1. Technical Field
The present invention relates to LED (light-emitting diode) lighting apparatuses and, more particularly, to an LED lighting apparatus having a separate wavelength conversion unit.
2. Description of Related Art
Currently, a white LED may be realized by packaging red, green, and blue LED chips in an LED seat and implementing driving currents with different intensities to drive the red, green, and blue LED chips, respectively, so as to mix the emitted lights therefrom to generate a white light. However, since at least three LED chips are required to generate the white light and a complex circuit has to be devised for accurately controlling the driving currents, such white LED requires a relatively high manufacturing cost and therefore is not feasible for daily lighting.
To remedy the foregoing problem, a technology using colored LEDs together with a fluorescent material to produce a white LED has been developed and introduced to the industry. Therein, since a blue LED chip is superior in brightness as compared with LED chips of other colors, it is used together with a yellow fluorescent material that can be excited to emit a yellow light by the blue LED chip in order to produce a white LED that emits a white light. In such white LED, part of the blue light emitted by the blue LED chip excites the yellow fluorescent material to emit the yellow light, and the rest of the blue light gets mixed with the yellow light, so that the white LED emits a white light.
Furthermore, in order to ensure the desired yield of the LED 10, during the complex process of coating the LED chip 12 with the fluorescent material 13, it is not only sediment of the fluorescent material 13 accumulated on the LED chip 12 during packaging to be avoided, but also undesired air bubbles produced during applying the fluorescent material 13 to be prevented so as to eliminate adverse light-emitting effect of the LED 10 caused by such sediment and air bubbles. Hence, how to enhance the yield of LED products with reduced manufacturing costs and simplified process would be a subject for the industry to research.
The present invention provides an LED lighting apparatus having a separate wavelength conversion unit, wherein by separating the wavelength conversion unit from an LED, the process of the LED is simplified and the problem of an uneven thickness of a fluorescent material covering LED chips is remedied so that the LED can emit even light beams.
To achieve the above objectives, the present invention provides an LED lighting apparatus having a separate wavelength conversion unit, which comprises: the wavelength conversion unit, having an optical component with a surface and a wavelength conversion layer formed on the surface; and at least one LED, such positioned that the wavelength conversion layer can be excited thereby, wherein each said LED comprises: a base, an LED chip deposited on the base, and a lens formed on the base while covering the LED chip.
To achieve the above objectives, the present invention provides a wavelength conversion unit, which comprises an optical component with a surface and a wavelength conversion layer formed on the surface.
The present invention achieves at least the following progressional effects:
The invention as well as a preferred mode of use, further objectives and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
As shown in
The wavelength conversion unit 30 comprises an optical component 31 and a wavelength conversion layer 32. The optical component 31 has a surface and the wavelength conversion layer 32 is formed on the surface of the optical component 31. The optical component 31 may be a lens, a Fresnel lens or a diffuser. The wavelength conversion layer 32 is made of a yellow fluorescent material, or a hybrid material from yellow and red fluorescent materials.
The wavelength conversion layer 32 may have an average thickness ranging from 1 nm to 3 nm and may be formed by a physical vapor deposition (PVD) method, such as evaporation deposition, ion plating or sputtering deposition, in an operating environment preferably ranging from 100° C. to 500° C.
The LED 40 comprises a base 41, an LED chip 42 and a lens 43. Therein the base 41 functions as a carrier, and is equipped with a lead frame for electrically connected to a circuit board 50. The LED chip 42 is mounted on the base 41, and electrically connected to the lead frame by wire bounding. The lens is formed on the base 41 and covers the LED chip 42.
The LED chip 42 may be a blue LED lighting source. Since such blue LED lighting source presents superior brightness, when the blue LED lighting source is employed together with the yellow fluorescent material, part of the blue light emitted by the blue LED lighting source can excite the yellow fluorescent material to generate a yellow light and the rest of the blue light can then get mixed with the excited yellow light so that the LED light apparatus 20 can emit a white light.
A beam angle of the LED 40 is defined through the lens and may range from +60 degrees to −60 degrees. Meanwhile, the LED 40 is separated from the wavelength conversion layer for a predetermined distance, and is such positioned that the wavelength conversion layer 32 can be excited thereby. By such designed beam angle and position, the LED 40 can excite the wavelength conversion layer 32 in order to present the white light. Since the fluorescent material is not directly applied to the LED 40, the problems of the prior arts can be eliminated and the yield can be improved.
As shown in
Although the particular embodiments of the invention have been described in detail for purposes of illustration, it will be understood by one of ordinary skill in the art that numerous variations will be possible to the disclosed embodiments without going outside the scope of the invention as disclosed in the claims.
Number | Date | Country | Kind |
---|---|---|---|
096141785 | Nov 2007 | TW | national |