The aspects of the disclosed embodiments relate to LED lamps, and in particular, to an LED lamp having at least one LED light source in an envelope sealing the light source and associated driver circuitry
Incandescent light bulbs create light by conducting electricity through a resistive filament and heating the filament to a very high temperature to produce visible light. Incandescent bulbs are made in a wide range of sizes and voltages. The bulbs typically include an enclosure with a tungsten filament inside and a base connector that provides both an electrical and structural support connection. Incandescent bulbs generally mate with a lamp socket having a threaded Edison base connector, bayonet base connector, pin base connector, or any suitable connector for providing electrical power to the bulb. However, incandescent light bulbs are generally inefficient and require frequent replacement. These lamps are in the process of being replaced by more efficient types of electric light such as fluorescent lamps, high-intensity discharge lamps, and, in particular, LED light sources.
LED technology continues to advance resulting in improved efficiencies and lower costs with LED light sources found in lighting applications ranging from small pin point sources to stadium lights. An LED light may be 60-70% more efficient than an incandescent light but may still generate significant amounts of heat. At higher temperatures, light conversion efficiency for an LED light source may drop as power increases, the LED life decreases, and the light output from the LED may be permanently diminished.
An LED light source is generally chip mounted and heat is conducted away through a heat sink. Existing light fixtures are largely adapted to dissipate radiated heat and usually have very little capacity to dissipate conducted heat. In order to reach desired lumen values and maintain compatibility with a significantly large installed base of presently existing fixtures, additional cooling techniques may be required. It would be advantageous to provide an LED lamp that closely resembles an incandescent lamp in light output and aesthetics, with the high efficacy and life of an LED light source.
A variety of LED lamps with full glass outer jackets in A-line and candelabra embodiments have been introduced. While these products preserve the incandescent aesthetic, they are often not dimmable. LED lamps that are dimmable typically have poor dimmability (e.g. small dimmable range of only 100% to ˜50%, and/or noisy operation while dimmed) and/or low power factor (e.g. 0.4-0.6).
Additionally, in some cases LED lamp products do not meet UL (Underwriters Laboratories) standards because the LEDs do not self-extinguish if the glass bulb is broken. LED lamps that are receiving UL approval have the glass bulb coated with silicone so the glass is shatter resistant; this is one approach to solving this problem.
Accordingly, it would be desirable to provide a greater variety of LED lamps that solve at least some of the problems identified above.
The aspects of the disclosed embodiments are directed to an LED lamp (or “lamp assembly”) having a bulb or outer envelope enclosing an LED light source, wherein the LED driver circuitry for the LED light source is placed in a position in the interior of the bulb, to be encapsulated (e.g., hermetically encapsulated) by the bulb. In the disclosed embodiments, the LED driver is not outside the bulb (e.g., not in a capper portion of the lamp). Placing the driver within the interior of the bulb gives much more flexibility to include components that may enhance lamp performance, such as a safety circuit generally configured to interrupt electrical power to the LED lamp assembly and self-extinguish if the outer jacket breaks or is otherwise compromised. The safety circuit may be mounted within the interior of the bulb and may connect to a fuse that operates to extinguish the lamp. The LED lamps of the disclosed embodiments may use, but are not limited to, filament-style LEDs which more closely resemble incandescent filaments. A circuit board, for example, a printed circuit board (PCB), may be placed within the bulb of the LED lamp. To promote a particular aesthetic look, the PCB may be masked with a reflective (e.g., mirror-like) coating or panel(s), and thus the incandescent-like aesthetic look may be preserved.
In at least one aspect, the disclosed embodiments are directed to a lamp assembly including a base, a hermetically sealed outer jacket mounted on the base, and a driver circuit disposed within the hermetically sealed outer jacket, the driver circuit electrically coupled to the base.
The hermetically sealed outer jacket may be formed of glass.
The hermetically sealed outer jacket may comprise a polymer.
The lamp assembly may include one or more solid state light sources mounted within the hermetically sealed outer jacket and powered by the driver circuit.
The one or more solid state light sources may be LED light sources.
The one or more solid state light sources may be LED filaments.
The lamp assembly may also include a printed circuit board on which the one or more solid state light sources and the driver circuit may be mounted.
