This invention relates to lighting systems. More specifically, this invention relates to Light Emitting Diode (LED) devices and systems.
A light-emitting diode (LED) is a semiconductor diode that emits light when an electrical current is applied in the forward direction of the device, such as in a simple LED circuit.
The device is fabricated from layers of silicon and seeded with atoms of phosphorus, germanium, arsenic or other rare-earth elements. The layers of the device are called the die and the junction between the materials is where the light is generated. The electricity enters from one side of the die and exits out the other. As the current passes through the LED device, the materials that makes up the junction react and light is emitted.
LEDs are widely used as indicator lights on electronic devices and increasingly in higher power applications such as flashlights and area lighting. A LED is usually a small area (less than 1 mm2) light source, often with optics added to the chip to shape its radiation pattern and assist in reflection. The color of the emitted light depends on the composition and condition of the semiconducting material used, and can be infrared, visible, or ultraviolet. The glow, color and wash of a lighting fixture with sets of LED arrays is sensitive to the angles of the LED arrays with respect to one and other.
An LED light fixture of the present invention includes an elongated housing. Within the elongated housing, there is at least one extended or elongated open light cavity, hereafter lower light channel. The lower light channel has elongated inner side walls, elongated inner top walls and an elongated open bottom, hereafter referred to lower light channel side walls, top walls and open bottom. The lower light channel is contoured to have any number of shapes including, but not limited to, rectangular, triangular, angled, curved, rounded shapes or a combination thereof. In accordance with an embodiment of the invention, the elongated housing is formed from an extruded, molded or otherwise formed metal or plastic material. Preferably, the lower light channel is formed from a contoured reflective metal or plastic reflective insert that fits within a lower portion of the elongated housing.
Near or at bottom portions of the side walls, and near the open bottom of the lower light channel, there are support edges that extend along the lower light channel and/or elongated housing. Positioned on top surfaces of the support edges, there are elongated light engines. The elongated light engines include LED arrays or LED strips that have light emitting surfaces facing upward for emitting light into the lower light channel.
In operation and with the LED arrays or LED strips energized, the LED arrays or LED strips emit light into the lower light channel and the light is reflected off wall surfaces and top surfaces of the lower light channel to emit indirect light out through the open bottom of the lower light channel.
In accordance with further embodiments of the present invention, an elongated LED light fixture provides upward and downward lighting. In accordance with this embodiment, the elongated LED light fixture has an upper light channel that is substantially similar to the lower light channel, such as described above, wherein an elongated housing of the light fixture has an H-shaped cross-section with an elongated electronics cavity or conduit positioned between the upper light channel and the lower light channel. The elongated electronics cavity or conduit is used for housing wiring, LED drivers and other control circuitry.
In accordance with further embodiments of the invention, the upper light channel has LED arrays or LED strips positioned on a top surface within the upper light channel. For example, the LED arrays or LED strips are centrally positioned on a top surface and within the upper light channel. The LED arrays, or LED strips position contained therein or on the top surface, can be angled and/or have symmetric or asymmetric diffusion lenses positioned over light emitting surfaces of the LED arrays or LED strips. It will be clear to one skilled in art that LED arrays and/or LED strips used in the light fixture of the present invention can be physically or optically configured to throw indirect and/or direct light having any number of preferred lighting patterns. Additional details of LED light fixtures with angled LED arrays and asymmetric lenses are provided in U.S. Pat. No. 10,024,522 B2, titled “LIGHT SYSTEM WITH ANGLED LED ARRAYS,” the contents of which are hereby incorporated by reference.
In a preferred embodiment of the invention the LED light fixture includes a detachable cover structure with an H-shaped support feature. The H-shaped support feature has arms that are bridged by a diffusion lens. The detachable cover structure further includes a removable baffle. In operation, the arms of the H-shaped support feature have sets of snap features that attach to side walls of the upper light channel and matched groove features on the removable baffle.
A LED light system of the present invention utilizing the LED light fixtures described above can be equipped with advanced control systems and/or control interfaces that allows for dimming and color temperature tuning. Control commands, operational protocols, or communication networks in the LED lighting system utilize and number of standards, including Digital Signal Interface (DSI) 0-10 V lighting control signals and formats, Digital Addressable Lighting Interface (DALI) lighting control signals and formats, DMX512 (Digital Multiplex) control signals and formats, or a combination thereof.
