Embodiments of the invention relate to LED lighting assemblies that can be quickly and easily installed in display cases and particularly refrigerated display units.
Display cases, including refrigeration units that house a variety of products, including beverages, frozen foods, etc., historically have used fluorescent sources to light the interior of the case. However, the fluorescent bulbs used in such applications have limited life and must be replaced often. The electrodes in fluorescent bulbs are easily burnt out or broken, requiring that the entire bulb be replaced. Moreover, the glass bulbs themselves are susceptible to breakage.
The fluorescent bulbs have been positioned in various locations within the cases, including at the top or along the sides of the unit. A lamp provided at the top of the unit illuminates the products positioned near the top of the case, but fails to adequately illuminate those products positioned lower within the case. This is particularly true if all of the shelves have the same depth. The use of multiple lamps positioned vertically down the sides of the case illuminate the products located towards the sides of the case but inadequately illuminate those positioned more central within the case. Moreover, the use of multiple lamps increases the energy and thus cost needed to adequately illuminate the case. There is a need to illuminate products with a display case more efficiently and effectively.
Embodiments of lighting assemblies disclosed herein are particularly designed for installation in display units to more effectively distribute light towards, and thereby better illuminate, the products housed in the display unit. The lighting assemblies include at least one, but preferably a plurality of, light emitting diodes mounted on a frame.
Any frame geometry and configuration and any number of LEDs positioned in any number of locations on the frame may be used. The frame is preferably formed so as to have a number of mounting arms on which to mount the LEDs. In this way, the LEDs can be positioned on the arms and their emitted light can be directed to focus on different aspects of the display unit (i.e., the products housed in the unit, banners or advertisements on the unit, etc.). The lighting assemblies may include, but do not have to include, various optical features to enhance the distribution of light emitted from the LEDs, including, but not limited to, lenses, reflectors, etc.
The lighting assemblies disclosed herein may be retrofit into existing refrigerated display units illuminated by fluorescent bulbs or installed in new units during assembly. Regardless of whether the lighting assemblies are installed in existing or new display units, they are easily removable from and replaceable in such units.
While not required, provision of staggered shelving within the display unit is preferable. In its simplest arrangement, all shelves are staggered such that the depth of the shelves gradually increases from top to bottom. Such an arrangement allows the light emanating from the top of the refrigerated display unit to better reach and illuminate the products located on the lower shelves.
Embodiments of this invention provide lighting assemblies for installation in refrigerated display units. While the lighting assemblies are discussed for use with refrigerated display units, they by no means are so limited. Rather, embodiments of the lighting assemblies may be used in display cases of any type.
Embodiments of the lighting assemblies 30 include at least one, but preferably a plurality of, light emitting diodes 32 mounted on a frame 34. For ease of discussion, the light sources are referred to generally as LEDs 32. However, the LEDs referenced herein can be single-die or multi-die light emitting diodes, DC or AC, or can be an organic light emitting diodes (O-LEDs). The LEDs may be oriented in a straight or staggered arrangement on frame 34.
The frame 34 may be formed from any metallic material (such as, but not limited to, aluminum or steel) or polymeric material (such as, but not limited to, thermoplastic or thermoset materials). Whatever the material used, it is preferable, but not required, that the frame 34 be formed from a reflective material or treated so as to render the frame 34 reflective, such as by painting a reflective coating on its exterior surface.
In one embodiment, the frame 34 is metal and is formed by stamping a metal blank and then forming the blank into a desired frame shape. In this way, the frames 34 may be sized to fit within the refrigerated display unit 10 and formed so as to provide the desired number of surfaces on which to mount the LEDs 32. Other manufacturing methods, including, but not limited to, injection-molding, stamping, compression-molding, etc., may also be employed to make the frame 34.
The frame 34 can be formed into various shapes depending on the desired illumination within the refrigerated display unit 10. While the frame 34 may simply be a planar surface on which the LEDs 32 are mounted, it is preferably formed so as to have a number of mounting arms (e.g., 36-38) on which to mount the LEDs 32. For example,
The frames 34 can have fewer or more than three mounting arms however. Moreover, LEDs 32 need not be provided on every arm but rather can be selectively provided to effect the desired illumination. By way only of example, LEDs need not be provided on the middle arm 37 but rather the light emitted from the LEDs 32 provided on the top arm 36 can be directed outwardly or downwardly and outwardly to illuminate a banner and the light emitted from the LEDs 32 on the bottom arm 38 can be directed downwardly or downwardly and inwardly to illuminate the products. Alternatively, LEDs 32 may be provided only on the middle and bottom mounting arms 37, 38 and not on the top mounting arm 36.
Any number of mounting arms may be provided. The mounting arms can be planar or can be contoured. By way only of example,
While the LEDs 32 may be mounted directly to the frame 34, they are preferably first mounted on a printed circuit board 44 (e.g., metal core board, FR4 board, CHM1 board, etc.) that is subsequently attached to the frame 32 via any mechanical or chemical retention method, including the use of mechanical fasteners or adhesive. In one embodiment, screws 46 are used to secure the printed circuit boards 44 to the frame 34. While dissipation of the heat generated by the LEDs 32 is not of particular concern in refrigeration applications, if the display unit is not refrigerated, provision of heat sinks and/or thermal pads in association with the printed circuit board may be desirable to direct heat away from the LEDs and thereby prevent their overheating.