The lamp assembly may include a safety circuit configured to interrupt electrical power to the lamp assembly if the hermetically sealed outer jacket is compromised.
The safety circuit may include an active element within the hermetically sealed outer jacket configured to be oxygen sensitive.
The active element may require activation in order to become oxygen sensitive.
The active element may be configured to become non-conducting upon exposure to oxygen.
The active element may be configured to trip a fuse in the base upon exposure to oxygen.
The safety circuit may include a pressure transducer configured to trip a fuse in the base upon a change in atmospheric pressure within the hermetically sealed outer jacket.
The safety circuit may include an oxygen sensor configured to trip a fuse in the base upon a change in partial pressure of oxygen gas within the hermetically sealed outer jacket.
In at least one other aspect, the disclosed embodiments are directed to a lamp assembly including a base, a hermetically sealed outer jacket mounted on the base, a driver circuit disposed within the hermetically sealed outer jacket and electrically coupled to the base, and a safety circuit configured to interrupt electrical power to the lamp assembly if the hermetically sealed outer jacket is compromised.
The lamp assembly may include one or more solid state light sources mounted within the hermetically sealed outer jacket and powered by the driver circuit.
The safety circuit may include an active element within the hermetically sealed outer jacket configured to trip a fuse in the base if the hermetically sealed outer jacket is compromised.
The active element may be configured to trip the fuse upon exposure to oxygen.
These and other aspects and advantages of the exemplary embodiments will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for purposes of illustration and not as a definition of the limits of the disclosed embodiments. Additional aspects and advantages of the disclosed embodiments will be set forth in the description that follows, and in part will be obvious from the description, or may be learned by practice of the disclosed embodiments. Moreover, the aspects and advantages of the disclosed embodiments may be realized and obtained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
In the drawings:
The extension of the base 102 may be implemented as a light source support 118, and the base may further include a base connector 120. The base connector 120 may include electrical contacts, for example contacts 110, 112, for supplying electrical power to the LED light bulb 100 from an external power source or power supply. In at least one embodiment, contact 110 may be a threaded contact and contact 112 may be a button contact forming a standard Edison base connector. Contacts 110, 112 may connect to a standard 120V or 230V A.C. mains supply or any other suitable external power source. While an E26 base connector is illustrated, it should be understood that the LED lamp assembly of the disclosed embodiments may include any E style connector, for example, E11, E12, E17, any bayonet, screw, single or double contact, or mogul connector, or any base connector.
The envelope 104 may generally enclose the LED light source 106 and may be constructed of glass, polymer, plastic, translucent ceramic, or other suitable material for transmitting light and for confining the cooling medium within the envelope 104. While an “A” type envelope is shown, it should be understood that the LED lamps assembly of the disclosed embodiments may include AR, B, BR, C, E, ER, G, K, MB, MR, PAR, R, S, T, or any suitable envelope shape. For example, an “A” type envelope refers to a classic Edison envelope, a “B” type envelope refers to a candle shaped envelope, a “G” type envelope refers to a globe shaped envelope, an “R” type envelope refers to a reflector envelope, and a “T” type envelope refers to a tube shaped envelope. However, while certain types of envelopes are referenced herein, the LED lamps assembly of the disclosed embodiments may utilize any appropriate envelope profile.
A surface of envelope 104 may inherently diffuse light or may include frosting, texturing, a light diffusing coating, embedded light scattering particles, or other material for diffusing light. The envelope may also be referred to, elsewhere in this disclosure, as a “bulb” or “outer jacket”. The envelope 104 may be hermetically sealed and confines a cooling medium 116, for example, helium, hydrogen, or an evaporating fluid. In some embodiments, the cooling medium (also referred to a thermally conductive medium or cooling fluid) may be a non-oxidative gas with a relatively high thermal conductivity, such as a gas comprising hydrogen and/or helium.
The LED light source 106 of
Referring to
In the example shown in
The reflective surface 208 may generally comprise any suitable light reflective coating or panel, such as a reflective foil for example. In one embodiment, the reflective surface 208 may comprise a substrate with a coating that creates a surface with a high reflectance. The reflective surface 208 may have a reflectance greater than 50%, more preferably >80%, most preferably >90%. The surface reflectance may be either specular, or diffuse, or a combination of specular and diffuse. Specular reflectance may provide a mirror-like finish such that the images of the filaments reflected from the surface may appear to an observer to be additional filaments, providing a “sparkling” appearance that may be a preferred aesthetic. Diffuse reflectance may provide a flat, hazy or matte finish such that the images of the filaments reflected from the surface will not be apparent to an observer, providing a more uniformly lit appearance that may be a preferred aesthetic.