The LED lighting system, for example, includes a control unit coupled to one or more LED light fixtures for controlling power to the LED light fixtures based on control command signals provided by any number of sensors, switches and control interface devices interface devices. A control unit includes, for example, a wireless transmitter for receiving and processing input control signals from a remote control interface device, such as a smart-phone or computer.
The LED arrays or LED strips (LED light engines) used in the lighting fixtures of the present invention can have any number of LEDs and can include LEDs that emit any color or combinations of colors and can be tunable to change color through the advanced control systems. Also, the light engines used in the light fixtures of the present invention can be mounted on modular light boards that are independently serviceable.
Advanced control systems, control interfaces and modular LED light boards are further described in U.S. Pat. No. 9,964,265 B2, titled “LIGHT EMITTING DIODE LUMINAIRE DEVICE AND SYSTEM WITH COLOR TEMPERATURE TUNING,” the contents of which are hereby incorporated by reference.
Referring to
The elongated light board include arrays of LEDs 106 and 108 (upper array of LEDs and lower arrays of LEDs) on opposed sides of the elongated LED light board as shown. The individual LEDs 107, 107′ and 107″ and 109, 109′ and 109″ within the arrays of LEDs 106 and 108 can be the same or different.
Near or at bottom portions of the inner walls 302 of the housing 301, and near the open bottom 303 of the lower light channel 315 there are opposed support edges of structure 308 and 308′ that extend along the bottom portions of the inner walls 302 of the lower light channel 315 and/or elongated housing 301. The support edges 308 and 308′ can have L-shaped cross-sections, be segmented, or continuous along the lower light channel 315 and/or elongated housing 301 and/or be symmetric or asymmetric in width or height.
Positioned on inner top surfaces of the support edges 308 and 308′ there are elongated LED light engines 305 and 305′ that have light emitting surfaces facing upward for emitting light into the lower light channel 315, as indicated by the arrows 311 and 311′. The light emitted 311 and 311′ emitted from the elongated LED light engines 305 and 305′ is reflected off the inner surfaces 302 of the elongated light channel 315, as indicated by the arrows 313 and 313′, and is emitted through the open bottom 303 of the lower light channel 315.
Near or at bottom inner wall portions 325 and near the open bottom 328 of the lower light channel 340, there are support edges 333 and 333′ that extend along the bottom inner wall portions 327 of the lower light channel 340 and/or elongated housing 331.
Positioned on inner top surfaces of the support edges 333 and 333′ there are elongated LED light engines 335 and 335′ that have light emitting surfaces facing upward for emitting light into the lower light channel 340, as indicated by the arrows 341 and 341′. The light emitted 341 and 341′ emitted from the elongated LED light engines 335 and 335′ is reflected off the inner surfaces 327 of the elongated light channel 340, as indicated by the arrows 343 and 343′, and is emitted through the open bottom 328 of the lower light channel 340.
Near or at bottom inner wall portions 352 and near the open bottom 353 of the lower light channel 365 there are support edges 358 and 358′ that extend along the bottom inner wall portions 352 of the lower light channel 365 and/or elongated housing 351.
Positioned on inner top surfaces of the support edges 358 and 358′ there are elongated LED light engines 355 and 355′ that have light emitting surfaces facing upward for emitting light into the lower light channel 365, as indicated by the arrows 361 and 361′. The light emitted 361 and 361′ emitted from the elongated LED light engines 355 and 355′ is reflected off the inner surfaces 352 of the elongated light channel 365, as indicated by the arrows 363 and 363′, and is emitted through the open bottom 353 of the lower light channel 365.
Near or at top portions of the inner walls 402 of the housing 401, as well as the open top 403 of the upper light channel 415, and at or near bottom portions of the inner walls 402′, as well as the open bottom 403′, there are support edges 404/404′ and 408/408′, respectively, that extend along portions of the inner walls 402 and 402′ of the upper light channel 415 and the lower light channel 415′, respectively.
