 2013. |
Office Action from Japanese Patent Appl. No. 2012-556066, dated Oct. 25, 2013. |
Office Action from Japanese Patent Appl. No. 2012-556065, dated Oct. 25, 2013. |
Office Action from U.S. Appl. No. 13/028,913, dated Nov. 4, 2013. |
Office Action from Japanese Patent Appl. No. 2012-556064, dated Oct. 29, 2013. |
Office Action from U.S. Appl. No. 13/029,063, dated Oct. 23, 2013. |
Office Action from U.S. Appl. No. 13/028,946, dated Oct. 31, 2013. |
Office Action from U.S. Appl. No. 13/029.068, dated Nov. 15, 2013. |
Office Action from U.S. Appl. No. 13/029,025, dated Dec. 6, 2013. |
Office Action from Japanese Patent Appl. No. 2012-556066, dated Mar. 14, 2014. |
First Office Action from Chinese Patent Appl. No. 201080062056.X, dated Feb. 12, 2014. |
Office Action from U.S. Appl. No. 13/028,913, dated Feb. 19, 2014. |
Office Action from U.S. Appl. No. 13/028,863, dated Mar. 4, 2014. |
Office Action from U.S. Appl. No. 13/430,478, dated Feb. 21, 2014. |
Office Action from U.S. Appl. No. 13/358,901, dated Mar. 6, 2014. |
Office Action from U.S. Appl. No. 13/018,291, dated Mar. 7, 2014. |
Office Action from U.S. Appl. No. 13/029,025, dated Mar. 19, 2014. |
Office Action from U.S. Appl. No. 13/029,063, dated Apr. 1, 2014. |
Office Action from U.S. Appl. No. 13/029,068, dated Apr. 24, 2014. |
Office Action from U.S. Appl. No. 13/034,501, dated May 5, 2014. |
Office Action from U.S. Appl. No. 13/022,490, dated May 6, 2014. |
Office Action from U.S. Appl. No. 13/028,863, dated May 9, 2014. |
First Office Action from Chinese Patent Application No. 2011800207069. dated May 5, 2014. |
First Office Action from Chinese Patent Application No. 201180022606, dated May 4, 2014. |
First Office Action from Chinese Patent Appl. No. 201180020709.2, dated May 4, 2014. |
Office Action from U.S. Appl. No. 13/028,946, dated May 27, 2014. |
Office Action from U.S. Appl. No. 13/028,913, dated May 22, 2014. |
First Office Action and Search Report from Chinese Patent Appl. No. 201180022620X. dated Jul. 1, 2014. |
Office Action from U.S. Appl. No. 13/358,901, dated Jul. 15, 2014. |
Response to OA from U.S. Appl. No. 13/358,901, filed Aug. 21, 2014. |
Office Action from U.S. Appl. No. 13/340,478, dated Jul. 23, 2014. |
Office Action from U.S. Appl. No. 14/014,272, dated Jul. 29, 2014. |
Office Action from U.S. Appl. No. 13/029,025, dated Aug. 6, 2014. |
Office Action from U.S. Appl. No. 12/901,405, dated Aug. 7, 2014. |
Second Office Action from Chinese Appl. No. 201080062056.X, dated Sep. 29, 2014. |
First Office Action and Search Report from Chinese Appl. No. 2011800223856, dated Aug. 1, 2014. |
Communication from European Appl. No. 12816621.2-1757, dated Sep. 25, 2014. |
Pretrial Report from Japanese Patent Appl. No. 2011-231319, dated Apr. 14, 2014. |
First Office Action from Chinese Patent Appl. No. 2011800223856, dated Aug. 1, 2014. |
First Office Action from Chinese Patent Appl. No. 2011800226248, dated Aug. 25. 2014. |
Official Action from European Patent Appl. No. 11710348.1-1757, dated Oct. 9, 2014. |
Office Action from Japanese Patent Appl. No. 2012-556065, dated Aug. 5, 2014. |
Office Action from Japanese Patent Appl. No. 2012-556062, dated Aug. 5, 2014. |
First Office Action from Chinese Patent Appl. No. 2011800223837, dated Jul. 24, 2014. |
Office Action from European Patent Appl. No. 11710906.6-1757, dated Sep. 10, 2014. |