The highly reflective surface may be the surface of substrate, which may be the PCB itself, or it may be the surface a separate foil or panel made of plastic, metal, ceramic, glass, cured resin, or other material having an intrinsic high reflectance. Alternatively, the highly reflective surface may be the surface of a coating applied to the substrate, where the substrate may be the PCB itself, or it may be the surface of a separate foil or panel made of plastic, metal, ceramic, glass, cured resin, or other material suitable for receiving a coating. The means of coating may be painting, spraying, electrostatic coating (i.e. powder-coating) of highly reflective material; or it may be application of an optical interference film provided by sputtering or physical vapor deposition or chemical vapor deposition, or other suitable means of providing high reflectance to the surface of the substrate. A specular coating may comprise aluminum, silver, nickel, zinc or other metal of suitably high reflectance or it may be an interference thin film that may comprise combinations of materials having high and low index of refraction, typically but not limited to metal oxide materials. Further, the metal coating may be clear coated with silicone, lacquer, metal oxide thin film, or other sufficiently clear substance that protects the metal finish and/or insulates the metal from any electrical conductors in the vicinity of the reflective surface. A diffuse coating may comprise a paint, powder, plastic, metal, ceramic, glass, cured resin, or other material having an intrinsic high reflectance.
The LED lamp assembly 200 may include at least one LED filament 220. The LED filament 220 may generally comprise any suitable LED filament or array of LEDs. In one embodiment, the LED filament 220 may comprise a substantially linear array of LED filaments. The exemplary filament 220 of the disclosed embodiments may have an approximately 1 mm thick by 2.5 mm wide by ˜28 mm long substrate. In alternate embodiments, the filament 220 can comprise any suitable length, such as for example approximately 38 mm. If the LED array employs a mixture of phosphor and polymeric encapsulant (e.g., silicone) disposed over LED chips, then this mixture may be any suitable height, e.g., about 0.7 mm. In general, a longer filament 220 may be preferred since it may increase the surface area in contact with the cooling fluid and improves thermal performance. However, the length of the filament also affects the overall aesthetic of the lamp, so a longer filament may perform more efficiently but have less favorable appearance to an observer. Of course, the presently disclosed embodiments are not limited to the candelabra profile.
Although only one LED filament 220 is shown in
A single filament embodiment would likely have a filament in the middle of the lamp, with the PCB 206 cut out around it. In this embodiment, the PCB 206 may still have reflective surfaces so that reflections of the filament light source from the inside of the glass bulb 204 are reflected further from the PCB 206.
A three filament embodiment may combine the central filament within the PCB cutout with the two spaced-apart filaments 220, 222 shown in
In some applications, it may be desired to use a single filament on one or both sides of the PCB 206. Alternatively, more than one LED or LED array can be used to make up an LED filament 220. For example, the LED filament 220 can comprise two or more LED arrays or filaments coupled together to form the LED filament 220. Generally, the LED filament 220 can comprise any suitable arrangement of LEDs, as is generally understood. Of course, all occurrences of the phrase “LED filament” in this disclosure are to be understood as being replaceable by a circuit board upon which are mounted one or more LED dies or packages.
Referring to
The aspects of the disclosed embodiments may eliminate the need for an insulating housing around the PCB 206. Conventionally, a “capper” is used as an insulating housing for circuit boards in lamps. However, in aspects of the present disclosure, such a capper may be effectively replaced with a glass bulb 204 so as to improve the appearance of the LED lamp by making it look more like a traditional incandescent bulb, while also placing the PCB 206 into the interior region of the bulb 204.
Referring to
The reflective surface 208 may mimic the shape of the PCB 206. Alternatively, the reflective surface 208 may be slightly larger, may be slightly smaller, and may have selective holes, slots, or cuts to avoid contact with electrically conductive components.
