Apparatuses consistent with example embodiments relate to a light-emitting diode (LED) light source module and a display device.
A semiconductor LED may used as a light source for a lighting apparatus, and also as a light source of various electronic products. In detail, such a semiconductor LED is widely used as a light source for various display devices such as a television (TV), a cellular phone, a personal computer (PC), a laptop PC, a personal digital assistant (PDA), or the like.
A display device according to the related art includes a display panel commonly formed of a liquid crystal display (LCD) and a backlight unit. However, an LED device has been recently developed to have a form in which an individual LED device is used as a single pixel so that a display device does not require a separate backlight unit. Such a display device can be compact, and a high luminance display having excellent light efficiency in comparison with an LCD according to the related art can be implemented. In addition, an aspect ratio of a display screen can be freely changed and a display screen can be implemented with a large area. Therefore, a large display having various forms may be provided.
According to an aspect of an example embodiment, an LED light source module includes a light emitting stacked body including a base insulating layer, and a first light emitting layer, a second light emitting layer, a third light emitting layer sequentially stacked on the base insulating layer, and configured to emit light having different wavelengths, each of the first light emitting layer, the second light emitting layer, and the third light emitting layer including a first conductivity-type semiconductor layer, a second conductivity-type semiconductor layer, and an active layer disposed between the first conductivity-type semiconductor layer and the second conductivity-type semiconductor layer. The LED light source module further includes a first interlayer insulating layer disposed between the first light emitting layer and the second light emitting layer, and a second interlayer insulating layer disposed between the second light emitting layer and the third light emitting layer. The light emitting stacked body is divided into pixel regions defined by a partition structure passing through the first light emitting layer, the second light emitting layer, the third light emitting layer, the first interlayer insulating layer, and the second interlayer insulating layer. Each of the pixel regions includes a common electrode passing through the base insulating layer, the first light emitting layer, the second light emitting layer, the first interlayer insulating layer, and the second interlayer insulating layer, and connected to the first conductivity-type semiconductor layer of each of the first light emitting layer, the second light emitting layer, and the third light emitting layer, a first individual electrode passing through the base insulating layer, and connected to the second conductivity-type semiconductor layer of the first light emitting layer, a second individual electrode passing through the base insulating layer, the first light emitting layer, and the first interlayer insulating layer, and connected to the second conductivity-type semiconductor layer of the second light emitting layer, and a third individual electrode passing through the base insulating layer, the first light emitting layer, the second light emitting layer, the first interlayer insulating layer, and the second interlayer insulating layer, and connected to the second conductivity-type semiconductor layer of the third light emitting layer.
According to an aspect of another example embodiment, an LED light source module includes a light emitting stacked body, and a first through electrode structure and a second through electrode structure passing through a portion of the light emitting stacked body. The light emitting stacked body includes a base insulating layer, light emitting layers sequentially stacked on the base insulating layer, each of the light emitting layers including a first conductivity-type semiconductor layer, a second conductivity-type semiconductor layer, and an active layer disposed between the first conductivity-type semiconductor layer and the second conductivity-type semiconductor layer, and an interlayer insulating layer disposed between the light emitting layers. The first through electrode structure passes through the base insulating layer, any one or any combination of the light emitting layers, and the interlayer insulating layer, and is connected to the first conductivity-type semiconductor layer of each of the light emitting layers, and the second through electrode structure passes through the base insulating layer, and is connected to any one or any combination of the second conductivity-type semiconductor layer of each of the light emitting layers.
According to an aspect of another example embodiment, a method of manufacturing an LED light source module, includes forming a first light emitting layer, the first light emitting layer including a first conductivity-type semiconductor layer, a second conductivity-type semiconductor layer, and an active layer disposed between the first conductivity-type semiconductor layer and the second conductivity-type semiconductor layer, and forming a first region through the active layer and the second conductive-type semiconductor layer to the first conductivity-type semiconductor layer. The method further includes forming a first electrode on the first conductivity-type semiconductor layer and through the first region, forming a second electrode, a third electrode, and a fourth electrode on the second conductivity-type semiconductor layer, and forming a base insulating layer on the second conductivity-type semiconductor layer, in the first region, and surrounding the first electrode, the second electrode, the third electrode, and the fourth electrode, to form a first light emitting stacked body.
The above and other aspects will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
With reference to
The LED light source module 50 according to an example embodiment may include a plurality of pixels PA selectively emitting red (R) light, green (G) light and blue (B) light. The plurality of pixels PA is consecutively arranged on a panel area. In this example embodiment, a form in which 15×15 pixels are arranged is exemplified for convenience of explanation. In practice, a greater number of pixels (for example, 1,024×768) may be arranged in accordance with a resolution.
In each pixel PA of the LED light source module 50, R, G and B light sources corresponding to a sub-pixel may be provided as a structure in which the light sources are stacked in a thickness direction. A detailed description thereof will be provided with reference to
The circuit board 60 may include a circuit configured to independently drive sub-pixels R, G, and B of each pixel (referring to
The display panel 100 may further include a black matrix disposed on the circuit board 60. For example, the black matrix is disposed on a circumference of the circuit board to serve as a guide line defining a mounting area of the LED light source module 50. The black matrix is not limited to being black, and a matrix of other colors such as a white matrix, a green matrix, or the like may be used according to a use and a place of use, or the like, of a product. Moreover, a matrix of a transparent material may be used. The white matrix may further include a light reflective material or a light scattering material. The black matrix may include any one or any combination of materials such as a polymer containing a resin, a ceramic, a semiconductor, or a metal.