Office Action from U.S. Appl. No. 13/029,068, dated Jun. 13, 2014. |
Office Action from U.S. Appl. No. 13/018,245, dated Jun. 10, 2014. |
Decision to Grant from Japanese Patent Appl. No. 2012-556066, dated Jul. 4, 2014. |
Decision of Rejection from Japanese Patent Appl. No. 2012-556064, dated Jun. 6, 2014. |
First Office Action from Chinese Appl. No. 201180022626.7, dated Nov. 15, 2014. |
Second Office Action from Chinese Appl. No. 201180022606X, dated Dec. 23, 2014. |
Appeal Decision from Japanese Appl. No. 2011-231319. dated Jan. 13, 2015. |
Office Action from U.S. Appl. No. 13/607,300, dated Nov. 19, 2014. |
Office Action from U.S. Appl. No. 13/029,025, dated Dec. 11, 2014. |
Office Action from U.S. Appl. No. 13/018,245, dated Dec. 11, 2014. |
Office Action from U.S. Appl. No. 13/029,068, dated Dec. 23, 2014. |
Office Action from U.S. Appl. No. 13/029,068, dated Sep. 26, 2014. |
Response to OA from U.S. Appl. No. 13/029,068, filed Nov. 18, 2014. |
Office Action from U.S. Appl. No. 13/358,501, dated Oct. 31, 2014. |
Office Action from U.S. Appl. No. 13/430,478, dated Nov. 5, 2014. |
Office Action from U.S. Appl. No. 13/034,501, dated Nov. 5, 2014. |
Office Action from U.S. Appl. No. 13/028,863, dated Nov. 10, 2014. |
Decision to Grant from Japanese Appl. No. 2012-556062, dated Nov. 27, 2014. |
Second Office Action from Chinese Patent Appl. No. 2011800207069, dated Dec. 5. 2014. |
Summons to Oral Proceedings from European Patent Appl. No. 09152962/2166580, dated Jan. 29, 2015. |
First Office Action from Chinese Patent Appl. No. 2011800225832, dated Jan. 20, 2015. |
First Office Action from Chinese Patent Appl. No. 2011800226214, dated Dec. 25, 2014. |
Office Action from Japanese Patent Appl. No. 2014-122643, dated Apr. 10, 2015. |
Office Action and Search Report from Taiwanese Patent Appl. No. 100107051, dated May 12, 2015. |
Office Action from U.S. Appl. No. 13/029,068, dated Mar. 31, 2015. |
Office Action from U.S. Appl. No. 11/149,999, dated Mar. 31, 2015. |
Office Action from U.S. Appl. No. 13/430,478, dated Apr. 22, 2015. |
Office Action from U.S. Appl. No. 13/029,025, dated Apr. 29, 2015. |
Office Action from U.S. Appl. No. 13/018,245, dated May 28, 2015. |
Office Action from U.S. Appl. No. 13/028,863, dated Jun. 3, 2015. |
Office Action from U.S. Appl. No. 13/758,763, dated Jun. 5, 2015. |
Office Action from U.S. Appl. No. 14/185,123, dated Jun. 9, 2015. |
Second Office Action and Search Report from Chinese Patent Appl. No. 2011800207092, dated Jan. 22, 2015. |
Examination Report from European Patent Appl. No. 11 710 348.1-1757, dated Feb. 18, 2015. |
Examination Report from European Patent Appl. No. 11 710 906.6-1757, dated Feb. 18, 2015. |
Examination Report from European Patent Appl. No. 12 740 244.4-1757. dated Feb. 9, 2015. |
Office Action from U.S. Appl. No. 13/029,063, dated Jan. 13, 2015. |
Office Action from U.S. Appl. No. 14/014,272, dated Jan. 14, 2015. |
Response to OA from U.S. Appl. No. 14/014,272, filed Mar. 3, 2015. |
Office Action from U.S. Appl. No. 12/901,405, dated Feb. 4, 2015. |
Examination from European Patent Appl. No. 107991390. dated Nov. 18, 2015. |
Request for Correction from Chinese Patent Appl. No. 201180022606X. dated Nov. 12, 2015. |
Third Office Action from Chinese Patent Appl. No. 2011800223856, dated Nov. 2, 2015. |
