1. Technical Field
The disclosure relates to illumination devices and, particularly, to an LED (light-emitting diode) lamp having a good waterproof performance
2. Description of Related Art
LEDs are well known solid state light sources, in which current flows in a forward direction through a junction of two different semiconductors. Electrons and cavities combine at the junction to generate light. LEDs provide advantages of resistance to shock and practically limitless lifetime under specific conditions. When deployed in a lamp, LEDs offer a cost-effective yet high quality alternative to incandescent and fluorescent light fixtures.
When the LED lamp is used outdoors for illumination, dust and moisture may enter the LED lamp, causing current leakage or short circuit, or contamination of the LEDs.
What is needed, therefore, is an LED lamp which can overcome the described limitations.
Many aspects of the present apparatus can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present apparatus. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Referring to
Referring to
The cover plate 14 further comprises four spaced first mounting members 100 extending downwardly from a circumference of the cover plate 14. Four screws (not shown) are extended through the four first mounting members 100, and then screwed into the lateral plates 120, for securing the cover plate 14 on the lateral plates 120. The cover plate 14 further comprises four spaced second mounting members 200 extending downwardly from the cover plate 14 around the opening 140. Each of the second mounting members 200 is L-shaped and comprises a first arm (not labeled) extending perpendicularly from the cover plate 14 and a second arm (not labeled) extending perpendicularly from the first arm. The heat sink 20 is fixed on and supported by the second arms of the four second mounting members 200, whereby the heat sink 20 is securely received in the opening 140 of the cover plate 14 and the cavity 12 of the lamp housing 10. Additionally, a driving module (not labeled) is fixed on a bottom face of the cover plate 14.
The heat sink 20 is integrally made of a metal with good heat conductivity such as aluminum, copper or an alloy thereof. The heat sink 20 comprises a rectangular base 22 and a plurality of fins 24 extending outwardly from the base 22. The base 22 is a rectangular plate. An annular receiving groove 220 is defined on a bottom face of the base 22 for correspondingly receiving an annular gasket 300 therein. A circular mounting portion 222 is formed at a central area of the base 22 and surrounded by the receiving groove 220. The LED module 30 is attached on the mounting portion 222 and thermally connects therewith. The base 22 has a size substantially the same as that of the opening 140 of the cover plate 14. When the heat sink 20 is assembled to the lamp housing 10, the base 22 of the heat sink 20 is fittingly fixed on the four second mounting members 200 of the cover plate 14, and the fins 24 are extended through the opening 140 of the cover plate 14 and exposed in an outer environment.
The LED module 30 comprises a circular printed circuit board 32 and a plurality of LEDs 34 mounted on the printed circuit board 32. The printed circuit board 32 is attached on the mounting portion 222 of the heat sink 20. The LEDs 34 are soldered on the printed circuit board 32 and spaced evenly from each other.
The envelope 40 is integrally formed of a transparent or semitransparent material such as glass, resin or plastic. The envelope 40 comprises a recessed body 41 and an engaging flange 42 extending outwardly and horizontally from a periphery of the body 41. The engaging flange 42 of the envelope 40 has a size slightly larger than that of the receiving groove 220 of the heat sink 20, whereby the receiving groove 220 is fittingly covered by the engaging flange 42. When the envelope 40 is assembled to the heat sink 20, the gasket 300 is sandwiched between the engaging flange 42 and the base 22 defining the receiving groove 220, so that the envelope 40 is hermetically connected to the heat sink 20 and a receiving chamber (not labeled) for accommodating the LED module 30 is cooperatively defined between the heat sink 20 and the envelope 40. A plurality of screws (not shown) are used to extend through the engaging flange 42 and threadedly engage in the bottom face of the base 22.
A tubular mounting seat 400 is further provided to the LED lamp, for mounting the LED lamp to a lamp post (not shown) securely mounted at, for example, a roadside. The mounting seat 400 is fixed to the heat sink 20 and located at a top side of the LED lamp to be hung to a lamp pole.
It is to be understood, however, that even though numerous characteristics and advantages of the present embodiments have been set forth in the foregoing description, together with details of the apparatus and function of the embodiments, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the embodiments to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
2010 1 0301167 | Feb 2010 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
7588359 | Coushaine et al. | Sep 2009 | B2 |
7626213 | Lin | Dec 2009 | B2 |
7670029 | Luo et al. | Mar 2010 | B1 |
7753560 | Xu et al. | Jul 2010 | B2 |
7883246 | Blincoe et al. | Feb 2011 | B2 |
20110063849 | Alexander et al. | Mar 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20110188255 A1 | Aug 2011 | US |