With reference to
In detail,
With reference to
The LED light source module 50 according to an example embodiment includes a light emitting stacked body including a base insulating layer 16 and first to third semiconductor light emitting units 10, 20, and 30 sequentially stacked on the base insulating layer 16. The light emitting stacked body may include a first interlayer insulating layer IL1 disposed between a first semiconductor light emitting unit and a second semiconductor light emitting unit 20, and a second interlayer insulating layer IL2 disposed between the second semiconductor light emitting unit 20 and the third semiconductor light emitting unit 30.
The first to third semiconductor light emitting units 10, 20, and 30 have first conductivity-type semiconductor layers 10a, 20a, and 30a, second conductivity-type semiconductor layers 10c, 20c, and 30c, and active layers 10b, 20b, and 30b disposed therebetween, respectively.
The first conductivity-type semiconductor layers 10a, 20a, and 30a and the second conductivity-type semiconductor layers 10c, 20c, and 30c may be a p-type semiconductor layer and an n-type semiconductor layer, respectively. For example, the first and second conductivity-type semiconductor layers may be formed using a nitride semiconductor represented by an empirical formula AlxInyGa(1−x−y)N (where 0≤x≤1, 0≤y≤1, and 0≤x+y≤1), but are not limited thereto. For example, a GaAs-based semiconductor or a GaP-based semiconductor may be used. The active layers 10b, 20b, and 30b may have a multiple quantum well (MQW) structure in which a quantum well layer and a quantum barrier layer are alternately stacked. For example, the active layers 10b, 20b, and 30b may be a nitride MQW such as InGaN/GaN, GaN/AlGaN, but are not limited thereto. For example, another semiconductor such as GaAs/AlGaAs, InGaP/GaP, or GaP/AlGaP may be used.
The first to third semiconductor light emitting units 10, 20, and 30 may be configured to emit light having different wavelengths. Conditions of emitted light may be implemented in various ways.
In an example embodiment, the active layers 10b, 20b, and 30b of the first to third semiconductor light emitting units may emit light having colors different from each other. For example, the active layers 10b, 20b, and 30b of the first to third semiconductor light emitting units may emit red, green, and blue light, respectively. In this arrangement, in a process in which a short-wavelength light is extracted, loss of light due to absorption by an active layer for a long-wavelength light may be prevented.
The LED light source module 50 according to an example embodiment may have a through electrode structure for selectively driving the first to third semiconductor light emitting units 10, 20, and 30 corresponding to a sub-pixel. The through electrode structure may be formed in a stacking direction (a direction perpendicular to the circuit board) of the LED light source module.
As illustrated in
The common electrode CE may be connected to the first conductivity-type semiconductor layers 10a, 20a, and 30a of the first to third semiconductor light emitting units 10, 20, and 30 in common, while passing through the base insulating layer 16, the first semiconductor light emitting unit 10, the second semiconductor light emitting unit 20, the first interlayer insulating layer IL1, and the second interlayer insulating layer IL2.
As illustrated in
In an example embodiment, the first to third electrodes 12, 22, and 32 may include contact electrodes 12a, 22a, and 32a, and electrode posts 12b, 22b, and 32b disposed on the contact electrodes 12a, 22a, and 32a, respectively. The contact electrodes 12a, 22a, and 32a of the first to third electrodes may be disposed on a mesa-etched region in which the active layers 10b, 20b, and 30b and the second conductivity-type semiconductor layers 10c, 20c, and 30c are partially removed, to be connected to the first conductivity-type semiconductor layers 10a, 20a, and 30a, respectively. The electrode posts 12b, 22b, and 32b may be adopted to obtain a desired electrode height.
The first conductive via 42a may be electrically insulated from the first semiconductor light emitting unit 10 in a path in which the first conductive via passes through the first semiconductor light emitting unit 10. As illustrated in
The first to third individual electrodes E1, E2, and E3 may be connected to the second conductivity-type semiconductor layers 10c, 20c, and 30c of the first to third semiconductor light emitting units 10, 20, and 30, respectively.
The first individual electrode E1 may include a fourth electrode 13 passing through the base insulating layer 16 and connected to the second conductivity-type semiconductor layer 10c of the first semiconductor light emitting unit 10. The fourth electrode 13 may include a contact electrode 13a and an electrode post 13b in a manner similar to the first electrode 12 and the second electrode 22.
The second individual electrode E2 passes through the base insulating layer 16, the first semiconductor light emitting unit 10, and the first interlayer insulating layer IL1, and may be connected to the second conductivity-type semiconductor layer 20c of the second semiconductor light emitting unit 20.
As illustrated in
In an example embodiment, the sixth electrode 24 may include a contact electrode 24a and an electrode post 24b disposed on the contact electrode 24a in a manner similar to the first to third electrodes 12, 22, and 32 described above. On the other hand, the fifth electrode 14 may include a noncontact electrode 14a not connected to the first semiconductor light emitting unit 10 and an electrode post 14b. The noncontact electrode 14a may be formed smaller than a third hole V2 in a manner the same as an example embodiment. Alternatively, the noncontact electrode 14a may be formed in such a manner that an additional insulating layer is provided (referring to
The third individual electrode E3 passes through the base insulating layer 16, the first semiconductor light emitting unit 10, the second semiconductor light emitting unit 20, the first interlayer insulating layer IL1, and the second interlayer insulating layer IL2, and connected to the second conductivity-type semiconductor layer 30c of the third semiconductor light emitting unit 30.
