BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view of an LED floodlight fixture in accordance with this invention, including a cut-away portion showing an LED assembly.
FIG. 2 is a perspective view of the LED light fixture configured for wall mounting.
FIG. 3 is a perspective view of another LED light fixture including a pole-mounting assembly on a pole of square cross-section.
FIG. 4 is a side perspective view of the LED light of FIG. 1 broken away at a middle portion to show interior structure.
FIG. 5 is a front perspective view of the LED floodlight of FIG. 1 broken away at a middle portion to show interior structure.
FIG. 6 is an enlarged fragmentary view the right portion of FIG. 4.
FIG. 7 is another fragmentary perspective view showing the frame structure in partially transparent view to illustrate its being bolted together with the border structure.
FIG. 8 is another fragmentary perspective view showing the border structure in partially transparent view to illustrates its engagement with the frame structure.
FIG. 9 is a greatly enlarged fragmentary perspective view showing a portion of the chamber-divider wall, the notch therein and the notch-bridge thereover.
FIG. 10 is an enlarged fragmentary perspective view of one LED-array module LED and its related LED heat sink of the LED assembly of the illustrated LED light fixtures.
FIG. 11 is an enlarged fragmentary end-wise perspective view of two interconnected LED heat sinks of the LED assembly of the illustrated LED light fixtures.
FIG. 12 is an enlarged fragmentary perspective view from below of the pole-mounting assembly engaged with a pole-attachrnent portion, with the cover of the pole-mounting assembly removed to show internal parts.
FIG. 13 is an exploded top perspective view of the LED light fixture showing backup batteries enclosed within border-portion of a water/air-tight chamber.
FIG. 14 is a schematic diagram of the power and control system of the LED light fixture of this invention.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
FIGS. 1-11 illustrate LED light fixtures 10A and 10B (the latter in FIG. 2 only) in accordance with this invention. Common or similar parts are given the same numbers in the drawings of both embodiments, and the light fixtures are often referred to by the numeral 10, without the A or B lettering used in the drawings, and in the singular for convenience.
Floodlight fixture 10 includes a perimetrical structure 12 that forms a substantially water/air-tight chamber 14, at least one electronic LED-driver 16 which is enclosed within chamber 14, and an LED assembly 18 that is secured with respect to perimetrical structure 20 adjacent thereto in non-water/air-tight condition. LED assembly 18 has a plurality of LED-array modules 19 each secured to an LED heat sink 20.
As seen in FIGS. 1-4 and 7, perimetrical structure 12 includes a frame structure 30 forming a frame-portion 32 of chamber 14 with an opening edge 34 thereabout and a border structure, also referred to as a nose structure, 40 secured to frame structure 30 and forming a border-portion (or a nose-portion) 42 of chamber 14. As best seen in FIG. 7, opening edge 34 of frame-portion 30 of chamber 14 includes a groove 35 configured for mating water/air-tight engagement with border structure 40. Border structure 40 is an extrusion, preferably of aluminum. FIG. 5 shows electronic LED-drivers 16 enclosed in frame-portion 32 of chamber 14.
As best seen in FIG. 6, border structure 40 includes substantially water/air-tight wire-accesses 44 for passage of wires 17 between LED assembly 18 and water/air-tight chamber 14.
FIGS. 2, 3, 5 and 7 show that frame structure 30 includes a vent 36 permitting air flow to and from LED assembly 18. Vent 36 facilitates cooling of LED assembly 18.
As best illustrated in FIG. 7, border structure 40 has bolt-receiving border-holes 47 therethrough which are isolated from border-portion 42 of chamber 14. And, frame structure 30 has bolt-receiving frame-holes 37 therethrough which are isolated from frame-portion 32 of chamber 14; each frame-hole 37 is aligned with a respective border-hole 47. A bolt 13 passes through each aligned pair of bolt-receiving holes 37 and 47 such that border structure 40 and frame structure 30 are bolted together while maintaining the water/air-tight condition of chamber 14.
FIGS. 1 and 3 best illustrate certain highly preferred embodiments of this invention in which perimetrical structure 12 includes a pair of opposed frame structures 30 and a pair of opposed border structures 40, making perimetrical structure 12 of floodlight fixture 10A substantially rectangular. FIGS. 1, 4-6, 8 and 11 illustrate aspects of inventive LED floodlight fixture 10A.
