Locations use lights to provide illumination. Over the years, light sources of light fixtures that provide illumination have evolved from filament based Edison bulbs to more power efficient light emitting diodes (LEDs). LED light fixtures generally are designed with external power sources that provide power to the LEDs.
In addition, industry today relies on the transmission of data. Data is continuously transmitted for monitoring, automation control, and the like. Typically, data can be transmitted over wired and wireless networks that are deployed for transmitting data. For example, fiber optics networks and wireless networks with routers and gateways may be deployed to build a communication network. The cost to deploy these networks can be very expensive.
In one embodiment, the present disclosure provides a light emitting diode (LED) assembly. In one embodiment, the LED assembly comprises a substrate, at least one LED coupled to the substrate, and a power converter module formed on the substrate, wherein the power converter module is to power the at least one LED.
In one embodiment, the present disclosure provides another embodiment of an LED assembly. In one embodiment, the LED assembly comprises a substrate, at least one LED coupled to the substrate, a power converter module formed on the substrate, wherein the power converter module is to power the at least one LED, and a digital transceiver coupled to the substrate.
In one embodiment, the present disclosure provides another embodiment of an LED assembly. In one embodiment, the LED assembly comprises a substrate, at least one LED coupled to the substrate, a power converter module formed on the substrate, wherein the power converter module is to power the at least one LED, a monolithic capacitor formed in the substrate and coupled to the power, and a digital transceiver coupled to the substrate.
So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.
The present disclosure provides an LED lighting assembly with integrated power conversion and digital transceiver. As noted above, light fixtures are used to provide illumination in various locations. Current LED based light fixtures are fabricated with external power supplies. This can lead to a bulkier and heaver LED light fixture design.
In addition, industry today relies on the transmission of data. Data is continuously transmitted for monitoring, automation control, and the like. Typically, data can be transmitted over wired and wireless networks that are deployed for transmitting data. For example, fiber optics networks and wireless networks with routers and gateways may be deployed to build a communication network. The cost to deploy these networks can be very expensive.
However, all facilities use lights to illuminate the facilities. Thus, using the lights inside of a facility to transport data may reduce the overall costs for implementing a separate communication network to transmit the data. Connected lighting systems may offer the promise of functioning as a portal for the collection and transport of a vast array of data, as well as signaling actuators for control applications.
Lighting systems have for many years offered a 0-10 Volt (V) analog control input for dimming the output of a fixture. The digitally encoded messages for affecting control and performing remote monitoring operations have become popular with the use of microprocessors.
Examples of the present disclosure provide an LED lighting assembly with integrated power conversion and a digital transceiver that provides a more compact and efficient design that can provide illumination and transmit or receive data. The present disclosure incorporates the LED light, a power converter module, and a digital transceiver onto a single or common substrate. The LED light may provide general illumination. The power converter module may receive alternating current (AC) input voltage and drive the LEDs on an output of the power converter module. The digital transceiver may provide bi-directional controls. The simplification of the product design onto a single substrate may offer advantages in cost and ease of assembly.
In one embodiment, the LED assembly 100 may include a substrate 108. The substrate 108 may be a printed circuit board or a metal core board with no through holes that includes integrated circuitry. In other words, electrical lines may be fabricated into the substrate 108 that allow various components of the LED assembly 100 to communicate with each other. The metal core board may also provide thermal management.
In one embodiment, the LED assembly 100 may include at least one LED 1021 to 102n (hereinafter also referred to individually as an LED 102 or collectively as LEDs 102). Although the LEDs 102 are illustrated in a particular arrangement in
In one embodiment, the LED assembly 100 may include a power converter module (PCM) 104 and a digital transceiver (DT) 106. In one embodiment, the PCM 104 and the DT 106 may be integrated on the same substrate 108 as the LEDs 102. In other words, the PCM 104 and the DT 106 are not separate components that are coupled to the LEDs via an external connection, cable, wire, and the like. Rather, the PCM 104 and the DT 106 may be integrated to communicate with the LEDs 102 via circuits that are formed in the substrate 108. Said another way, the PCM 104 and the DT 106 may be soldered to electrical pads on the substrate 108 that are in communication with the LEDs 102. In other embodiments, the PCM 104 and the DT 106 may be fabricated or integrated as part of the substrate 108. In other words, the PCM 104 and the DT 106 may be a part of the substrate 108 (e.g., cannot be physically removed from the substrate 108 like discrete power converter and digital transceiver components of prior designs/light assemblies).
In one embodiment, the PCM 104 may be a component that converts voltage received in a direct current (DC) waveform into a voltage that is in an alternating current (AC) waveform. For example, the LEDs 102 may operate with AC power. However, a power source may be a DC power source. The PCM 104 may convert the DC from the DC power source into an AC power source that is delivered to the LEDs 102. Notably, the PCM 104 may be deployed without large metal power components (e.g., large housings) such that the PCM 104 can be integrated into the substrate 108
In one embodiment, the DT 106 may be a component that can receive, transmit, and/or process data. For example, the data may be used by the LED assembly 100 or be data received from a remote controller to control functionality of the LEDs 102.