The lighting assemblies 30 may include, but do not have to include, various optical features to enhance the distribution of light emitted from the LEDs 32. For example, lenses 50 can be positioned over the LEDs 32 for directing light towards a banner and/or the products. An individual lens 50 may be provided for each LED 32 or alternatively a single lens 50 may be provided for an array of LEDs 32, as shown in
The lenses 50 may be mounted to the printed circuit boards 44 or alternatively to the frame 34 using any chemical or mechanical retention method, including the use of mechanical fasteners or adhesive. In one embodiment, screws (not shown) are used to secure the lenses 50 to the frame 34. In an alternative embodiment, wings 52 provided on the lenses 50 are fitted within slots or recesses provided in the frame 34.
In addition to imparting optical properties to the assembly, the lenses 50 also serve to protect the LEDs 32 against moisture within the refrigerated display unit 10. A gasket material or seal (not shown) may be provided around the base of the lenses 50 to ensure that the LEDs 32 are sealed within the lenses 50 and thereby protected from the elements. The lenses 50 also prevent individuals from contacting the LEDs 32 and thus prevent electric shock associated with such contact.
A reflector 54 (see
The lighting assemblies 30 disclosed herein may be retrofit into existing refrigerated display units 10 illuminated by fluorescent bulbs 16 or installed in new units 10 during assembly. Retrofitting a lighting assembly 30 into an existing refrigerated display unit 10 can be quickly and easily accomplished in the field. The existing fluorescent lamp 16 and mounting panel 18 are removed from the refrigerated display unit 10 and the lighting assembly 30 installed to fill the vacancy within the unit 10, as shown in
While particularly useful in retrofit applications, the lighting assemblies 30 may also be installed directly into new refrigerated display units 10. Regardless of whether the lighting assemblies 30 are installed in existing or new display units 10, they are easily removable from and replaceable in such units 10 by merely disconnecting the wires, removing the used, existing lighting assembly 30, inserting the new, replacement lighting assembly 30, and reconnecting the wires.
The lighting assemblies 30 disclosed herein may be tailored to provide LEDs 32 and optional optical enhancements to better harness and direct the light emitted from the light sources in the desired directions. In this way, the products housed within the refrigerated display unit 10 and/or the banner on the refrigerated display unit 10 may be better illuminated.
While not required, provision of staggered shelving within the refrigerated display unit 10 is preferable. In its simplest arrangement, the shelves 12 are staggered such that the depth of the shelves 12 gradually increases from top to bottom.
The lighting assemblies 30 of this invention may be used alone or in conjunction with other lighting assemblies within a refrigerated lighting unit 10. For example, additional LEDs may be provided vertically down or horizontally back or across the back or side walls of the refrigerated display unit or the product shelves 12 within the unit. Moreover, LEDs can be mounted on or embedded within the glass door or mounted between two panes of glass forming the door of the refrigerated display unit 10.
The lighting assemblies 30 need not use only white LEDs. Rather color or multicolor LEDs may be provided. Nor must all of the LEDs within a lighting assembly or within an LED array be the same color. With colored discrete or multicolor die LEDs, it is possible to select a variety of colors with which to illuminate the inside of a refrigerated display unit 10 or to program specific colors for each section of the unit 10. For example, an LED 32 provided in the lighting assembly 30 could emit light of the same color as the products positioned directly below the LED, resulting in improved product color rendering.
The light output of the LEDs 32 need not be consistent. Rather, the LEDs 32 may be programmed to change in appearance. For example, the LEDs 32 may flash, increase and decrease in brightness, switch on and off to create a bubbling effect simulating soda, pulsate, and/or create a moving effect, such as by racing across the unit or creating the appearance of a wave. It is contemplated that such lighting effects could be triggered upon detection (such as by a motion sensor provided in, on, or near the refrigerated display unit 10) of a person approaching the unit.
To conserve energy and associated costs, the refrigerated lighting unit 10 need not be illuminated at all times or be illuminated the same at all times. Moreover, not all of the LEDs 32 need be illuminated at the same time, but rather one can selectively illuminate some or all of the LEDs 32 as desired. For example, the LEDs 32 could be programmed to turn off at night. The LEDs 32 could be switched off when the door opens by use of a mechanical, optical, electrical, proximity, or magnetic switch. When the door opens, the LEDs 32 focusing on banner illumination can be turned off to prevent light from impinging on the individual opening the door.
Ultraviolet LEDs may be used to reduce energy costs during non-peak times. During these times, the ultraviolet LEDs would illuminate fluorescent materials on the products or refrigerated unit labels. Such ultraviolet LEDs may be used to create a glowing affect that would make graphics strikingly visible in the dark.
A light enhancement film, such as 3M Uniform Light Panel, may be provided on the glass behind the banner to distribute the light more evenly on the banner.
Another embodiment according to the present invention places O-LEDs on an outside surface of the refrigerated lighting unit in any size, shape or logo desired, covering all, or a portion, of the surface. These O-LEDs could be designed to flash, pulse, gradually increase and decrease in brightness or otherwise change their light output in a pre-programmed pattern or in response to external stimuli.
The foregoing is provided for purposes of illustrating, explaining, and describing embodiments of the present invention. Further modifications and adaptations to these embodiments will be apparent to those skilled in the art and may be made without departing from the scope or spirit of the invention.
This application claims the benefit of U.S. Provisional Application No. 60/937,678, entitled “Refrigeration Lighting Unit” and filed Jun. 29, 2007, and the benefit of U.S. Provisional Application No. 60/997,999, entitled “Refrigeration Lighting Unit” and filed Oct. 5, 2007, the entirety of each of which is herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60937678 | Jun 2007 | US | |
60997999 | Oct 2007 | US |