Positioned on inner top surfaces of the support edges 404/404′ and 408/408′ there are elongated LED light engines 406/406′ and 405/405′ having light emitting surfaces facing inward for emitting light into the upper light channel 415 and lower light channel 415′. The light emitted from the elongated LED light engines 406/406′ and 405/405′ is reflected off the inner surfaces 402 and 402′ of the upper light channel 415 and lower light channel 415′, respectively, and is emitted through the open bottom open top 403 and open bottom 403′.
Near or at bottom portions of the inner walls 427′ of the housing 431, and near the open bottom of the lower light channel 440′ there are support edges 438 and 438′ that extend along portions of the inner walls 427′ of the lower light channel 440′. In this example, the support edges 438 and 438′ are J-shaped and curving inward towards the lower light channel 440′.
Positioned on inner top surfaces of the support edges 438 and 438′ are elongated LED light engines 435 and 435′, having light emitting surfaces facing inward for emitting light into the lower light channel 440′, such as described in detail above with reference to
Positioned between walls 442 and 442′ of the upper light channel 440 there is an elongated LED light engine 430 positioned on a top surface 427 within the upper light channel 440. For example, elongated LED light engine 430 is centrally positioned on the top surface 427 within the upper light channel 440. The LED light fixture has an asymmetric lens 443 positioned over light emitting surface of the elongated LED light engine 430 to throw light emitted from the elongated LED light engine 430 at an angle out from the open top of the upper light channel 440.
Near or at bottom portions of walls of the lower light channel 515′ and edges of open bottom 503 of the lower light channel 515′ there are elongated support edges 523 and 523′ for supporting elongated LED light engines 505 and 505′ such as described above. In accordance with this embodiment of the invention, the LED light fixture includes an elongated reflective insert 502 that is formed from metal, plastic, paper or a composite of material. The elongated reflective insert 502 is contoured, angled, curved or any other suitable shape, and preferably extends the length of, or near the length of, the lower light channel 515′ within the elongated housing 501. The elongated reflective insert 502 creates a reflection channel within the lower light channel. In operation, light is emitted from elongated LED light engines 505 and 505′ into the reflection channel formed by the elongated reflective insert 502 in the lower light channel 515′ and the emitted light is reflected off of the reflective insert 502 and emitted out through the open bottom 503 of the lower light channel 515′.
Positioned between angled walls 522 and 522′ of the upper light channel 515, there is an elongated LED light engine 524 positioned on a top surface within the upper light channel 515. The elongated LED light engine 524 has sets or arrays of LEDs 518 and 518′ that extend along the length of the top surface of the upper light channel 515. The sets or arrays of LEDs 518 and 518′ can sets of liner arrays or strips of LED's or can be staggered arrays of LEDs. Positioned over light emitting surfaces of the sets or arrays of LEDs 518 and 518′, there is a symmetric diffusion lens 521 for distributing light emitted out from the open top of the upper light channel 515. Between the upper light channel 515 and the reflective insert 502 there is elongated electronics cavity or conduit 509 for housing wiring, LED drivers and/or other control circuitry.
Near or at bottom portions of walls of the lower light channel 540′ and edges of open bottom 538 of the lower light channel 540′ there are elongated support edges 548 and 548′ for supporting elongated LED light engines 535 and 535′ such as described above. The LED light fixture includes an elongated reflective insert 532 that extends the length of, or near the length of, the lower light channel 540′ within the elongated housing 526. Light that is emitted from elongated LED light engines 535 and 535′ is reflected off of the reflective insert 502 and emitted out through the open bottom 538, such as described above.
Between angled or bat-wing shaped walls 542 and 542′ of the upper light channel 540 there is an elongated LED light engine 539 positioned within the upper light channel 540. The elongated LED light engine 539 has sets or arrays of LEDs 528 and 528′, such as described above. In this embodiment of the invention, there is bi-modal asymmetric diffusion lens 541 positioned over light emitting surface of the sets or arrays of LEDs 528 and 528′. Between the upper light channel 540 and the reflective insert 532 there is elongated electronics cavity or conduit 539′ such as previously described.