Office Action from U.S. Appl. No. 13/536,707, dated Nov. 16, 2015. |
Office Action from U.S. Appl. No. 14/185,123, dated Nov. 17, 2015. |
Office Action from U.S. Appl. No. 13/029,068, dated Dec. 3, 2015. |
Office Action from U.S. Appl. No. 14/453,482, dated Oct. 1, 2015. |
Office Action from U.S. Appl. No. 14/108,815, dated Nov. 5, 2015. |
Search Report and Office Action from Taiwanese Patent Appl. No. 099143627, dated Jun. 12. 2015. |
Office Action from Taiwanese Patent Appl. No. 100107012, dated Jul. 22, 2015. |
Decision of Board of Appeal and Minutes of Oral Proceedings from European Appl. No. 09152962. dated Jun. 2, 2015. |
Decision to Grant from Chinese Patent Appl. No. 201080062056 X. dated Jul. 6, 2015. |
Office Action from Taiwanese Appl. No. 101107038, dated Jul. 21, 2015. |
Office Action from Taiwanese Patent Appl. No. 100107042, dated Jun. 2, 2015. |
Office Action from Taiwanese Patent Appl. No. 100107047, dated Jun. 2, 2015. |
Office Action from Taiwanese Patent Appl. No. 100107040, dated Jun. 2, 2015. |
Office Action from Taiwanese Patent Appl. No. 100107044, dated Jun. 1, 2015. |
Third Office Action from Chinese Patent Appl. No. 201180022606X, dated Jun. 10, 2015. |
Third Office Action from Chinese Patent Appl. No. 2011800207092, dated Jul. 13, 2015. |
Notice of Allowance from Japanese Patent Appl. No. 2014-122643, dated Sep. 3, 2015. |
Notification of the Fourth Office Action from Chinese Patent Appl. No. 2011800207069, dated Aug. 24, 2015. |
Decision of Rejection from Japanese Patent Appl. No. 2012-566065. dated Aug. 18, 2015. |
Second Office Action from Chinese Patent Appl. No. 2011800226267. dated Aug. 3, 2015. |
Office Action from U.S. Appl. No. 13/029,025, dated Aug. 17, 2015. |
Office Action from U.S. Appl. No. 13/430,478, dated Aug. 27, 2015. |
Office Action from U.S. Appl. No. 13/029,068, dated Sep. 8, 2015. |
Office Action from U.S. Appl. No. 13/029,063, dated Sep. 17, 2015. |
Office Action from U.S. Appl. No. 11/149,999, dated Oct. 1, 2015. |
Third Office Action from Chinese Patent Appl. No. 2011800223856-translations only. original already submitted. |
Official Notification and Search Report from Taiwanese Patent Appl. No. 10421609300. dated Dec. 1. 2015. |
Official Notification and Search Report from Taiwanese Patent Appl. No 10421621560, dated Dec. 2, 2015. |
Third Office Action from Chinese Patent Appl. No. 2011800226248. dated Nov. 20, 2015. |
Official Notification and Search Report from Taiwanese Patent appl. No 10421651990. dated Dec. 7, 2015. |
Notice of Issuance from Chinese Patent Appl. No. 2011800226063X, dated Dec. 10, 2015. |
Official Notification and Search Report from Taiwanese Patent Appl. No. 10421595210. dated Nov. 27, 2015. |
Office Action from Chinese Patent Appl. No. 201180022583.2. dated Dec. 17, 2015. |
Examination from European Patent appl. No. 11 710 906.6-1757, dated Jan. 8, 2016. |
Examination from European Patent appl. No. 11 710 348.1-1757. dated Jan. 8, 2016. |
Office Action from U.S. Appl. No. 13/029,025; Jan. 6, 2016. |
Office Action from U.S. Appl. No. 13/430,478; Jan. 7, 2016. |
Office Action from U.S. Appl. No. 13/758,763; Feb. 2, 2016. |
Office Action from U.S. Appl. No. 13/029,063; Feb. 11, 2016. |
Third Office Action for Chinese Application No. 2011800226267; Dated Apr. 6, 2016. |
Office Action from U.S. Appl. No. 14/108,815, Dated Apr. 27, 2016. |
