1. Field of the Invention
The subject invention relates to a light emitting assembly of the type including light emitting diodes (L.E.D.s), and more particularly, to a heat sink for avoiding high temperatures causing early degradation of the L.E.D.s.
2. Description of the Prior Art
Light generating assemblies including light emitting diodes are more efficient than other light sources, such those including high intensity discharge (H.I.D.) lamps. At least a fifty percent (50%) energy savings is possible when light sources including H.I.D. lamps are replaced with properly designed L.E.D. light assemblies. An example of such an L.E.D. light assembly is disclosed in U.S. Pat. No. 5,857,767 to the present inventor, Peter A. Hochstein, which is directed to effective thermal management. The '767 patent discloses a plurality of light emitting diodes disposed on a heat sink. The heat sink includes a plurality of fins to increase the surface area of the heat sink and thus the amount of heat transferred from the light emitting diodes to surrounding ambient air. Such L.E.D. light assemblies have an expected life exceeding 10-12 years, compared to a nominal 2-3 year life of H.I.D. light sources. Thus, municipalities and other cost-conscious entities desire to retrofit their standard H.I.D. light assemblies with L.E.D. light assemblies. The energy-related cost savings allow the L.E.D. light assemblies to pay for themselves in about 4-5 years.
The continuously increasing power density of L.E.D. light assemblies creates a need for more effective thermal management. The prior art includes sophisticated heat sink designs to achieve the more effective thermal management. Such prior art heat sinks include a pair of elongated sections spaced and parallel to one another to define a fin space therebetween and a plurality of fins disposed in spaced relationship to one another and extending in width across the fin space between the elongated sections. However, due to manufacturing tolerances, at least one of the fins is often unintentionally formed longer in width than the other fins. The unequal widths can prevent some of the fins from totally engaging the two sections thereby impeding the transfer of heat from the elongated sections to the fins. One solution to this problem is disclosed in U.S. Pat. No. 5,042,257 to Kendrick et. al, wherein each of the fins are clamped by fins of the other elongated section.
The prior art provides a method of fabricating such a heat sink, including forming a strip of heat sink, dividing the strip of heat sink into at least two elongated sections, spacing each elongated section from and parallel to another one of the elongated sections to define a fin space therebetween, and disposing a plurality of fins in spaced relationship to one another and extending in width across the fin space between the elongated sections. However, due to manufacturing tolerances, the fins are of different widths whereby some of the shorter fins are not in total contact with the elongated sections.
The subject invention provides an L.E.D. light emitting assembly comprising such a heat sink supporting a plurality of light emitting diodes, and characterized by each of the fins including at least one bend rendering the fins spring compressible in width across the fin space for being spring compressed between the elongated sections of the heat sink.
The subject invention also provides for a method of fabricating an L.E.D. light emitting assembly comprising such a heat sink supporting a plurality of light emitting diodes, and characterized by forming at least one bend in each of the fins to render the fins compressible in the width across the fin space.
The bend in each of the fins allows the fin to be spring compressed between the elongated sections to assure that each fin is in contact with both elongated sections to provide maximum heat transfer from the elongated sections to both ends of the fins. Even if the fins are unintentionally formed of unequal width, for example if some of the fins are formed wider than others due to manufacturing tolerances, each of the fins can still be spring compressed between the elongated sections to assure requisite contact to maximize the maximum heat transfer. Thus, both ends of each of the fins transfers heat away from both elongated sections to ambient air to minimize temperature rise at the light emitting diodes and contribute to the improved thermal management of the L.E.D. light emitting assembly.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Referring to the Figures, an L.E.D. light emitting assembly is shown in
The description proceeds on reference to the cross section of the heat sink. An LED wall 40 is spaced from the fin wall 22 and extends outwardly and upwardly from a bottom side edge 34 to a top side edge 36, as shown in
The heat sink 20 includes a lower truss member 46 connecting the fin wall 22 to the heat transfer surface 44 of the LED wall 40 above the lower side edge 26 to space the heat transfer surface 44 from the fin wall 22. The lower truss member 46 defines a lower strap slot 48, as best shown in
The heat sink 20 includes an attachment block 52 extending along the upper truss member 50 and spaced from the upper side edge 24 of the fin wall 22 to define an upper strap slot 56 therebetween. The attachment block 52 includes an attachment slot 54 extending into the attachment block 52. A mounting screw, bolt, bracket, or other attachment member can be disposed in the attachment slot 54 to mount the assembly to a support. The attachment slot 54 is typically C-shaped, as shown in
A heat transfer web 58 connects the fin wall 22 and the heat transfer surface 44 of the LED wall 40, in the space between the truss members 46, 50. The heat transfer web 58 defines a lower tubular space 60 between the heat transfer web 58 and the upper truss member 50 and an upper tubular space 62 between the heat transfer web 58 and the upper truss member 50. The upper tubular space 62 has a greater cross sectional area than a cross sectional area of the lower tubular space 60. As alluded to above, the heat sink 20 is typically formed by extrusion, but can be formed by casting or the like.