As illustrated in
In an example embodiment, the ninth electrode 35 may include a contact electrode 35a and an electrode post 35b in a manner similar to the first to third electrodes 12, 22, and 32 described above. On the other hand, the seventh electrode 15 and the eighth electrode 25 may include noncontact electrodes 15a and 25a not connected to the first semiconductor light emitting unit 10 and the second semiconductor light emitting unit 20, and electrode posts 15b and 25b, respectively. The noncontact electrodes 15a and 25a may be formed to be smaller than an area of holes V3a and V3b or as an additional insulating layer is adopted as described in an example embodiment.
The first interlayer insulating layer IL1 may be extended around the fourth conductive via 45a along an inner wall of a fourth hole V3a to allow the fourth conductive via 45a to be electrically insulated from the first semiconductor light emitting unit 10. In a manner similar thereto, the fifth conductive via 45b may be electrically insulated from the second semiconductor light emitting unit 20 by the second interlayer insulating layer IL2 extended along an inner wall of a fifth hole V3b.
In an example embodiment, the first interlayer insulating layer IL1 and the second interlayer insulating layer IL2 may be configured of pairs of insulating layers 17 and 26, and 27 and 36, provided on opposing surfaces of two semiconductor light emitting units adjacent to each other, respectively. As illustrated in
The LED light source module 50 according to an example embodiment may further include an outer insulating layer 37 disposed on the third semiconductor light emitting unit 30. The outer insulating layer 37 may be formed in a manner similar to the first insulating layer 17 and the third insulating layer 27. The base insulating layer 16 may include a light-absorbing or reflective material. The base insulating layer may be formed using a material such as the black matrix described previously. Alternatively, the base insulating layer 16 may be formed using an insulating resin containing light-reflective particles. For example, the insulating resin may be formed using epoxy, silicon, polyacrylate, polyimide, polyamide, and benzocyclobutene (BCB), but is not limited thereto. The light-reflective particles may be formed using titanium dioxide (TiO2) or aluminum oxide (Al2O3).
As illustrated in
With regard to the partition structure 46, the base insulating layer 16 not allowing light to be transmitted (for example, reflexibility) is disposed in a lower portion of the partition structure, optical interference between pixels PA may be effectively prevented by the partition structure 46.
The partition structure 46 employed in an example embodiment may include first to third partitions 46a, 46b, and 46c passing through the first to third semiconductor light emitting units, respectively. The first to third partitions 46a, 46b, and 46c may be integrally connected to each other. The first to third partitions 46a, 46b, and 46c may be formed using a metallic material the same as conductive vias employed in an example embodiment.
In an example embodiment, surfaces of the common electrode CE and the first to third individual electrodes E1, E2, and E3 may be connected to the common electrode pad NO, and the first to third individual electrode pads P1 to P3 disposed on lower surfaces of the base insulating layer 16a, respectively. The common electrode pad NO and the first to third individual electrode pads P1 to P3 are connected to a circuit inside the circuit board 60, and the circuit inside the circuit board 60 may be configured to selectively drive a sub-pixel (a semiconductor light emitting unit) of each pixel PA.
For example, when a voltage is applied to the common electrode pad NO and the first individual electrode pad P1, as illustrated in
As described above, each of the semiconductor light emitting units 10, 20, and 30 forming sub-pixels R, G, and B may have various circuit connection configurations to be independently operated.
As illustrated in
As described above, as semiconductor light emitting units 10, 20, and 30 having a desired color are selectively driven in each pixel PA, a desired color image may be provided in an entire display panel. In addition, a pixel area and an arrangement of a vertical electrode structure are appropriately adjusted by the partition structure 46 to variously adjust an area of a pixel.
As illustrated in
The first semiconductor light emitting unit 10 may include the first conductivity-type semiconductor layer 10a, the active layer 10b, and the second conductivity-type semiconductor layer 10c. In an example embodiment, the active layer 10b may be configured to emit red light. For example, the active layer may emit light having a wavelength of 610 nm to 640 nm.
Each layer of the first semiconductor light emitting unit 10 may be formed using a nitride semiconductor, but is not limited thereto. The each layer thereof may grow on the growth substrate 11 using a process such as a metal-organic chemical vapour deposition (MOCVD), molecular beam epitaxy (MBE), a hydride vapor phase epitaxy (HVPE) deposition, or the like.
The first conductivity-type semiconductor layer 10a may be formed using a nitride semiconductor represented by an empirical formula n-type AlxInyGa1−x−yN (where 0≤x≤1, 0≤y≤1, and 0≤x+y≤1), and an n-type impurity may be Si. For example, the first conductivity-type semiconductor layer 10a may be formed using n-type GaN. The second conductivity-type semiconductor layer 10c may be a nitride semiconductor layer represented by an empirical formula p-type AlxInyGa1−x−yN, and a p-type impurity may be magnesium (Mg). For example, the second conductivity-type semiconductor layer 10c may be formed using p-type AlGaN/GaN. The active layer 10b may have a multiple quantum well (MQW) structure in which a quantum well layer and a quantum barrier layer are alternately stacked. For example, when a nitride semiconductor is used, the active layer 10b may have a GaN/InGaN MQW structure.
A buffer layer may be formed on the growth substrate 11 in advance. The buffer layer may be formed using a nitride semiconductor represented by an empirical formula AlxInyGa1−x−yN (0≤x≤1, and 0≤y≤1). For example, the buffer layer may be formed using AlN, AlGaN, or InGaN.
Next, as illustrated in
This etching process may be performed by partially removing the second conductivity-type semiconductor layer 10c and the active layer 10b. An exposed portion, a mesa-etched region ME1, of the first conductivity-type semiconductor layer 10a allows an electrode to be formed.
