Not applicable.
The invention relates in general to a light-emitting diode light source, and is specifically a light-emitting diode light source that comprises a nanolens layer in association with an encapsulated light emitting diode chip to improve light mixing.
Light-emitting diodes generally emit light in a specific color or range of wavelengths. To produce a white light, it is usually necessary to combine or mix the light from plural LEDs which emit different colors, for example, red, green and blue. Initially, light mixing was accomplished by placing LEDs of different colors next to each other such that the light emitted by each LED would mix with the light from the others. A common structure associated with such mixing is a light guide.
This approach has several drawbacks including poor color mixing, uneven light intensity, and the presence of dark regions near the edges of the light guide plate.
Several techniques have been made to improve the light mixing needed to produce which light. One is the insertion of the LEDs into a mixing cavity within the light guide. Another is the use of a light diffusor to mix the colors. While these techniques have resulted in slightly better color mixing, there remains a need for further improvement.
An embodiment of the invention is a novel light emitting diode light source having an associated nanolens structure. The nanolens allows for improved mixing of the light generated by the light-emitting diodes contained within the light source. Light mixing may be further enhanced through the use of a diffusant layer within the light source and/or reflectors placed adjacent to the diodes.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.
For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
The light-directing nanolens layer 15 may be formed by nano imprinting the surface of the encapsulant 12 to produce the desired structures, or it may comprise a separate layer of material which has been shaped to have the desired structures. This separate nanolens layer will typically be prepared from a transparent polymeric material. Where the nanolens layer is formed separately, an adhesion promoter may be used to ensure binding to the encapsulant layer. The surface of the nanolens layer 15 will have multiple light-directing structures 16 which redirect the light, causing mixing of the light. While these structures may be dome shaped or hemispherical as shown in
The encapsulant used in the practice of the invention should be optically clear and protect the light-emitting diode chips from the environment. In one embodiment, epoxy resins are used as the encapsulant, however, other materials, such as silicones may be used.
In an alternate embodiment shown in
Still another embodiment is shown in
As with the embodiments shown in
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Number | Name | Date | Kind |
---|---|---|---|
5998925 | Shimizu et al. | Dec 1999 | A |
20020048088 | Kashima et al. | Apr 2002 | A1 |
20030038295 | Koda | Feb 2003 | A1 |
20030089914 | Chen | May 2003 | A1 |
20050002204 | Lin et al. | Jan 2005 | A1 |
20050201109 | Shimura | Sep 2005 | A1 |
20060027828 | Kikuchi | Feb 2006 | A1 |
20060050533 | Yang et al. | Mar 2006 | A1 |
20060267037 | Lim et al. | Nov 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20070252163 A1 | Nov 2007 | US |