Along bottom edges of open bottom 553, there are support edges or structures 573 and 573′, with elongated LED light engines 555 and 555′ configured to emit light into the lower light channel 565′ and such that the emitted light is reflected off of a reflective insert 552 and out of the open bottom 553. The reflective insert preferably has a structure support 558 for supporting wiring, LED drivers and/or other control circuitry in an elongated electronics cavity or conduit 574 positioned between the upper light channel 565 and the support structure 558 of the reflective insert.
Between walls 572 and 572′ of the upper light channel 565 there is an elongated LED light engine 570 positioned within the upper light channel 565. The light fixture 550 further includes a cover structure 599 that is positioned over the upper light cavity 565 and preferably fits into the groove features of the walls 572 and 572′ of the upper light channel 565, thereby enclosing the upper light channel 565.
The cover structure 599 includes an elongated H-shaped support feature 581 with a diffusion lens 555 positioned between the first set of snap features 574 and 574′, that fit against the groove features of the walls 572 and 572′, and a second set of snap features 557 and 557′. The cover structure 599 also includes an elongated baffle structure 576 with fitted groove features 577 and 577′, which fit against the second set of snap features 557 and 557′ of elongated H-shaped support feature 581, as shown.
In operation, the baffle structure 611 is snapped into the H-shaped support feature 608, such that the fitted grooves 618 and 618′ snap or fit into second set of snap features 604 and 604′. The cover structure 629 can then be placed over a light channel 615 of an elongated light fixture 601 with a LED light engine 603 positioned therein. To place the cover structure 629 over the light channel 625 of the light fixture 601, the first set of snap features 609 and 609′ are fitted or snapped into matched grooved or snap features 606 and 606′ on walls 605 and 605′ of the light fixture, as shown in
The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of the principles of construction and operation of the invention. As such, references herein to specific embodiments and details thereof are not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modifications can be made in the embodiments chosen for illustration without departing from the spirit and scope of the invention. For example, while the LED light fixture of the present invention has been shown herein to be elongated and linear, the LED light fixture can be curved, angled of have other shapes suitable for the application at hand.
This application is a continuation application of the U.S. patent application Ser. No. 16/501,832, filed Jun. 13, 2019 and titled “LED LIGHT FIXTURE FOR INDIRECT LIGHTING WITH ADAPTABLE BAFFLE STRUCTURE” which is continuation-in-part of the co-pending U.S. patent application Ser. No. 16/501,180 filed Mar. 1, 2019, and titled “OPEN CHANNEL LED LIGHT FIXTURE FOR INDIRECT LIGHTING,” which claims priority under 35 U.S.C. § 119(e) from the U.S. provisional patent application Ser. No. 62/761,131, filed on Mar. 9, 2018, and titled “LIGHTING SYSTEM WITH LED ARRAYS.” The co-pending U.S. patent application Ser. No. 16/501,832, filed Jun. 13, 2019 and titled “LED LIGHT FIXTURE FOR INDIRECT LIGHTING WITH ADAPTABLE BAFFLE STRUCTURE”, the U.S. patent application Ser. No. 16/501,180 filed Mar. 1, 2019, and titled “OPEN CHANNEL LED LIGHT FIXTURE FOR INDIRECT LIGHTING” and the U.S. provisional patent application Ser. No. 62/761,131, filed on Mar. 9, 2018, and titled “LIGHTING SYSTEM WITH LED ARRAYS” are all hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
8436375 | Miura | May 2013 | B2 |
9285084 | Amrine, Jr. | Mar 2016 | B2 |
10718476 | Santos | Jul 2020 | B2 |
20050207166 | Kan | Sep 2005 | A1 |
20110058377 | Chou | Mar 2011 | A1 |
20150241023 | Kim | Aug 2015 | A1 |
20150345743 | Trincia | Dec 2015 | A1 |
20160305631 | Hansen | Oct 2016 | A1 |
20180163946 | Santoro | Jun 2018 | A1 |
20190277463 | Santos | Sep 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20200263843 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
62761131 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16501832 | Jun 2019 | US |
Child | 16873526 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16501180 | Mar 2019 | US |
Child | 16501832 | US |