Next, as illustrated in
Positions on which the electrode layers 12a, 13a, 14a, and 15a are formed may be correspond to positions of the common electrode CE and the first to third individual electrodes E1, E2, and E3 described in an example embodiment described previously. The electrode layers 12a, 13a, 14a, and 15a may include a material such as silver (Ag), nickel (Ni), aluminum (Al), rhodium (Rh), palladium (Pd), iridium (Ir), ruthenium (Ru), Mg, zinc (Zn), platinum (Pt), gold (Au), or the like, respectively, and may have a single layer structure or a multilayer structure. The electrode layers 12a, 13a, 14a, and 15a may be formed by a single electrode forming process, but are not limited thereto. In this case, the electrode layers may be formed using the same electrode material.
A portion of the electrode layers, in other words, electrode layers 12a and 13a related to the common electrode CE and the first individual electrode E1 may be used as a contact electrode. The contact electrodes 12a and 13a may be formed to have a sufficient size to be connected to the first conductivity-type semiconductor layer 10a and the second conductivity-type semiconductor layer 10c, respectively, after a subsequent process (for example, via formation). Another portion thereof, in other words, electrode layers 14a and 15a related to the second individual electrode E2 and the third individual electrode E3, may be used as a noncontact electrode. As the noncontact electrodes 14a and 15a are formed to have a small size, the noncontact electrodes may not be electrically connected to the first semiconductor light emitting unit 10 in a subsequent processes (for example, via formation).
Next, as illustrated in
Next, as illustrated in
In this process of forming of the base insulating layer, after an insulating material is formed to have a sufficient thickness to allow the electrodes 12, 13, 14, and 15 to be covered therewith, surfaces of the electrodes 12, 13, 14, and 15 may be exposed through a grinding process. In addition, through the grinding process, a surface 16A of the base insulating layer 16 may be provided as a flat surface for bonding. The base insulating layer 16 may be formed using various insulating materials.
In an example embodiment, the base insulating layer may be formed using an insulating material not allowing light to be transmitted, in other words, a light-absorbing insulating material or a reflective insulating material. For example, the base insulating layer 16 may be formed using a material related to the black matrix described previously, or an insulating resin mixed with light-reflective powder. The insulating resin may be formed using epoxy, silicon, polyacrylate, polyimide, polyamide, and benzocyclobutene (BCB). The light-reflective particles may be formed using titanium dioxide (TiO2) or aluminum oxide (Al2O3).
The second semiconductor light emitting unit and the third semiconductor light emitting unit, used for a process of manufacturing a display panel or a light source module according to an example embodiment, may be prepared by a process similar to a foregoing process.
With reference to
The electrodes 22, 24, and 25 may be disposed in regions corresponding to the common electrode CE, the second individual electrode P2, and the third individual electrode P3, respectively. The electrodes 22 and 24 may include contact electrodes 22a and 24a and electrode posts 22b and 24b, respectively. Here, the contact electrodes 22a and 24a may be a transparent electrode formed of a material such as an indium tin oxide (ITO). Thus, even when the contact electrodes 22a and 24a are formed to have a sufficient area, significant optical loss may be prevented. The electrode 25 may include a noncontact electrode 25a and an electrode post 25b.
With reference to
The electrodes 32 and 35 may be disposed in regions corresponding to the common electrode CE and the third individual electrode P3, respectively. The electrodes 32 and 35 may include contact electrodes 32a and 35a, and electrode posts 32b and 35b, respectively. Here, the contact electrode 32a disposed on the second conductivity-type semiconductor layer 30c may be formed using a transparent electrode formed of a material such as ITO.
As illustrated in
This bonding process may be performed to allow a surface 16A of the base insulating layer 16 in which the electrodes 12, 13, 14, and 15 are exposed to oppose the support substrate 41.
Next, as illustrated in
This substrate removal process may be performed using a laser lift-off and/or mechanical/chemical polishing process. An additional grinding process may be applied to a surface of the first semiconductor light emitting unit 10 from which the growth substrate 11 is removed.
Next, as illustrated in
The holes V1a, V2, and V3a for the electrode structure may be provided as a vertical path for a connection of the electrodes 12, 14, and 15 of the first semiconductor light emitting unit 10 with the second semiconductor light emitting unit 20 to form the common electrode CE, the second individual electrode E2, and the third individual electrode E3. The hole TH1 for the formation of the partition structure may be formed to define the pixel PA as illustrated in
Next, as illustrated in
After the first insulating layer 17 is formed thereon, a surface of the first insulating layer may be leveled through an additional polishing process. The first insulating layer 17 may be formed using a light-transmissive insulating material. For example, the first insulating layer may be formed using not only a light-transmissive insulating resin described previously, but also SiO2, Si3N4, HfO2, SiON, TiO2, Ta2O3, or SnO2.
The first insulating layer 17 may be provided as a surface to be bonded to the second semiconductor light emitting unit 20. In addition, the first insulating layer may serve to prevent an undesired connection of the first insulating layer with a conductive via disposed inside the holes V1a, V2, and V3a to be formed in a subsequent process.
Next, as illustrated in
The secondary holes V1a′, V2′, V3a′, and TH1′ may prevent an undesired connection of the first semiconductor light emitting unit 10 with a conductive via or a partition to be formed in a subsequent process as a material of the first insulating layer 17 remains in an inner wall thereof.