In an embodiment, as shown in
Referring to
The outer jacket or envelope 204, which may be made of glass, may serve the same purpose as standard light bulbs. The outer jacket 204, also referred to herein as a bulb, may hermetically seal the internal contents of the LED assembly 200 from the ambient air. Additionally, the outer jacket or bulb 204 can provide mechanical structure, thermal stability, may provide a diffuse surface for scattering light in a particular distribution (if a coating or treatment is applied), and may provide an overall aesthetic. The glass on decorative bulbs is often shaped to resemble a candle flame, which may provide a comforting feel to observers. Standard A19 bulbs are semi-spherical to provide nearly omnidirectional uniform light output. Glass has been used in the lighting industry over many years because it has high hermeticity, transparency, manufacturability, and cost-effectiveness that make it an ideal material for this application. Some plastics can rival glass on the latter three criteria, but plastics may be too porous to keep small gaseous molecules such as hydrogen and helium from escaping over time.
The fuse 260, which in one embodiment comprises a fusible resistor, may generally function as follows. First, referring to
Once the bulb 204 is sufficiently filled, the stem tube 236 may be hermetically sealed (e.g. flame sealed). At this point, the neutral lead 234 and hot lead 232 from the PCB 206 may protrude out of the bottom of the glass bulb 204, but everything inside the glass bulb 204 may be protected from the outside air. The neutral wire 234 may be welded to the side wall of the base 210, while the hot wire 232 may be soldered to the fuse 260 on the bottom of the base 210.
Once the LED lamp assembly 200 has been sealed, the selectively active element 302 inside the bulb 204 can be activated, that is, made to be an oxygen sensitive electrical conductor. Prior to activation, it may not be oxygen sensitive, and may or may not be a conductor prior to activation. However, after activation, the element 302 may cease to conduct if exposed to oxygen. If the element 302 is contained in an inert atmosphere by an intact bulb, it may conduct electricity. If the glass bulb 204 is sufficiently compromised (e.g. cracked or broken), the oxygen in the ambient air may trigger the oxygen-sensitive element 302 to stop conducting. When the oxygen-sensitive element 302 inside the bulb 204 stops conducting, the fuse 260 in the base 210 may be tripped and may no longer conduct electricity to the rest of the LED lamp assembly 200. The fuse 260 may be any kind of fusible element that will open if the oxygen-sensitive element 302 is triggered.
The element 302 may function to trigger the fuse 260 to cut power to the LED lamp assembly 200 if glass outer jacket 204 is compromised. Many materials can be employed for element 302, including, but are not limited to, Indium-Tin Oxide (ITO) coating on the glass bulb, or a metal strip on the PCB that reacts with air (e.g. lithium), or the like. In order to preserve the integrity of the metal strip during manufacturing, the strip may be activated electrically, chemically, or thermally only after the bulb 204 has been filled with an inert thermally conductive medium (cooling fluid) and sealed. Alternatively the lamp 200 may be assembled in an inert environment. If the lamp is assembled in an inert environment, the element 302 may not require any activation in order for it to be oxygen sensitive.
Alternatively, there may be numerous other methods for ensuring safety to exposed electrical elements, in the event that the glass bulb 204 is sufficiently compromised (e.g. cracked or broken). One method may employ a pressure transducer which may be configured to sense that the pressure in the bulb has been suddenly raised from a sub-atmospheric pressure to atmospheric pressure. For example, a pressure transducer which may be sufficiently small to be placed “on-chip” inside the glass bulb, may be capable of sensing an original pressure state for an intact bulb (e.g., 0.5 atmosphere of gas) and may also be capable of sensing a change in pressure to about 1 atmosphere (broken bulb). For example, a resistance or capacitance of an element in a pressure transducer can change; this may change an electrical circuit in a pressure-dependent way; a change in a circuit may be used to “trip” the fuse. Another method may employ an oxygen sensor, which may be configured to provide a first signal at low partial pressure of oxygen gas (e.g., an intact bulb may have substantially zero partial pressure of oxygen), and to provide a second signal when there is a level of oxygen representative of a broken bulb (e.g., partial pressure of 0.2 atm, which is the broken state). This may change a circuit in an oxygen-sensitive way, and a change in a circuit may be used to trip a fuse.
