Embodiments of the invention relate to light-emitting diode (“LED”) light engines, and more particularly to LED light engines that can be provided in new recessed downlight fixtures or retrofitted into existing recessed downlight fixtures.
LEDs provide many benefits compared to traditional incandescent and fluorescent lighting technologies that make them increasingly attractive for use in lighting applications. For example, LEDs convert much more of the consumed energy to light than, e.g., incandescent light bulbs, and are generally more energy efficient than these traditional light sources. LEDs also last longer than these sources and contain no hazardous chemicals, making them a more environmentally attractive option for lighting needs.
For at least some of these reasons, LEDs have been installed into new lighting fixtures and have been retrofitted into existing lighting fixtures. Challenges arise in retrofitting LEDs into existing fixtures where the LED lighting unit is sized differently from the existing fixtures.
In addition, because light from LEDs is generated from electronic components that are more susceptible to adverse environmental conditions than traditional light engines (e.g., incandescent or fluorescent light bulbs), it may be desirable to protect the LED components from these environmental conditions.
The terms “invention,” “the invention,” “this invention” and “the present invention” used in this patent are intended to refer broadly to all of the subject matter of this patent and the patent claims below. Statements containing these terms should not be understood to limit the subject matter described herein or to limit the meaning or scope of the patent claims below. Embodiments of the invention covered by this patent are defined by the claims below, not this summary. This summary is a high-level overview of various aspects of the invention and introduces some of the concepts that are further described in the Detailed Description section below. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in isolation to determine the scope of the claimed subject matter. The subject matter should be understood by reference to the entire specification of this patent, all drawings and each claim.
Embodiments of the invention relate to LED light engines that can be provided in new recessed downlight fixtures or retrofitted into existing recessed downlight fixtures to permit easy upgrading of the fixtures from a conventional light source fixture to an LED light source fixture.
In one embodiment, an LED light engine includes a housing, one or more LEDs mounted on a printed circuit board and a retention feature engaged with the housing. The retention feature may include one or more of a torsion spring and a friction clip and is configured to engage an inside wall of a recessed lighting can, thereby retaining the LED light engine within the can.
The torsion spring may include arms for engaging the inside wall of the can, and the friction clip may include arms and/or teeth for engaging the inside wall of the can.
In certain embodiments, the housing includes a plurality of tiers, each of the plurality of tiers located at a different distance from the center of the housing. At least one aperture is located on each of the plurality of tiers for retaining one or more friction clips. One end of the friction clip may be U-shaped and at least partially received in the at least one aperture.
In other embodiments the retention feature includes at least one torsion spring and at least one friction clip.
In some embodiments a reflector and lens are retained within the housing by a groove located on the inner wall of the housing. The housing, reflector and lens may form a sealed chamber for protecting the one or more LEDs from environmental conditions outside the chamber.
Yet other embodiments include methods for retrofitting an existing recessed downlight fixture which include removing the existing light engine from the can and inserting an LED light engine into the can. The LED light engine includes a retention feature such as a torsion spring or friction clip for engaging the can to retain the LED light engine within the can.
Illustrative embodiments of the present invention are described in detail below with reference to the following drawing figures:
The subject matter of embodiments of the present invention is described here with specificity to meet statutory requirements, but this description is not necessarily intended to limit the scope of the claims. The claimed subject matter may be embodied in other ways, may include different elements or steps, and may be used in conjunction with other existing or future technologies. This description should not be interpreted as implying any particular order or arrangement among or between various steps or elements except when the order of individual steps or arrangement of elements is explicitly described.
With reference to
The LED light engine 100 may be retained in the can 300 in a variety of ways. In one embodiment (see
Torsion springs 260 may be mounted on a spring mount 261 located on the outside of the housing 200 by a fastener 262 inserted through the coiled portion 263 of the torsion spring 260 so that arms 265 protrude in generally opposite directions. Arms 265 terminate in loops 266 that provide good sliding contact with the sides of the can 300.
In other embodiments (see
Sets of apertures may be provided on different tiers of the housing 200, such as upper tier apertures 275 and lower tier apertures 280. In this way, the installer may best position the friction clips 270 to engage a particular sized can 300. For example, as shown in
Some embodiments of the LED light engine 100 may have dual mounting features such that both torsion springs 260 and friction clips 270 are provided to mount the light engine 100, as illustrated in
The torsion springs 260 and the multi-positionable friction clips 270 accommodate different sizes of existing cans (e.g., 300(a) and 300(b)) and permit the light engine 100 to be fitted into a wide variety of different sized cans 300, as illustrated in
As depicted in
An inner reflector 240 may also be positioned within the light engine 100 above the lens 250 and also received in the groove 290. When the lens 250 is subsequently inserted into the groove 290, the reflector 240 is pressed against the top 205 of the light engine housing 200 to create a sealed environment and prevent environmental conditions such as bugs, dirt, and debris from entering the optical chamber 245. The sealed environment protects the optical chamber 245 and electronic components located therein (including the LEDs 220) from these environmental conditions.
The components described herein may be formed from known lighting fixture materials. For example, the housing may be formed from casted aluminum or other metallic or polymeric materials. The reflector may be formed from metallic or polymeric materials and may have a reflective or diffuse inner surface for reflecting light from the LEDs in a desired light distribution profile. The lens may be clear or diffuse (e.g., frosted) depending on the desired application and could be formed from glass or polymeric materials. The torsion springs and friction clips may be formed from metallic materials such as carbon or stainless steel or even from suitable polymeric materials.
Another embodiment of the invention relates to a method for retrofitting an existing recessed downlight fixture having, e.g., an incandescent or fluorescent light engine, with an LED light engine. The method includes removing the existing light engine without removing the can in which the existing light engine is housed and installing a light engine having features such as those described above into the can.
Specifically, the light engine 100 according to the method may include retention features such as the torsion springs 260 and/or friction clips 270 described above and illustrated in the figures. The retention features engage the installed can 300, retaining the light engine 100 within the can 300. The light engine 100 may also include a reflector 240 and lens 250 retained within a groove 290 in the inner wall of the housing 200 of the light engine.
The method thus allows for fast and easy replacement of traditional light engines with LED light engines.
Different arrangements of the components depicted in the drawings or described above, as well as components and steps not shown or described are possible. Similarly, some features and subcombinations are useful and may be employed without reference to other features and subcombinations. Embodiments of the invention have been described for illustrative and not restrictive purposes, and alternative embodiments will become apparent to readers of this patent. Accordingly, the present invention is not limited to the embodiments described above or depicted in the drawings, and various embodiments and modifications can be made without departing from the scope of the claims below.
This application claims the benefit of U.S. Provisional application No. 61/687,056, filed Apr. 17, 2012, entitled “LED light engines,” the disclosure of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61687056 | Apr 2012 | US |