Next, as illustrated in
The conductive vias 42a, 44a, and 45a formed in this process of forming conductive vias and the first partition 46a may be connected to electrodes 12, 14, and 15 of the first semiconductor light emitting unit 10, respectively. The first partition 46a may be formed using a metallic material the same as that of the conductive vias 42a, 44a, and 45a. The first partition 46a that is the metallic material may effectively prevent light interference between pixels.
As illustrated in
This bonding process may be performed by pressing the first insulating layer 17 of the first semiconductor light emitting unit 10 and the second insulating layer 26 of the second semiconductor light emitting unit 20 at a high temperature. Without the use of an additional resin for bonding, bonding with a desired degree of strength may be obtained. In this bonding process, the electrodes 22, 24, and 25 of the second semiconductor light emitting unit 20 may be connected to the conductive vias 42a, 44a, and 45a of the first semiconductor light emitting unit 10, respectively.
Next, as illustrated in
This substrate removal process may be performed by using a laser lift-off and/or mechanical/chemical polishing process. In a manner similar to a foregoing process, an additional grinding process may be applied to a surface of the second semiconductor light emitting unit 20 from which the growth substrate 21 is removed.
Next, as illustrated in
The holes V1b and V3b for the electrode structure may be provided as vertical paths for a connection of the electrodes 22 and 25 of the second semiconductor light emitting unit 20 with the second semiconductor light emitting unit 20 to form the common electrode CE and the third individual electrode E3. The hole TH2 for formation of the partition structure may be formed in a position corresponding to the first partition 46a.
Next, as illustrated in
By this process, as a material of the third insulating layer 27 remains around the conductive vias 42b and 45b and the second partition 46b, an undesired connection of the second semiconductor light emitting unit 20 may be prevented. The conductive vias 42b and 45b formed in this process may be connected to the electrodes 22 and 25 of the second semiconductor light emitting unit 20, respectively. The second partition 46b may be formed to be connected to the first partition 46a. The second partition 46b may be formed using a metallic material the same as the conductive vias 42b and 45b.
Next, as illustrated in
This bonding process may be performed by pressing the third insulating layer 27 of the second semiconductor light emitting unit 20 and the fourth insulating layer 36 of the third semiconductor light emitting unit 30 at a high temperature. Without the use of an additional resin for bonding, bonding with a desired degree of strength may be performed. In this bonding process, the electrodes 32 and 35 of the third semiconductor light emitting unit 30 may be connected to the conductive vias 42b and 45b of the second semiconductor light emitting unit 20, respectively.
Next, as illustrated in
This substrate removal process may be performed by using a laser lift-off and/or mechanical/chemical polishing process. In a manner similar to a foregoing process, an additional grinding process may be applied to a surface of the third semiconductor light emitting unit 30 from which the growth substrate 31 is removed.
As described above, the common electrode CE may be connected to the first conductivity-type semiconductor layers 10a, 20a, and 30a of the first to third semiconductor light emitting units 10, 20, and 30 in common while passing through the base insulating layer 16, the first semiconductor light emitting unit 10, the second semiconductor light emitting unit 20, the first interlayer insulating layer IL1, and the second interlayer insulating layer IL2. The third individual electrode E3 may be connected to the second conductivity-type semiconductor layer 30c of the third semiconductor light emitting unit 30 while passing through the base insulating layer 16, the first semiconductor light emitting unit 10, the second semiconductor light emitting unit 20, the first interlayer insulating layer IL1, and the second interlayer insulating layer IL2.
Next, as illustrated in
The hole TH3 for formation of the partition structure may be formed in a position corresponding to the second partition 46b, and the outer insulating layer 37 provided as a light-transmissive protective layer may serve to protect a panel.
Next, as illustrated in
The third partition 46c may be formed to be connected to the second partition 46b. The third partition 46c allows a pixel PA area to be defined and the partition structure 46 preventing light interference between pixels to be provided, with the first partition 46a and the second partition 46b connected to each other in series.
Next, as illustrated in
In a manufacturing method according to an example embodiment, while being stacked for vertical connectivity between semiconductor light emitting units, a via formation process may be performed. In this via formation process, an etching stop layer may be adopted for various purposes.
As illustrated in
Next, as illustrated in
The electrode posts 12b, 13b, 14b, and 15b may be formed to have a constant height on the contact electrodes 12a and 13a and the noncontact electrodes 14a and 15a. An insulating material for the base insulating layer 16 is formed to have a sufficient thickness to allow the electrodes 12, 13, 14, and 15 to be covered therewith, and surfaces of the electrodes 12, 13, 14, and 15 may be exposed through a grinding process. In addition, through the grinding process, a surface 16A of the base insulating layer 16 may be provided as a flat surface for bonding.
Next, as illustrated in
Next, as illustrated in
Next, as illustrated in
After the first insulating layer 17 is formed, a surface thereof may be leveled through an additional grinding process. In an example embodiment, in a process for a secondary hole, the etching stop layers 18b and 18c may be partially removed together to allow the noncontact electrodes 14a and 15a to be exposed at a surface C. By this process, without an additional process, the conductive vias 44a and 45a formed in the process illustrated in
As described above, the etching stop layers 18b and 18c allow an etching depth to be adjusted, an electrode surface to be protected, and a vertical connection structure (for example, a common electrode, a second individual electrode, and a third individual electrode) including the noncontact electrodes 14a and 15a to be formed.
