1. Field of the Invention
The field of this invention is electric lamps and, in particular, LED (light-emitting diode) lamps.
2. Description of the Prior Art
With reference to
However, the metal rod 91 is not capable of satisfying heat transportation. Heat generated by the LED 92 during operation may not be effectively transferred, which forbids using high-power LED or using multiple LEDs within one LED lamp.
Wither reference to
The measure points include different points T1, T2 of the MCPCB, different points T3, T4 of the receiving plate and fins T5-T9 of the heat sink. The temperature readings are listed in Table 1.
With reference to
The temperature of the MCPCB is considerably higher than that of the heat sink, which indicates an accumulation of the heat generated by the LED around MCPCB. The phenomenon demonstrates the high heat-transfer resistance of the MCPCB constitutes a proximal heat-transfer resistance in the conventional system that is responsible to the accumulation of heat.
Accordingly, an LED lamp is needed that will mitigate or obviate the aforementioned problems.
An embodiment of an LED lamp has a metal housing, a sintered heat pipe and an LED.
In one embodiment, a metal housing is bowl-shaped and comprises an inner surface, an outer surface, a bottom and an opening. The opening of the metal housing has an inner edge. The sintered heat pipe is thermally attached to the inner surface of the metal housing. The sintered heat pipe has a first end, a second end, a bottom portion and a second portion. The bottom portion is defined between the first end and the second end of the sintered heat pipe and is positioned to the bottom of the metal housing and has a flattened area. The second portion is defined between the second end and the bottom portion of the sintered heat pipe and thermally attached to the inner surface of the metal housing. The LED is attached to the flattened area of the bottom portion of the sintered heat pipe.
The sintered heat pipe, which is by nature capable of highly effective heat sinking, rapidly transports the heat generated by the LED to the metal housing. The metal housing then transfers the heat to the environment. The sintered heat pipe makes effective heat transportation possible and allows the use of high-powered or multiple LED's within one lamp.
Other objectives, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
With reference to
The sintered heat pipe 20 is mounted within the open metal housing 10 and is thermally attached to the inner surface, the bottom and the inner edge of the metal housing 10. The sintered heat pipe 20 has a first end, a second end and a bottom portion. The bottom portion is defined between the first end and the second end and positioned toward the bottom of the metal housing 10. The bottom portion may have a flatten area. In an embodiment, the bottom portion of the sintered heat pipe engages an interior surface of the bottom of the housing.
When the inner surface of the metal housing 10 is formed with one or more grooves, that the sintered heat pipe 20 is received in the one or more grooves is preferred. The sintered heat pipe 20 may be welded or otherwise adhered to the inner surface of the metal housing 10 by using various thermal sticking agents, especially a thermal grease. With any of the aforementioned or other attaching means, the sintered heat pipe 20 is attached to and thermally contacts the inner surface of the metal housing 10.
The LED 30 is attached to the flatten area of the bottom portion of the sintered heat pipe 20. The LED 30 emits lights that radiate outward through the opening of the metal housing 10. In order to receive power for operation, the LED 30 is electrically connected to a power source providing an alternating current or a direct current.
The LED lamp may further comprise a controller electrically connected to the LED 30 and the power source. The controller is configurable for controlling the LED 30 such that the LED 30, for example, may switch between on-off status or to alternative illumination patterns. An artisan in the field of the present invention would appreciate the structure and installation of a suitable controller that need not be described herein.
Heat generated by the LED 30 during operation will be rapidly transported by the sintered heat pipe 20 to the metal housing 10 and then sequentially transferred to the environment from the outer surface of the metal housing 10. The sintered heat pipe 20 makes effective heat transportation possible and allows the use of high-powered or multiple LED's within one lamp.
With reference to
With further reference to
With reference to
With reference to
The sintered heat pipe 20A may engage the inner surface of the metal housing 10A or be attached to the metal housing in various ways including adhered or welded to the inner surface of the metal housing 10A without departing from the scope of the invention. With further reference to
A cover 40A may also be attached to the inner edge of the opening of the metal housing 10A for alternative lighting or decorating effects. In order to conveniently engage to the power source, the embodiment of the LED lamp may further comprise the aforementioned base 50, 50A or lead pair 60.
With reference to
Calculated temperatures of the sintered heat pipe and the heat sink and the temperature of the LED are further listed in Table 4. A graph is made based on Table 4. With reference to
Even though numerous characteristics and advantages of the various described embodiments have been set forth in the foregoing description, together with details of the structure and features, the disclosure is illustrative only. Changes may be made in the details, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
The present invention is a continuation-in-part application that claims the benefit of U.S. patent application Ser. No. 12/319,995 filed on Jan. 14, 2009.
Number | Date | Country | |
---|---|---|---|
Parent | 12008936 | Jan 2008 | US |
Child | 12802965 | US |