The heat sink 20 is divided into at least two independent elongated sections 64 each having an identical cross section, as described above. The fin wall 22, ridges 28, LED wall 40, truss members 46, 50, heat transfer web 58, tubular spaces 60, 62, strap slots 48, 56, attachment block 52, and attachment slot 54 extend continuously along each elongated section 64, as shown in
Each elongated section 64 is disposed in spaced an parallel relationship to another one of the elongated sections 64 to define a fin space 68 therebetween. The fin wall 22 of each elongated section 64 faces parallel to the fin wall 22 of the other elongated section 64. The LED wall 40 of each elongated sections 64 is canted relative to the LED wall 40 of the other elongated section 64 and faces away and diverges upwardly and outwardly from the LED wall 40 of the other elongated section 64, as shown in
The light emitting assembly also includes a plurality of fins 70 disposed in parallel and spaced relationship to one another and extending in width across the fin space 68 between the fin walls 22 of the elongated sections 64. Each of the fins 70 include at least one bend 72 formed therein to render the fins 70 compressible in the width across the fin space 68, also shown in
The fins 70 are formed by first forming a continuous sheet of aluminum material, typically by rolling, extrusion, casting, or the like. The sheet is then stamped to form a plurality of the bends 72 therein. Next, the continuous sheet is cut into a plurality of sheet strips. Each sheet strip has a fin height hf being slightly less than the channel height hc and the plurality of bends 72 extending along the fin height hf. Each sheet strip including the bends 72 is cut into a plurality of the fins 70 extending between fin ends. Each fin 70 has the fin height hf and includes at least one of the bends 72 extending along the fin height hf. The fins 70 are also formed to include a shoe 76 at each of the fin ends. Each of the shoes 76 include a flange 78 extending inwardly toward one another so that each of the shoes 76 present an L-shaped cross section, as best shown in
The method of fabricating the L.E.D. light assembly includes slidably disposing the shoes 76 of the fins 70 along the fin channels 38 between the fin retaining ridges 28 of the pair of elongated sections 64 so that the fins 70 are disposed between the elongated sections 64 and extend across the fin space 68. Next, the method includes engaging each of the inwardly extending flanges 78 of the fins 70 with the adjacent fin 70 to space the fins 70 along the fin channel 38. Each of the fins 70 includes a shoe engagement section 66 at each fin end 74 for parallel engagement with the flanges 78 of the adjacent fin 70, as best shown in
The light emitting assembly also includes a plurality of straps 82 extending across the fin space 68 between the elongated sections 64 to clamp the fins 70 between the elongated sections 64. The straps 82 are typically formed of a high strength metal, such as stainless steel, and include U-shaped catches 84 at the ends thereof. Alternatively, the catches 84 of the straps 82 can also include another shape instead of the U-shape. The straps 82 extend across the fin space 68 between and over the lower side edges 26 of the spaced fin walls 22, and the catches 84 of the straps 82 are wedged into the lower strap slots 48 to hold each of the elongated sections 64 together, as best shown in
A plurality of light emitting diodes 88 are disposed on the heat sink 20, and typically on the mounting surface 42 of each elongated section 64, as shown in
Before disposing the light emitting diodes 88 on the heat sink 20, a coating 90 of electrically insulating material is disposed over the mounting surface 42 of each elongated section 64. A plurality of circuit traces 92 are also disposed on the coating 90, as shown in
A plurality of reflectors 94 are disposed on each of the mounting surfaces 42 adjacent the light emitting diodes 88 so that each reflector 94 is disposed over one of the of the light emitting diodes 88, as shown in
A protective cover 96 is also disposed on the mounting surface 42 over the light emitting diodes 88 and over the reflectors 94 of each elongated section 64 to protect the light emitting diodes 88 and the reflectors 94, as shown in
A lens 102 is disposed over the light emitting diodes 88 and reflectors 94 on each elongated sections 64, as shown in
Obviously, many modifications and variations of the present invention are possible in light of the above teachings and may be practiced otherwise than as specifically described while within the scope of the appended claims. The use of the word “said” in the apparatus claims refers to an antecedent that is a positive recitation meant to be included in the coverage of the claims whereas the word “the” precedes a word not meant to be included in the coverage of the claims. In addition, the reference numerals in the claims are merely for convenience and are not to be read in any way as limiting.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2009/056635 | 9/11/2009 | WO | 00 | 2/8/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/031266 | 3/17/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4729076 | Masami | Mar 1988 | A |
5042257 | Kendrick | Aug 1991 | A |
5857767 | Hochstein | Jan 1999 | A |
5986618 | Aakula et al. | Nov 1999 | A |
20080089071 | Wang | Apr 2008 | A1 |
20080298069 | Chu | Dec 2008 | A1 |
20090080187 | Chou | Mar 2009 | A1 |
20100073943 | Yeh et al. | Mar 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20120147603 A1 | Jun 2012 | US |