With reference to
The LED light source module 50A according to an example embodiment may be understood to have a structure similar to the LED light source module 50 illustrated in
The first common electrode CE1 and the second common electrode CE2 employed in an example embodiment may have a through electrode structure. The first common electrode CE1 may be connected to the first conductivity-type semiconductor layers 10a, 20a, and 30a of the first to third semiconductor light emitting units 10, 20, and 30 in common while passing through the base insulating layer 16, the first semiconductor light emitting unit 10, the second semiconductor light emitting unit 20, the first interlayer insulating layer IL1, and the second interlayer insulating layer IL2 in a manner similar to the common electrode CE illustrated in
In an example embodiment, in a manner different from the example embodiment described previously, the second common electrode CE2 having another polarity may be connected to the second conductivity-type semiconductor layers 10c, 20c, and 30c of the first to third semiconductor light emitting units 10, 20, and 30 in common, while passing through the base insulating layer 16, the first semiconductor light emitting unit 10, the second semiconductor light emitting unit 20, the first interlayer insulating layer IL1, and the second interlayer insulating layer IL2 rather than the individual electrode.
The second common electrode CE2 may include a fourth electrode 15′ disposed inside the base insulating layer 16 and connected to the second conductivity-type semiconductor layer 10c of the first semiconductor light emitting unit 10, a third conductive via 45a connected to the fourth electrode 15′ and passing through the first semiconductor light emitting unit 10, a fifth electrode 25′ connected to the third conductive via 45a and connected to the second conductivity-type semiconductor layer 20c of the second semiconductor light emitting unit 20 inside the first interlayer insulating layer IL1, a fourth conductive via 45b connected to the fifth electrode 25′ and passing through the second semiconductor light emitting unit 30, and a sixth electrode 35′ connected to the fourth conductive via 45b and connected to the second conductivity-type semiconductor layer 30c of the third semiconductor light emitting unit 30 inside the second interlayer insulating layer IL2. In an example embodiment, the fourth to sixth electrodes 15′, 25′, and 35′ may include contact electrodes 15a′, 25a′, and 35a′, and electrode posts 15b′, 25b′, and 35b′ disposed on the contact electrodes 15a′, 25a′, and 35a′, respectively.
First and second common electrode pads N0 and P0 may be provided on a lower surface of the base insulating layer 16 to be connected to the first common electrode CE1 and the second common electrode CE2, respectively.
When a voltage is applied to the first common electrode pad N0 and the second common electrode pad P0, red, green, and blue light is emitted from the first to third semiconductor light emitting units 10, 20, and 30. Thus, the red, green, and blue light is combined to emit white light. As described above, the LED light source module 50A may be configured to provide white light.
With reference to
The LED light source module 50B according to an example embodiment is understood to have a structure similar to the light source module 50 illustrated in
Active layers 10b, 20b, and 30b of the first to third semiconductor light emitting units 10, 20, and 30 may emit light having the same wavelength. Each of the active layers 10b, 20b, and 30b in an example embodiment may emit ultraviolet light (having a wavelength of, for example, 380 nm to 440 nm). The first to third semiconductor light emitting units 10, 20, and 30 may include first to third light-adjusting units 19, 29, and 39 disposed on upper surfaces thereof, respectively. The first light-adjusting unit 19 may include a first wavelength converting layer 19a containing a wavelength conversion material Pr converting ultraviolet light into red light. The second light-adjusting unit 29 may include a second wavelength converting layer 29a containing a wavelength conversion material Pg for converting ultraviolet light into green light. The third light-adjusting unit 39 may include a third wavelength converting layer 39a containing a wavelength conversion material Pb converting ultraviolet light into blue light.
The first light-adjusting unit 19 and the second light-adjusting unit 29 may include a first optical filter layer 19b and a second optical filter layer 29b disposed on the first wavelength converting layer 19a and the second wavelength converting layer 29a, respectively. The first optical filter layer 19b and the second optical filter layer 29b may prevent an undesired color of light from being generated as light emitted from the second semiconductor light emitting unit 20 or the third semiconductor light emitting unit 30 is absorbed into the first wavelength converting layer 19a and the second wavelength converting layer 29a disposed below the first optical filter layer and the second optical filter layer, respectively. The first optical filter layer 19b may block ultraviolet, blue, and green light, and the second optical filter layer 29b may block ultraviolet light and blue light. In a manner different from an example embodiment, an optical filter layer for blocking ultraviolet light is not adopted, or only adopted in a portion of the semiconductor light emitting unit. As in an example embodiment, a light diffusion layer 39b may be disposed on the third wavelength converting layer 39a.
The example embodiments may be variously implemented. For example, the active layers of the first to third semiconductor light emitting units emit blue light, the first semiconductor light emitting unit and the second semiconductor light emitting unit include a first wavelength converting layer and a second wavelength converting layer disposed on upper surfaces thereof, respectively, and the first wavelength converting layer and the second wavelength converting layer may convert blue light into red light and green light, respectively. Additionally, the first semiconductor light emitting unit may further include a first optical filter layer disposed on the first wavelength converting layer and blocking blue light and green light, and the second semiconductor light emitting unit may further include a second optical filter layer disposed on the second wavelength converting layer and blocking blue light.
At least two semiconductor light emitting units of the first to third semiconductor light emitting units include active layers emitting light having substantially the same wavelength, and at least one semiconductor light emitting unit of the at least two semiconductor light emitting units may include a wavelength converting layer, but it is not limited thereto.
In the foregoing embodiments, an LED light source module employed in a display panel is mainly described, but an LED light source module according to an example embodiment may be employed in various devices such as a lighting device.
The light emitting stacked body EL of the LED light source module 50C may have a structure similar to the light emitting stacked body of the light source module 50A illustrated in
The light emitting stacked body EL may include a base insulating layer 16 allowing the first surface to be provided, first to third semiconductor light emitting units 10, 20, and 30 sequentially stacked on the base insulating layer 16, a first interlayer insulating layer IL1 disposed between the first semiconductor light emitting unit 10 and the second semiconductor light emitting unit 20 and a second interlayer insulating layer IL2 disposed between the second semiconductor light emitting unit 20 and the third semiconductor light emitting units 30.