In LED floodlight fixtures 10, LED assembly 18 includes a plurality of LED-array modules 19 each separately mounted on its corresponding LED heat sink 20, such LED heat sinks 20 being interconnected to hold LED-array modules 19 in fixed relative positions. Each heat sink 20 includes: a base 22 with a back base-surface 223, an opposite base-surface 224, two base-ends 225 and first and second base-sides 221 and 222; a plurality of inner-fins 24 protruding from opposite base-surface 224; first, female, and second, male, side-fins 25 and 26 protruding from opposite base-surface 224 and terminating at distal fin-edges 251 and 261, female side-fin 25 including a flange hook 252 positioned to engage distal fin-edge 261 of male side-fin 26 of adjacent heat sink 20; and first and second lateral supports 27 and 28 protruding from back base-surface 223, lateral supports 27 and 28 each having inner portions 271 and 281, respectively, and outer portion 272 and 282, respectively. Inner portions 271 and 281 of first and second lateral supports 27 and 28 have first and second opposed support-ledges 273 and 283, respectively, that form a heat-sink-passageway 23 which slidably supports an LED-array module 19 against back base-surface 223. First and second supports 27 and 28 of each heat sink 20 are in substantially planar alignment with first and second side-fins 25 and 26, respectively. As seen in FIGS. 10 and 11, the flange hook is at 251 distal fin-edge of first side-fin 25.
Each heat sink 20 is a metal (preferably aluminum) extrusion with back base-surface 223 of heat sink 20 being substantially flat to facilitate heat transfer from LED-array module 19, which itself has a flat surface 191 against back-base surface 223. Each heat sink 20 also includes a lateral recess 21 at first base-side 221 and a lateral protrusion 29 at second base-side 222, recesses 21 and protrusions 29 being positioned and configured for mating engagement of protrusion 29 of one heat sink 20 with recess 21 of adjacent heat sink 20.
As best seen in FIGS. 1, 4, 5, 6, 10 and 11, first and second side-fins 25 and 26 are each a continuous wall extending along first and second base-sides 221 and 222, respectively. Inner-fins 24 are also each a continuous wall extending along base 22. Inner-fins 24 are substantially parallel to side-fins 25 and 26.
FIGS. 4 and 6 show an interlock of perimetrical structure 12 to LED assembly 18. As also seen in FIGS. 4 and 6, in each heat sink 20 inner-fins 24 include two middle-fins 241 each of which includes a fin-end 242 forming a mounting hole 243. A coupler 52 in the form of screw is engaged in mounting hole 243, and extends from heat sink 20 to terminate in a coupler-head 521. Perimetrical structure 12 has a slotted cavity 54 which extends along, and is integrally formed with, each of the border structures 40 and forms the interlock by receiving and engaging coupler-heads 521 therein.
FIG. 2 illustrates a version of the invention which, as noted above, is LED floodlight fixture 10B. In floodlight fixture 10B, perimetrical structure 12 includes a pair of nose structures 40 configured for wall mounting and one frame structure 30 in substantially perpendicular relationship to each of the two nose structures 40.
The substantially rectangular floodlight fixture 10A which is best illustrated in FIGS. 1, 3 and 4, perimetrical structure 12 includes a pair of opposed frame structures 30 and a pair of opposed nose structures 40 and 41, the latter nose portion having two spaced sub-portions 41A and 41B with a gap 412 therebetween. Sub-portions 41A and 41B each include all of the nose-portion elements. Gap 412 accommodates a pole-mounting assembly 60, shown in FIGS. 1, 3, 4 and 12, that is secured to LED assembly 18 between nose sub-portions 41A and 41B.
Pole-mounting assembly 60 includes a pole-attachment portion 61 that receives and secures a pole 15 and a substantially water/air-tight section 62 that encloses electrical connections and has wire-apertures 64. Each wire-aperture 64 communicates with nose-portion 42 of chamber 14 of a respective one of nose-structure sub-portions 41A and 41B. The nose-structure sub-portions 41A and 41B are in water/air-tight engagement with water/air-tight section 62 of pole-mounting assembly 60. Pole-attachment portion 61 includes grooves 611 on its opposite sides 612; grooves 611 are configured for mating engagement with end edges 413 of nose-structure sub-portions 41A and 41B.
As best seen in FIG. 12, pole-mounting assembly 60 has a mounting plate 65 abutting LED assembly 18, and fastener/couplers 66 extend from mounting plate 65 into engagement with mounting hole 243 of middle-fins 241.
FIGS. 8 and 9 show that frame-portion 32 of chamber 14 has a chamber-divider 33 across chamber 32 that divides frame-portion 32 of chamber 14 into an end part 321 and a main part 322, which encloses electronic LED-driver(s) 16. Chamber-divider 33 has a divider-edge 331. Chamber-divider 33 includes a substantially water/air-tight wire-passage therethrough in the form of a notch 332 having spaced notch-wall ends 334 that terminate at divider-edge 331. A notch-bridge 38 spans notch 332 to maintain the water/air-tight condition of chamber 32. Notch-bridge 38 includes a bridge-portion 381 and a pair of gripping-portions 382 which are configured for spring-grip attachment to notch-wall ends 334. A removable cover-plate 31 seals main part 322 of frame-portion 32 of chamber 14 in substantially water/air-tight condition.