The aspects of the disclosed embodiments can also include a method for assembling an LED lamp. In one embodiment, as illustrated in
In one embodiment, as illustrated in
The aspects of this disclosure may also further include a lamp assembly, including a base, an outer jacket, an circuit board disposed within the outer jacket and electrically coupled to the base, the circuit board comprising at least a driver circuit, and a first solid-state light source coupled to a side of the circuit board. A first reflective surface may be disposed between the first light source and the circuit board.
The outer jacket may be transparent or translucent and may provide a hermetic seal to the lamp assembly.
The outer jacket may be translucent and an interior of the lamp assembly may be at least partially visible.
A lamp light output may change correlated-color temperature (CCT) as the first solid state light source is dimmed.
The lamp assembly may include a second solid-state light source coupled to an other side of the driver board. A second reflective surface may be disposed between the second light source and the circuit board.
The second solid state light source may be an LED filament.
The second solid state light source may have a different CCT than the first solid state light source.
The reflective surface may be one or more of a thin plate, film, or coating.
The reflective surface may have a mirror-like finish.
The reflective surface may have a matte finish.
The lamp assembly may include an outer glass jacket and a fuse, the fuse may be configured to cut power to the lamp if the outer glass jacket is compromised.
The lamp assembly may include at a least a third solid state light source. At least one of the first light source, second light source and third light source may have a first CCT and at least another one of the first light source, second light source and third light source may have a second CCT that is different from the first CCT.
Thus, while there have been shown, described and pointed out, fundamental novel features of the exemplary embodiments thereof, it will be understood that various omissions and substitutions and changes in the form and details of devices illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit and scope of the disclosed embodiments. Moreover, it is expressly intended that all combinations of those elements, which perform substantially the same function in substantially the same way to achieve the same results, are within the scope of the embodiments disclosed herein. Moreover, it should be recognized that structures and/or elements shown and/or described in connection with any disclosed form or embodiment may be incorporated in any other disclosed or described or suggested form or embodiment as a general matter of design choice. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.
This application claims priority under 35 CFR 119(e) and benefit from prior filed, commonly-owned U.S. provisional patent application 62/132,460, filed 12 Mar. 2015, the contents of which are hereby expressly incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/022367 | 3/14/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/145450 | 9/15/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4013919 | Corbley | Mar 1977 | A |
4195251 | Bamberg | Mar 1980 | A |
4361782 | Reiling | Nov 1982 | A |
4380714 | Bouman et al. | Apr 1983 | A |
4642520 | Bouman et al. | Feb 1987 | A |
5589823 | Lange | Dec 1996 | A |
6577065 | Kling | Jun 2003 | B2 |
8933619 | Ou | Jan 2015 | B1 |
20030031015 | Ishibashi | Feb 2003 | A1 |
20030062857 | Kling | Apr 2003 | A1 |
20030076026 | Trent et al. | Apr 2003 | A1 |
20090101933 | Takao et al. | Apr 2009 | A1 |
20100277069 | Janik | Nov 2010 | A1 |
20110006830 | Kim et al. | Jan 2011 | A1 |
20120068627 | Brooks | Mar 2012 | A1 |
20130058080 | Ge et al. | Mar 2013 | A1 |
20130083533 | Janik | Apr 2013 | A1 |
20130155695 | Liu | Jun 2013 | A1 |
20130162139 | Liu | Jun 2013 | A1 |
20130271987 | Hussell et al. | Oct 2013 | A1 |
20150035439 | Nittke | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
2 594 842 | May 2013 | EP |
2011027278 | Mar 2011 | WO |
2011069437 | Jun 2011 | WO |
2012031533 | Mar 2012 | WO |
2012105828 | Aug 2012 | WO |
2016145448 | Sep 2016 | WO |
Entry |
---|
“Iron-hydrogen resistor,” Wikipedia, pp. 1-2 (2018). |
International Search Report and Written Opinion issued in connection with corresponding PCT Application No. PCT/US2016/022367 dated May 17, 2016. |
International Preliminary Report on Patentability issued in connection with corresponding PCT Application No. PCT/US2016/022367 dated Sep. 12, 2017. |
Number | Date | Country | |
---|---|---|---|
20180031218 A1 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
62132460 | Mar 2015 | US |