The first to third semiconductor light emitting units 10, 20, and 30 may have first conductivity-type semiconductor layers 10a, 20a, and 30a, second conductivity-type semiconductor layers 10c, 20c, and 30c, and active layers 10b, 20b, and 30b disposed therebetween, respectively. As three semiconductor light emitting units are overlapped and stacked in the same region, luminance per unit area may be enhanced.
In the example embodiment, a form in which three semiconductor light emitting units 10, 20, and 30 are stacked, is exemplified, but is not limited thereto. Two or more semiconductor light emitting units may be adopted thereto. In addition, the three semiconductor light emitting units may emit light having different colors (for example, red, green, and blue), respectively, but may be configured to emit the same light or white light.
To be connected to the common electrode, the first through electrode structure CE1 and the second through electrode structure CE2, the first electrode pad 39a and the second electrode pad 39b may be provided in a first surface of the light emitting stacked body EL, in other words, a lower surface of the base insulating layer 16a.
The LED light source module 50C may further include an encapsulation layer 38 surrounding a second surface and lateral surfaces of the light emitting stacked body EL. The encapsulation layer 38 may include a light-transmissive resin. The encapsulation layer 38 may include a wavelength conversion material such as a phosphor. The encapsulation layer 38 may have a substantially flat surface coplanar with a first surface of the light emitting stacked body EL. An area of the surface may be properly adjusted according to a thickness W of the encapsulation layer 38. As illustrated in
A form in which the second through electrode structure CE2 employed in an example embodiment is connected to the second conductivity-type semiconductor layers 10c, 20c, and 30c of the first to third semiconductor light emitting units, is exemplified. However, as illustrated in
The LED light source module 50D illustrated in
As a material for converting a wavelength of light emitted from an LED pixel employed in an example embodiment, various materials such as a phosphor and/or a quantum dot may be used.
Phosphors may be represented by the following empirical formulae and have colors as below:
Oxide-based Phosphors: Yellow and green Y3Al5O12:Ce, Tb3Al5O12:Ce, Lu3Al5O12:Ce
Silicate-based Phosphors: Yellow and green (Ba,Sr)2SiO4:Eu, yellowish-orange (Ba,Sr)3SiO5:Ce
Nitride-based Phosphors: Green β-SiAlON:Eu, yellow La3Si6N11:Ce, yellowish-orange α-SiAlON:Eu, red CaAlSiN3:Eu, Sr2Si5N8: Eu, SrSiAl4N7: Eu, SrLiAl3N4:Eu, Ln4−x(EuxM1−x)xSi12−yAlyO3+x+yN18−x−y (0.5≤x≤3, 0<z<0.3, 0<y≤4)(here, Ln is at least one selected from a group consisting of a group IIIa element and a rare-earth element, and M is at least one selected from a group consisting of calcium (Ca), barium (Ba), strontium (Sr), and magnesium (Mg))
Fluoride-based Phosphors: red K2SiF6:Mn4+, K2TiF6:Mn4+, NaYF4:Mn4+, NaGdF4:Mn4+, K3SiF7:Mn4+
A composition of phosphors may coincide with stoichiometry, and respective elements may be substituted with other elements in respective groups of the periodic table of elements. For example, Sr may be substituted with Ba, Ca, Mg, or the like, of an alkaline earth group II, and Y may be substituted with lanthanum-based terbium (Tb), lutetium (Lu), scandium (Sc), gadolinium (Gd), or the like. In addition, Eu or the like, an activator, may be substituted with Ce, Tb, praseodymium (Pr), erbium (Er), ytterbium (Yb), or the like, according to a level of energy, and an activator provided alone or a sub-activator or the like, for modification of characteristics thereof, may additionally be used.
In further detail, in the case of a fluoride-based red phosphor, to improve reliability thereof at high temperatures and under conditions of high humidity, phosphors may be coated with fluoride not containing Mn or a phosphor surface or a fluoride-coated surface of phosphors, coated with a fluoride not containing Mn, may further be coated with an organic material. In the case of the fluoride-based red phosphor as described above, a narrow full width at half maximum (narrow FWHM) of 40 nm or less may be obtained, unlike in the case of other phosphors, and thus, the fluoride-based red phosphors may be used in high-resolution TV sets such as UHD TVs.
With reference to
The panel driver 120 may drive the display panel 100, and the controller 150 may control the panel driver 120. The panel driver 220 controlled through the controller 150 may be configured to independently turn each of a plurality of sub-pixels containing R (Red), G (Green), and B (Blue) on or off.
For example, the panel driver 120 transmits clock signals having driving frequencies to a plurality of sub-pixels, respectively, to turn the plurality of sub-pixels on or off, respectively. The controller 150 controls the panel driver 120 to turn a plurality of sub-pixels as a set group unit on, according to an input video signal, and thus, a desired image may be displayed in the display panel 100.
In the previous example embodiments, a display device is described as a main application example, but LED light source modules 50, 50A, 50B, and 50C employed in a display panel may be used as a light source module of various lighting apparatuses.
As set forth above, according to example embodiments, a plurality of semiconductor light emitting units are stacked in a vertical direction, thereby providing an LED light source module in which luminance is improved per unit area.
An LED display panel allowing a plurality of semiconductor light emitting units having different colors to be stacked in a vertical direction to freely adjust an area of a pixel, and further to greatly reduce an area of a pixel, and a display device including the same, may be provided.