FIGS. 2-6 show that inventive LED floodlight fixtures 10 include a protective cover 11 that extends over LED assembly 18 and is secured with respect to perimetrical structure 12. Protective cover 11 has perforations 111 to permit air and water flow therethrough for access to and from LED assembly 18.
As best seen in FIG. 6, LED floodlight fixture 10 has a venting gap 56 between perimetrical structure 12 and LED assembly 18, to permit air and water flow from heat sink 20. Venting gap 56 is formed by interlock 50 of perimetrical structure 12 to LED assembly 18.
A significant factor in designing lighting fixtures is continuous illumination of such areas as parking lots, parking structures or walkways. The lighting fixtures have to be designed to emit light even when the general utility-type power supply is interrupted.
Traditional designs, however, present multiple problems which result in complicated lighting schemes, higher cost of lighting fixtures and reduced or even complete absence of illumination of some outdoor areas during general power outage due to lack or disconnection of the emergency power source.
FIG. 13 shows a light fixture 100 which is the most highly preferred embodiment of this invention. LED light fixture 100 includes a housing 112 having a substantially water/air-tight chamber 114; at least one electronic normal-operation LED-driver 16 enclosed within chamber 114, normal operation LED-driver 16 receiving power from a general off-location power source during normal operation; LED assembly 118 secured with respect to housing 112 adjacent thereto in non-water/air-tight condition, LED assembly 118 having at least one LED-array module 19 mounted on LED heat sink 120; at least one backup battery 110 within chamber 114, battery 110 is capable of providing power thereto during an outage of power from the general off-location power source 160; and an electronic backup LED-driver unit 150 enclosed within chamber 114, backup LED-driver unit 150 drawing power from backup battery 110 during power outage.
FIG. 14 schematically shows power and control system of the most preferred embodiment of the present invention. Backup LED-driver unit 150 is preferably configured to sense whether power is being provided by the general off-location power source. Backup LED-driver unit 150 preferably includes an a power-outage sensor to determine whether or not power is being provided by the general off-location power source 160. In some preferred embodiments of this type, the backup LED-driver unit may also be configured to sense whether the LED light fixture has been turned off to preclude the drawing of battery power when the LED light fixture has been turned off. Backup LED-driver unit 150 preferably includes an on-off sensor 154 determine whether the LED light fixture has been turned off and to preclude the drawing of battery power when the LED light fixture has been turned off. Backup LED-driver unit 150 also preferably including a power-switching device 158 responsive to a power outage when the “on-off” sensor indicates that the fixture is “on” and responsive to a restoration of general power sensor.
In the most highly preferred embodiment illustrated in FIG. 14, backup LED-driver unit 150 is further configured for charging backup batteries 110 from general off-location power source 160 during normal operation. Backup LED-driver unit 150 preferably includes a charge-level sensor 152 for determining whether there is a need for battery charging.
Housing 112 preferably includes substantially water/air-tight wire-access(es) 144 receiving wires 17 from LED assembly 118 into chamber 114 for passage of wires 17 for connection with drivers 16 and 151 within chamber 114.
Housing 112 further preferably includes a frame structure 130 forming a frame-portion 132 of chamber 114 having an opening edge 134 thereabout and a border structure 140 forming a border-portion 142 of chamber 114 and secured to frame structure 130.
Housing 112 includes a water/air-tight seal between frame structure 130 and border structure 140 to maintain the water/air-tight condition of chamber 114. Border structure preferably has at least one end 144 configured for sealing engagement with respect to opening edge 134 of frame structure 130. A gasket 116 is between border structure end 144 and opening edge 134 of frame structure 130.
Frame-portion 132 of chamber 114 includes walls 136 terminating at an open end 138 and a removable cover-plate 131 in substantially water/air-tight sealing engagement with open end 138. As seen in FIG. 13, cover-plate 131 includes opening edge 134 of frame structure 130.
FIG. 13 further shows that housing 112 is a substantially rectangular perimetrical structure 121 including a pair of opposed frame structures 130 and a pair of opposed border structures 140. There are two of backup batteries 110, one in each of border structures 140.
While the principles of the invention have been shown and described in connection with specific embodiments, it is to be understood that such embodiments are by way of example and are not limiting.