Fourth Office Action for Chinese Application No. 2011800223856 May 5, 2016. |
Fourth Office Action for Chinese Application No. 201180022624.8: May 24, 2016. |
Fourth Office Action for Chinese Application No. 2011800223837; Jun. 6, 2016. |
Office Action from U.S. Appl. No. 13/029,068; Dated Jun. 9, 2016. |
Office Action from U.S. Appl. No. 13/516,707; Dated Jun. 23, 2016. |
Fourth Office Action from Chinese Patent Appl. No. 201180020709.2, Dated Jan. 25, 2016. |
Decision of Rejection from Chinese Patent Appl. No. 201180020706.9. dated Mar. 2, 2016. |
Re-Examination Report from Japanese Patent Appl. No. 2012-556065. dated Feb. 1, 2016. |
Examination Report from European Patent Appl. No. 11 709 509.1-1757. Dated Mar. 4, 2016. |
Office Action from U.S. Appl. No. 13/430,478: Jan. 7, 2016. |
Office Action from U.S. Appl. No. 13/758,763: Feb. 2, 2016 |
Office Action from U.S. Appl. No. 13/029,063: Feb. 11, 2016. |
Office Action from U.S. Appl. No. 14/453,482: Apr. 1, 2016. |
Third Office Action for Chinese Application No. 2011800225832; Dated Jul. 7, 2016. |
Notice of Issuance for Chinese Application No. 201180020769.2; Dated Jul. 25, 2016. |
Office Action for U.S. Appl. No. 13/758,763; Dated Jul. 26, 2016. |
European Office Action for U.S. Appl. No. 11710348.1; Dated Aug. 8, 2016. |
Office Action for U.S. Appl. No. 13/029,063; Dated Sep. 8, 2016. |
Second Office Action from Chinese Patent Appl. No. 2011800223056, dated Apr. 16, 2015. |
Office Action from Taiwanese Patent Appl. No. 100107048, dated Apr. 24, 2015. |
Notice of Decline of Amendments and Final Office Action from Japanese Appl. No. 2012-556065, dated Apr. 10, 2015. |
Second Office Action from Chinese Patent Appl. No. 2011600223837. dated Apr. 13. 2015. |
Communication from European Patent Appl. No. 13762957.2-1757. dated Apr. 30, 2015. |
Third Office Action from Chinese Patent Appl. No. 2011800207069, dated Apr. 13, 2015. |
Second Office Action from Chinese Patent Appl. No. 2011800226248, dated May 4, 2015. |
Office Action from Taiwanese Appl. No. 100107047. dated Jun. 5, 2015. |
Second Office Action from Chinese Appl. No. 201180022620X. dated Apr. 20, 2015. |
Office Action from Taiwanese Appl. No. 100107040, dated Jun. 5, 2015. |
Office Action from Taiwanese Patent Appl. No. 10420724800, dated Jun. 2, 2015. |
Office Action and Search Report from Taiwanese Patent Appl. No. 100107051, dated May 12. 2015. |
Foreign Office Action for Japanese Appl. No. 2012-556065; Dated Nov. 22, 2016. |
Foreign Office Action for Chinese Appl. No. 2011800207069; Dated Nov. 29, 2016. |
Foreign Office Action for Chinese Appl. No. 201180022620; Dated Dec. 1, 2016. |
Foreign Office Action for Chinese Appl. No. 2011800226267; Dated Dec. 15, 2016. |
Notice of Allowance for Chinese Application No. 201180022624.8; Dated Jan. 3, 2017. |
Office Action for U.S. Appl. No. 13/029,068; Dated Jan. 10, 2017. |
Number | Date | Country | |
---|---|---|---|
20110215697 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
61339516 | Mar 2010 | US | |
61339515 | Mar 2010 | US | |
61386437 | Sep 2010 | US | |
61424665 | Dec 2010 | US | |
61424670 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12848825 | Aug 2010 | US |
Child | 12985275 | US | |
Parent | 12889719 | Sep 2010 | US |
Child | 12848825 | US | |
Parent | 12975820 | Dec 2010 | US |
Child | 12889719 | US |