In one embodiment, the DT 106 may be a wired or wireless transceiver. For example, when the DT 106 is a wired transceiver, the DT 106 may be connected to another transceiver or communication module via a communications wire. In one embodiment, the communications wire may be an optical communications link or a fiber optic cable. The optical communications link may be realized via the user of visible light communications sent through the optical communications link (e.g., visible light communications (VLC) or Li-Fi).
In one embodiment, when the DT 106 is a wireless transceiver, the DT 106 may communicate via an antenna using radio signals. Examples of various embodiments of the antenna are illustrated in
It should be noted that the LED assembly 100 has been simplified for ease of explanation. For example, the LED assembly 100 may be electrically connected to other components that are not shown (e.g., a controller, a processor, and the like).
Since the LEDs 102, the PCM 104, and the DT 106 are integrated onto a single substrate 108, the LED assembly 100 may provide a smaller footprint, lower manufacturing costs, and easier installation/assembly. For example, as noted above, the PCM 104 may be integrated without the bulky metal housings of external power converters. Moreover, assembly may require only installing the LED assembly 100 into a housing rather than having to electrically connect the LEDs to an external power converter, as in previous designs.
In one embodiment, the LEDs 102 may be mounted all on the first side 110 or the second side 112. In another embodiment, as shown in
In the embodiment of
In one embodiment, the monolithic capacitor 502 is formed in the substrate 108. For example, the monolithic capacitor 502 can be formed by manufacturing electrodes and a dielectric gap in the substrate 108 using semiconductor processing methods when the substrate 108 is manufactured.
It should be noted that portions of the various embodiments illustrated in
In one embodiment, the light fixtures may include a housing that positions optics around the LED assembly 100. As a result, the light emitted from the LEDs 102 of the LED assembly 100 may be transmitted in a desired direction or pattern in a particular location.
In one embodiment, the light fixtures 9021 and 9022 may be networked together to communicate with one another. For example, data can be transmitted between the light fixtures 9021 and 9022 via the DT 106, as described above. In one embodiment, the light fixtures 9021 and 9022 may communicate with an application server (AS) 904. For example, the AS 904 may be a remotely located controller or server that can send control signals to the light fixtures 9021 and 9022. The control signals can be received by the DT 106 to control operation or functionality of the LEDs 102, as noted above.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
This application claims priority under 35 U.S.C. § 119(e) to U.S. provisional patent application Ser. No. 62/808,383, filed on Feb. 21, 20190, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5404282 | Klinke | Apr 1995 | A |
6411045 | Nerone | Jun 2002 | B1 |
8513896 | Grebner | Aug 2013 | B2 |
8686655 | Setomoto | Apr 2014 | B2 |
8742694 | Bora et al. | Jun 2014 | B2 |
8933473 | Dubin | Jan 2015 | B1 |
9052069 | Romas | Jun 2015 | B2 |
10143053 | Wilson et al. | Nov 2018 | B1 |
20030122502 | Clauberg | Jul 2003 | A1 |
20060256003 | Mor | Nov 2006 | A1 |
20100156308 | Maehara | Jun 2010 | A1 |
20120169231 | Dine et al. | Jul 2012 | A1 |
20130236183 | Chao | Sep 2013 | A1 |
20140184070 | Lu | Jul 2014 | A1 |
20140209931 | Liao | Jul 2014 | A1 |
20140233226 | Wallace et al. | Aug 2014 | A1 |
20150206861 | Dubin | Jul 2015 | A1 |
20150236221 | Deak, Sr. | Aug 2015 | A1 |
20160029444 | Kamoi | Jan 2016 | A1 |
20160050731 | Jung | Feb 2016 | A1 |
20160128158 | Harder | May 2016 | A1 |
20160227636 | Sun et al. | Aug 2016 | A1 |
20160234899 | Reed | Aug 2016 | A1 |
20160302280 | Harbers | Oct 2016 | A1 |
20180288839 | Safaee | Oct 2018 | A1 |
20180374834 | Tada | Dec 2018 | A1 |
20190335570 | Chen | Oct 2019 | A1 |
20200146119 | Li | May 2020 | A1 |
Entry |
---|
Why is the monolithic capacitor?, YTF Capacitor & Resistor Brand Supplier, Sep. 2, 2019, printed from https://www.vtfcapacitor.com/news/Monolithic-capacitor.html, 10 pages. |
International Search Report and Written Opinion mailed in corresponding PCT/US2020/019035 dated May 6, 2020, 24 pages. |
Number | Date | Country | |
---|---|---|---|
20200275541 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
62808383 | Feb 2019 | US |