As is traditional in the field of the inventive concepts, example embodiments are described, and illustrated in the drawings, in terms of functional blocks, units and/or modules. Those skilled in the art will appreciate that these blocks, units and/or modules are physically implemented by electronic (or optical) circuits such as logic circuits, discrete components, microprocessors, hard-wired circuits, memory elements, wiring connections, and the like, which may be formed using semiconductor-based fabrication techniques or other manufacturing technologies. In the case of the blocks, units and/or modules being implemented by microprocessors or similar, they may be programmed using software (e.g., microcode) to perform various functions discussed herein and may optionally be driven by firmware and/or software. Alternatively, each block, unit and/or module may be implemented by dedicated hardware, or as a combination of dedicated hardware to perform some functions and a processor (e.g., one or more programmed microprocessors and associated circuitry) to perform other functions. Also, each block, unit and/or module of the example embodiments may be physically separated into two or more interacting and discrete blocks, units and/or modules without departing from the scope of the inventive concepts. Further, the blocks, units and/or modules of the example embodiments may be physically combined into more complex blocks, units and/or modules without departing from the scope of the inventive concepts.
While example embodiments have been shown and described above, it will be apparent to those skilled in the art that modifications and variations could be made without departing from the scope of the example embodiments as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2016-0041162 | Apr 2016 | KR | national |
This application is a continuation of U.S. application Ser. No. 15/389,808 filed on Dec. 23, 2016, which claims priority from Korean Patent Application No. 10-2016-0041162 filed on Apr. 4, 2016, in the Korean Intellectual Property Office, the disclosures of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
6372608 | Shimoda et al. | Apr 2002 | B1 |
6645830 | Shimoda et al. | Nov 2003 | B2 |
RE38466 | Inoue et al. | Mar 2004 | E |
6818465 | Biwa et al. | Nov 2004 | B2 |
6818530 | Shimoda et al. | Nov 2004 | B2 |
6858081 | Biwa et al. | Feb 2005 | B2 |
6864627 | Komoto et al. | Mar 2005 | B2 |
6967353 | Suzuki et al. | Nov 2005 | B2 |
7002182 | Okuyama et al. | Feb 2006 | B2 |
7084420 | Kim et al. | Aug 2006 | B2 |
7087932 | Okuyama et al. | Aug 2006 | B2 |
7110061 | Komoto et al. | Sep 2006 | B2 |
7154124 | Han et al. | Dec 2006 | B2 |
7208725 | Sherrer et al. | Apr 2007 | B2 |
7288758 | Sherrer et al. | Oct 2007 | B2 |
7319044 | Han et al. | Jan 2008 | B2 |
7501656 | Han et al. | Mar 2009 | B2 |
7709857 | Kim et al. | May 2010 | B2 |
7759140 | Lee et al. | Jul 2010 | B2 |
7781727 | Sherrer et al. | Aug 2010 | B2 |
7790482 | Han et al. | Sep 2010 | B2 |
7935972 | Plank | May 2011 | B2 |
7940350 | Jeong | May 2011 | B2 |
7959312 | Yoo et al. | Jun 2011 | B2 |
7964881 | Choi et al. | Jun 2011 | B2 |
7985976 | Choi et al. | Jul 2011 | B2 |
7994525 | Lee et al. | Aug 2011 | B2 |
8008683 | Choi et al. | Aug 2011 | B2 |
8013352 | Lee et al. | Sep 2011 | B2 |
8049161 | Sherrer et al. | Nov 2011 | B2 |
8129711 | Kang et al. | Mar 2012 | B2 |
8179938 | Kim | May 2012 | B2 |
8263987 | Choi et al. | Sep 2012 | B2 |
8324646 | Lee et al. | Dec 2012 | B2 |
8324803 | Forrest et al. | Dec 2012 | B2 |
8399944 | Kwak et al. | Mar 2013 | B2 |
8432511 | Jeong | Apr 2013 | B2 |
8459832 | Kim | Jun 2013 | B2 |
8502242 | Kim | Aug 2013 | B2 |
8536604 | Kwak et al. | Sep 2013 | B2 |
8610359 | Lee | Dec 2013 | B2 |
8735931 | Han et al. | May 2014 | B2 |
8766295 | Kim | Jul 2014 | B2 |
9040963 | Lee et al. | May 2015 | B2 |
9076929 | Katsuno et al. | Jul 2015 | B2 |
10043850 | Lin et al. | Aug 2018 | B2 |
10170666 | Cha | Jan 2019 | B2 |
20100220042 | Ei-Ghoroury et al. | Sep 2010 | A1 |
20120073657 | Ei-Ghoroury et al. | Mar 2012 | A1 |
20150048394 | Shim et al. | Feb 2015 | A1 |
20150344296 | Pahl | Dec 2015 | A1 |
20150372187 | Bower et al. | Dec 2015 | A1 |
20150380607 | Wu et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
1170383 | Jan 1998 | CN |
1913180 | Feb 2007 | CN |
201134433 | Oct 2008 | CN |
103296047 | Sep 2013 | CN |
104733487 | Jun 2015 | CN |
7-183576 | Jul 1995 | JP |
9619792 | Jun 1996 | WO |
Entry |
---|
Communication dated Oct. 9, 2018, issued by the Chinese Patent Office in counterpart Chinese Application No. 201710217743.8. |
Number | Date | Country | |
---|---|---|---|
20190103510 A1 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15389808 | Dec 2016 | US |
Child | 16190538 | US |